
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(9): 5313–5339.
DOI: 10.3934/era.2023270
Received: 31 May 2023
Revised: 15 July 2023
Accepted: 18 July 2023
Published: 26 July 2023

Research article

Optimization of designing multiple genes encoding the same protein based
on NSGA-II for efficient execution on GPUs

Donghyeon Kim and Jinsung Kim*

School of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea

* Correspondence: Email: kimjsung@cau.ac.kr; Tel: +8228205554.

Abstract: In synthetic biology, it is a challenge to increase the production of target proteins by
maximizing their expression levels. In order to augment expression levels, we need to focus on both
homologous recombination and codon adaptation, which are estimated by three objective functions,
namely HD (Hamming distance), LRCS (length of repeated or common substring) and CAI (codon
adaptation index). Optimizing these objective functions simultaneously becomes a multi-objective op-
timization problem. The aim is to find satisfying solutions that have high codon adaptation and a low
incidence of homologous recombination. However, obtaining satisfactory solutions requires calculat-
ing the objective functions multiple times with many cycles and solutions. In this paper, we propose an
approach to accelerate the method of designing a set of CDSs (CoDing sequences) based on NSGA-
II (non-dominated sorting genetic algorithm II) on NVIDIA GPUs. The implementation accelerated
by GPUs improves overall performance by 187.5× using 100 cycles and 128 solutions. Our imple-
mentation allows us to use larger solutions and more cycles, leading to outstanding solution quality.
The improved implementation provides much better solutions in a similar amount of time compared to
other available methods by 1.22× improvements in hypervolume. Furthermore, our approach on GPUs
also suggests how to efficiently utilize the latest computational resources in bioinformatics. Finally, we
discuss the impacts of the number of cycles and the number of solutions on designing a set of CDSs.

Keywords: protein encoding; multi-objective optimization; bioengineering; GPU computing;
NSGA-II

1. Introduction

The production of proteins is a fundamental process for many applications in medicine and biotech-
nology such as the development of drugs, vaccines and diagnostic tests [1–6]. According to the [7],
methods for the efficient production of mammalian proteins for drugs have continuously been devel-
oped to support clinical evaluations and this market size exceeds US $12 billion annually. Moreover,

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023270

5314

the S-glycoprotein, a key component of antiviral vaccines for severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), has predominantly been produced in mammalian cells, incurring significant
costs. Therefore, efficient protein production could contribute to the development of COVID-19 vac-
cines and biopharmaceuticals [8]. In addition, improving the production efficiency of enzyme proteins
used for production of food and feed has been addressed in [9]. Thus, it is crucial to efficiently produce
proteins across various fields. A common method used to boost the production of target proteins is
the integration of numerous copies of the target gene into the host genome. However, this method
is often expensive and time-consuming. For example, CRIM (conditional replication, integration and
modular) [10], which is widely used for DNA integration into the host chromosome, takes around one
to two weeks to complete due to multiple recombination steps. To address this, CIGMC (chromosomal
integration of gene[s] with multiple copies), which reduces the number of recombination steps to a
single step [11] and other approaches [12, 13] have been explored. Although they provide some effi-
cient ways to integrate multiple gene copies to the host genome, the integration of gene copies in close
proximity can lead to problems such as homologous recombination [14]. Consequently, the production
of proteins may not necessarily be proportional to the number of integrated copies as protein expres-
sion levels are affected by both homologous recombination and codon adaptation [15]. The challenge
lies in creating a list of gene copies that maximize the production of a target protein. To achieve this,
both homologous recombination and codon adaptation should be considered. The integration of gene
copies physically close to each other in the host genome can result in homologous recombination,
which can lead to the loss of genes. Homologous recombination tends to occur in repetitive sequences
in close proximity, leading to a reduction in the copy number of the target gene [16–18]. These findings
highlight the importance of minimizing the length of identical sequences to minimize the potential for
homologous recombination.

In addition to homologous recombination, the expression levels of proteins are also influenced by
codon adaptation. A single CDS (CoDing sequence) that encodes a protein usually consists of several
amino acids, each of which can be encoded by multiple synonymous codons. In other words, different
codons can encode the same amino acid. Accordingly, for a given target gene there can be several
CDSs differing in their synonymous codons. Codon usage bias refers to the tendency for genes to
preferentially use certain codons more frequently than others. It reflects how well a codon is adapted
to a particular host organism. Codons that are better adapted to the host organism generally result in
higher expression levels [19–23]. Therefore, optimizing codon usage in a CDS can effectively enhance
protein expression. However, if the same well-optimized codon is used frequently within the same
host organism solely to increase the degree of codon adaptation, it can also increase the likelihood of
homologous recombination. Therefore, it is crucial to consider homologous recombination and codon
adaptation as part of multi-objective optimization approach. This approach aims to generate alternative
CDSs that produce the same protein in a host organism using codons with different sequences and are
better adapted to the specific host.

Terai et al. [14] proposed a method for designing a set of CDSs that simultaneously takes into
account both homologous recombination and codon adaptation. Their approach is based on NSGA-
II (non-dominated sorting genetic algorithm II), a widely used genetic algorithm for multi-objective
optimization [24]. Three objective functions are defined to estimate the expression level of CDSs and
four mutation operators are employed to revise them with the goal of discovering alternative CDSs
that exhibit high codon adaptation and a low incidence of homologous recombination at the same

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5315

time. In a separate study, Gonzalez-Sanchez et al. [25] introduced a method based on MOABC (multi-
objective artificial bee colony), a multi-objective optimization algorithm based on artificial bee colony
(ABC) swarm intelligence. Although the MOABC-based method shows some improvement compared
to Terai et al.’s method, this method will be labelled as NSGA-II-CPU in the rest of the paper, it
required more computational resources. The MOABC-based method in [25] requires 2N computations
of three objective functions per cycle, which are time-consuming components, where N is the number
of solutions. On the other hand, NSGA-II-CPU requires N computations of three objective functions
per cycle. Therefore, when considering computational costs, the MOABC-based method may not
be more efficient than NSGA-II-CPU. Subsequent research led to the development of AP-MOABC
(asynchronous parallel-MOABC), a parallelized version of the original method using the OpenMP
standard for CPUs [26], resulting in a significant performance boost. However, the execution times of
AP-MOABC are still relatively high, and the method was not suitable for the SIMT model on GPUs
due to its master-worker parallelization model. In contrast, NSGA-II-CPU is capable of distributing
computations evenly across threads on GPUs without relying on the master-worker parallelization
model.

In this paper, we propose an approach to accelerate the optimization process in the multi-objective
genetic algorithm, specifically focusing on optimizing the NSGA-II-based method, NSGA-II-CPU,
proposed by Terai et al. Our approach aims to efficiently perform the three multi-objective functions
and four mutation operations on NVIDIA GPUs, significantly reducing execution time required for the
multi-objective optimization problem of protein encoding and enabling the handling of larger datasets
and increased computations. To achieve this, we optimized the three multi-objective functions us-
ing a divide-and-conquer and dynamic programming approach, efficiently utilizing features of GPU
architecture. Furthermore, we investigated the impact of the number of solutions and cycles on the
expression levels of designing CDSs. The experimental results demonstrated a marked improvement
in performance compared to existing alternatives.

On an NVIDIA GeForce RTX 4090, we achieved an average speedup of approximately 187.5×
using 100 cycles and 128 solutions. While our implementation slightly lagged behind AP-MOABC in
terms of solution quality measured by hypervolume and minimum distance, it overcame the execution
time restriction by efficiently executing the method of designing a set of CDSs on GPUs. Conse-
quently, within a similar timeframe to the execution time of AP-MOABC, we were able to design
CDSs with larger datasets and more cycles than 128 solutions and 100 cycles, leading to outstanding
solution quality. The implementation achieved up to a 1.22× improvement in hypervolume and a 1.20×
improvements in minimum distance compared to AP-MOABC.

This paper is organized as follows. Section 2 provides background information. Section 3 details
our approach to optimize Terai et al.’s method based on NSGA-II for designing multiple genes on
GPUs. Section 4 presents the experimental results. Section 5 discusses related research on protein
encoding. Finally, Section 6 concludes the paper and Section 7 outlines potential future work.

2. Background and related works

2.1. Multi-objective optimization

A multi-objective optimization problem involves optimizing multiple objective functions simulta-
neously. In contrast to single-objective optimization, which focuses on a single objective function,

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5316

multi-objective optimization requires the optimization of two or more objective functions that may
compete or conflict with each other. The goal of multi-objective optimization is to find a set of solu-
tions that represent the best trade-off between the objectives. In single-objective optimization, evaluat-
ing the superiority of a solution is straightforward because it involves comparing the values of a single
objective function. However, in multi-objective optimization, the quality of a solution is assessed by
considering all the values of the objective functions simultaneously. Specifically, a solution dominates
another solution if it performs better in at least one objective and is not worse in others. For example,
considering the two solution vectors s1 and s2 of length m, with each element representing a value of an
objective function. Assuming that all objective functions are to be minimized and s1 is a better solution
than s2— s1 ≺ s2 if and only if ∀i ∈ {1, 2, . . . ,m} : fi(s1) ≤ fi(s2)

∧
∃ j ∈ {1, 2, . . . ,m} : f j(s1) < f j(s2);

≺ indicates the Pareto dominance relationship between two solutions [24,27]. In other words, s1 dom-
inates s2 or s1 is not dominated by s2. A set of solutions that represent the best trade-off solutions
between the objectives is called the Pareto front or Pareto optimal solutions. Although it is possible to
find all true Pareto optimal solutions by processing all cases, it requires significant amount of computa-
tional resources and time. For example, if a solution consists of 500 amino acids and each amino acid
can be encoded by 3 synonymous codons, 3500 cases must be compared to find all true Pareto optimal
solutions. In practice, many real-world problems do not have a known true Pareto front. Instead, multi-
objective optimization aims to obtain multiple solutions that are close to the true Pareto front within
a reasonable amount of time. In addition, it is crucial to consider the divergence between solutions
to ensure a good spread of solutions in the objective space. In summary, the goal of multi-objective
optimization is to obtain solutions that are distributed and close to the true Pareto optimal front within
a reasonable computational timeframe.

2.2. NSGA-II

The NSGA-II is a multi-objective optimization algorithm based on genetic algorithms. It consists
of two steps, the initialization step and the generation step. The generation step, which includes the
crossover step, mutation step and selection step, can be repeated multiple times. Each generation step
is called a cycle. In the initialization step, a set of N solutions are generated and these N solutions are
used as the original solutions in the first generation. Then, in the crossover step of the generation step,
pairs of solutions randomly selected from the original solutions with the crossover probability. These
pairs exchanges the same parts of their solutions, introducing variations. In the mutation step, each so-
lution is mutated from its original form to generate a new solution, resulting in a total of 2N solutions
(N original and N generated). Next, the NSGA-II calculates the multi-objective functions of the N
solutions. In order to select the better N solutions from the 2N solutions, the algorithm performs non-
dominated sorting with the calculated multi-objective functions. In non-dominated sorting, the rank
value of each solution is determined through the dominant tests and the solutions are sorted in ascend-
ing order based on their rank values. For example, solutions with a rank value of 0 dominate solutions
with rank values greater than 0. However, among solutions with equal rank values, it is not possible to
determine which solution dominates others. To address this, the algorithm performs crowding distance
sorting, which measures the divergence of solutions in the same rank in the objective space [24] and
sorts solutions in descending order based on their crowding distance. Solutions with lower ranks are
preferred and among solutions whose rank values are equal, those with higher crowding distances are
preferred. Finally, the selected N solutions are used as the original solutions for the next generation

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5317

step or cycle. However, according to NSGA-II-CPU, the crossover step is deemed ineffective because
the multi-objective functions for the given problems do not have rugged local optima and the mutation
step is solely used to generate new solutions in proximity to the true Pareto front. Therefore, we also
excluded the crossover step in our implementation.

2.3. Three objective functions

In the multi-objective optimization problem for designing a set of CDSs based on NSGA-II, three
objective functions are employed: mCAI (minimum value of codon adaptation index), mHD (minimum
value of Hamming distance) and MLRCS (maximum length of repeated or common substring). These
objectives aim to identify solutions that simultaneously exhibit a low incidence of homologous recom-
bination and high codon adaptation. In other words, the goal is to maximize protein expression levels
by utilizing solutions composed of codons that are well-adapted to the host organism while minimizing
similarity among CDSs.

The objective function mCAI evaluates the level of codon adaption of a solution in relation to the
host organism, while the remaining two objective functions, mHD and MLRCS , assess the similarity
among CDSs within a solution. However, a conflict typically arises between the objective function
mCAI and the other two objective functions, mHD and MLRCS , due to the presence of numerous
identical codons within CDSs, leading to a high degree of similarity among them when mCAI has
a high value. The value of mCAI is determined by the weight of the codons. However, for a given
amino acid, there exists only one codon with the highest weight among multiple synonymous codons.
Consequently, if the value of mCAI improves, the values of mHD and MLRCS will worsen.

2.3.1. Minimum value of codon adaptation index (mCAI)

Depending on the specific host organism, certain codons among the synonymous codons are more
frequently used. Such codons demonstrate a higher degree of adaptation to the host organism. Conse-
quently, when designing CDSs, if the amino acids are encoded using the more frequently used codons,
the resulting CDSs will have a high protein expression level. For each CDS in a solution, the value of
the CAI (codon adaptation index) indicates the extent to which highly adapted codons are encoded in
the CDS.

CAI(CDS i) =
K

√√
K∏

k=1

weight(codoni,k) (1)

In Eq (1), CDS i indicates the i-th CDS in the solution; K is the total number of codons in a single
CDS; and codoni,k indicates k-th codon of i-th CDS in the solution. The weight assigned to each codon
is calculated based on its frequency of use within the synonymous codons in the host organism. It is
calculated by dividing its frequency of use by the frequency of the most frequently used codon among
its synonymous codons. In this paper, the weight assigned to each codon is consistent with the values
used in previous studies [14,25,28] and these weight values were calculated by analyzing the top 1000
highly expressed genes in the host organism S.cerevisiae [29].

mCAI = min
1≤i≤S

CAI(CDS i) (2)

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5318

In Eq (2), S is the total number of CDSs in a solution. The minimum value of the CAIs of the CDSs
in a solution is used as the value of the mCAI objective function. This approach is employed because
using the average CAI value of CDSs as the objective function may not effectively capture the presence
of CDSs with CAIs much lower than the average. It is preferred to have a large value for mCAI in the
solution to maximize protein expression levels.

2.3.2. Minimum value of Hamming distance (mHD)

HD(CDS i,CDS j) =
∑

1≤l≤L

σ(CDS i,l,CDS j,l) (3)

The HD values are calculated for all possible pairs of CDSs within a solution and each HD value
indicates the number of different bases between the paired of CDSs. In Eq (3), CDS i and CDS j

indicate the i-th CDS and j-th CDS in the solution, respectively, and L is the length of a CDS. If the l-th
base of the i-th CDS and the j-th CDS are different, the value of σ(CDS i,l,CDS j,l) is 1. Conversely, if
they are the same, the value is 0.

Figure 1. Example of the Hamming distance between CDS 1 and CDS 2 (G: Glycine, H:
Histidine, R: Arginine and V: Valine).

For example, let us assume the first CDS in the solution is “GGUCAUCGUGUU” and the second
CDS is “GGGCACCGGGUG” as shown in Figure 1. The codons in the CDSs encode the correspond-
ing amino acids. The first codon of CDS 1, GGU and the first codon of CDS 2, GGG, are synonymous
codons of glycine. The HD value between the first CDS and the second CDS is 4 because the 3rd, 6th,
9th and 12th bases differ between the pair. The HD value increases as the number of differing bases at
the same positions within the CDS pair increases.

mHD = min
1≤i< j≤S

HD(CDS i,CDS j)
L

(4)

In Eq (4), S is the total number of CDSs in a solution. Similar to the rationale behind the mCAI
objective function, the smallest HD value among the HD values within the solution is used to calculate
the mHD objective function. The mHD value is calculated by dividing the minimum HD value by the
length of the CDS. It is preferred to have a larger mHD value in the solution to maximize the protein
expression levels.

2.3.3. Maximum length of repeated or common substring (MLRCS)

In a solution, the longest common substring between all pairs of CDSs or within the same CDS
is determined to calculate the MLRCS objective function. The value of MLRCS objective function
is obtained by dividing the length of the longest common substring among the CDSs by the length

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5319

of a single CDS. S i,p,l indicates a substring of length l starting from the p-th base of the i-th CDS in
a solution. Similarly, S j,q,l is a substring of length l starting from the q-th base of the j-th CDS in a
solution.

Figure 2. Example of the longest substring between CDS 1 and CDS 2 (S: Serine, P: Proline,
T: Threonine and A: Alanine).

For example, let us consider two CDSs shown in Figure 2: CDS 1 is “UCCCCAACGGCG” and
CDS 2 is “UCUCCCACAGCA”. The longest common substring between them is CCCA (highlighted
in Figure 2). In this case, S 1,3,4 and S 2,4,4 indicate the longest common substring CCCA for CDS 1

and CDS 2, respectively. Therefore, the length of the longest substring between CDS 1 and CDS 2 is 4.
Note that the starting point of each substring must be different (p , q if i = j) when calculating the
longest common substring within a single CDS. It is preferred to have a smaller value for the MLRCS
objective function in the solution to maximize protein expression levels.

2.4. Four mutation operators

Amino acids are typically encoded by multiple synonymous codons, with the exception of two
amino acids, methionine and tryptophan, which have only one synonymous codon. For example, the
amino acid leucine can be encoded by six different codons: UUA, UUG, CUU, CUC, CUA and CUG.
In the context of CDSs, the mutation process involves replacing the existing codons with their synony-
mous counterparts. The mutation operators determine which codons in a solution will be mutated and
employ specific methods to mutate the codons.

Once the codons to be mutated are determined by the mutation operator, a random number in the
range (0, 1] is generated for each selected codon. If the generated random number is smaller than
the given mutation probability, the corresponding codon is mutated by the selected mutation operator.
For example, assuming that 100 codons in a solution are selected by the mutation operator and the
mutation probability is 5%, approximately five codons will be mutated. In our method, the mutation
step involves randomly selecting one of four mutation operators for each solution. Three of these
operators are designed to improve the values of the objective function, while the remaining operator
randomly mutates some codons in the solution. The four mutation operators are described as follows:

1) The codons of a single CDS with the mCAI value in the solution can be replaced with their
synonymous codons with a higher weight. However, if the codon already has the highest weight,
it is not be replaced.

2) The codons of a pair of CDSs with the mHD value in the solution can be randomly replaced with
their synonymous codons.

3) The codons belonging to the two substrings with the MLRCS value in the solution can be ran-
domly replaced with their synonymous codons.

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5320

4) The codons of all CDSs in the solution can be randomly replaced with their synonymous codons.

In the mutation operators 2, 3 and 4, when codons are randomly replaced with synonymous codons,
they will not be replaced with themselves to ensure variation within the solution.

3. Efficient parallel implementation on GPUs

3.1. Overview of our implementation

Figure 3. Procedure of our implementation based on NSGA-II-CPU.

Figure 3 illustrates the procedure of our approach, which aims to optimize the NSGA-II-based
method, NSGA-II-CPU, for designing a set of CDSs in order to increase the production of target
proteins. This approach consists of three steps: initialization step, mutation step and selection step.
Both the mutation step and the selection step are designed to generate numerous solutions with high
protein expression levels.

The initialization step, shown at the leftmost part of Figure 3, is the first step where N solutions
are generated. To generate N solutions, N − 1 solutions are generated by randomly selecting codons,
while the remaining one solution is generated by manually selecting codons with the highest weight.
This is possible because the weight of codons in the host organism is experimentally provided. The
solution composed of codons with the highest weight is used to generate solutions with high values
of the mCAI objective function by undergoing mutation in the mutation step. In the mutation step
shown in the middle part of Figure 3, N solutions are newly generated by mutating the N original
solutions, resulting in a total of 2N solutions. In the first generation, the N original solutions are
generated in the initialization step. After the first generation, the N original solutions are generated in
the previous generation. When a new solution is generated from the original solution, one of the four
mutation operators mentioned in Section 2.4 is randomly used. Finally, in the selection step shown at
the rightmost part of Figure 3, non-dominated sorting and crowding distance sorting are performed in

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5321

order to select N good solutions out of the 2N solutions. These selected N solutions serve as the new
original solutions for the subsequent mutation step. This process is repeated for multiple generations
and the resulting 2N solutions are stored in a file.

In our implementation, each step is implemented as a separate CUDA kernel. Additionally, there is
another CUDA kernel responsible for initializing the state of the random number generators to ensure
that each thread can generate different random numbers. The CUDA kernels for the random number
generators and the initialization step are only executed once at the beginning of the process, while the
CUDA kernels of the mutation step and the selection step are executed multiple times. Furthermore, our
implementation allows users to provide three input parameters: N, G and Pm. N represents the number
of solutions in a population, G represents the number of generations (cycles) and Pm represents the
mutation probability. These input parameters are used to generate the population with G cycles and 2N
solutions based on the mutation probability Pm.

3.2. How to map the population to thread blocks

According to the approach used by NSGA-II-CPU, there are no interactions between solutions but
there are significant interactions between CDSs. When designing a set of CDSs, the calculation of the
three objective functions is too time-consuming and requires numerous computations between codons
and between CDSs within a solution. To address this, our implementation utilizes shared memory and
maps a solution to a thread block, except for the selection step in Figure 3. By mapping a solution to a
thread block on shared memory, all threads within a thread block have access to the CDSs within that
solution.

To handle a population composed of N solutions, N thread blocks are employed for both the initial-
ization step and the mutation step. Initially, each thread block generates a solution during the initial-
ization step, resulting in the creation of N solutions called original solutions. In the mutation kernel,
each thread block contains two solutions: (1) an original solution generated during the initialization
step and (2) a new solution created by mutating the original solution using one of the four mutation
operators in shared memory. This design is based on the fact that all threads within a thread block
have access to a solution in shared memory, which offers significantly faster performance (over 10×)
compared to global memory [30].

Unlike the initialization and mutation steps, the selection step involves using 2N threads to sort 2N
solutions and the number of thread blocks depends on the number of threads within each block. If a
thread block consists of T threads then ⌈2N/T ⌉ thread blocks are required. For example, assuming that
we have 256 threads and 2048 solutions, we would need 8 thread blocks because of ⌈2048/256⌉ = 8.
Given that all solutions in a population need to be accessed for comparison in the selection step, they
should be stored in global memory, which is accessible by all threads. Furthermore, all information
about the codons of all amino acids is stored in constant memory, which is designed for read-only data
that is accessed repeatedly within a kernel.

3.3. How to mutate codons on GPUs

In order to generate a new solution from the original solution, we mutate the codons within the
original solution using one of the four mutation operators described in Section 2.4. After determining
which codons to mutate, these codons are evenly distributed among the threads in a thread block as

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5322

much as possible. Then, each thread generates random numbers according to the number of codons
assigned to it. If the generated random number for a codon is smaller than the mutation probability,
this codon is mutated.

In our implementation, when a thread generates random numbers, it utilizes the random number
generator based on the XORWOW algorithm in the cuRAND library. We use curand uniform() func-
tion, which returns a sequence of pseudo-random floats uniformly distributed in range (0.0, 1.0]. Fur-
thermore, as discussed in Section 2.4, depending on the mutation operators, codons can be mutated
randomly with any synonymous codons or they can be mutated randomly by selecting one of the
synonymous codons with a higher weight than the original codon. For the latter case, the generated
random number is multiplied by the number of synonymous codons with a higher weight compared to
the codon to be mutated. The calculated value is then rounded down and this number is used to select
one of the synonymous codons with a higher weight. However, for the former case, instead of consid-
ering only the synonymous codons with a higher weight, the generated random number is multiplied
by the total number of synonymous codons. The calculated value may indicate the original codon. In
this case, the above process is repeated until a different codon is selected.

3.4. How to calculate three objective functions on GPUs

To evaluate the quality of solutions, the values of the three objective functions are used. Therefore,
the values of the objective functions should be calculated for the newly generated solutions. These
values are computed during the initialization step and the mutation step. The initialization step calcu-
lates the objective function values for the initialized solutions, while the mutation step calculates the
objective function values for the mutated solutions (newly generated solutions). The calculation of the
objective functions is performed for only N solutions per cycle.

Since each thread block is responsible for generating one solution in both steps, the threads within
a block are used to calculate the objective function values of the solution. For the three objective
functions, mHD, mCAI and MLRCS , the values CAI, HD and LRCS for CDSs should be calculated.
Each thread within a thread block performs its own parts of the computations for these values and
store the intermediate results in shared memory, which can be accessed by all threads within the block.
Then, we exploit the divide-and-conquer strategy through shared memory to calculate the values of
CAI, HD and LRCS . Finally, the value of the corresponding objective function may be updated by
comparing the existing value with the calculated value.

For example, assuming that a solution is composed of two CDSs, the CAI1 value of the first CDS is
calculated first and the mCAI objective function value is updated with CAI1. Then, the CAI2 value for
the second CDS is calculated. If the CAI2 is smaller than the existing mCAI objective function value,
mCAI is replaced with CAI2. Otherwise, mCAI remains unchanged. The objective function values
mHD and MLRCS are also calculated similarly.

3.4.1. Calculation of HD

Values of HD are calculated for all pairs of CDSs in a solution. Each HD value corresponds to a
pair of two CDSs in a solution. Let us assume that the length of a CDS is L and the number of threads
in a thread block is T . As shown in Figure 4, each thread handles L/T pairs of bases within a pair of
CDSs in order to calculate the HD value for that pair. It is important to note that, when comparing two

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5323

Figure 4. Example of our approach to calculate the intermediate HD values of a pairs of
CDSs.

bases, they must be positioned at the same location in the CDSs.
The calculation of the HD value follows Eq (3), which is straightforward. For each pair of two

bases, if they are different, the HD value is increased by 1. Otherwise, the HD value remains un-
changed. In this way, the HD value indicates the number of bases that are located at the same position
but differ between two CDSs. Each thread calculates the number of differing bases among L/T pairs
of bases and stores this value in a register which is only visible to that particular thread. After calcu-
lating T intermediate values of HD, all threads within a thread block store their intermediate results
in shared memory. Then, the divide-and-conquer strategy is employed to calculate the final value of
HD as shown in Figure 5. The values at the top of Figure 5 represent the T intermediate values for the
final HD value. In the first step, the half of threads, from t0 to tT/2−1, in a thread block accumulates
their corresponding value which the other half from tT/2 to tT−1, has in shared memory. As the steps
progress, the number of threads used for addition is halved and in the final step, denoted as ⌈log2T ⌉
step, a single thread, t0, calculates the final HD value by adding the two intermediate values. Finally,
the sum of the HD values is divided by L for normalization. If the calculated value is less than the
existing value of mHD, the mHD value is replaced with the calculated value. Otherwise, the mHD
value remains unchanged.

3.4.2. Calculation of CAI

The value of mCAI represents the minimum CAI value among the CDSs in the solution. To calculate
the CAI value for each CDS in the solution, we assume that each CDS consists of K codons and each
thread block contains T threads. Each thread is assigned K/T codons and calculates the CAI value
for one CDS. As shown in Eq (1), each thread calculates the K-th root of the weight of each codon
for the assigned K/T codons. Then, it multiplies all these values together on a register, resulting in an
intermediate value of CAI. All threads within a thread block store their intermediate values in shared
memory. The final value of CAI is also computed using the divide-and-conquer strategy.

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5324

Figure 5. Example of calculating the complete HD value based on the divide and conquer
strategy.

3.4.3. Calculation of LRCS

The values of LRCS are calculated for all pairs of CDSs in a solution, as well as for each individual
CDS. Assuming that the length of an CDS is L, our approach to calculate the LRCS is based on the
dynamic programming algorithm in Eq (5).

m[i, j] =

0, if i = 0 or j = 0
m[i − 1, j − 1] + 1, if CDS 1[i] = CDS 2[j]
0, if CDS 1[i] , CDS 2[j]

(5)

The algorithm utilizes an (L+1)× (L+1) matrix denoted as m, where CDS 1 and CDS 2 are matched
in rows and columns, respectively. To simplify the computations, the 0-th row and 0-th column of the
matrix, m[0,∗] and m[∗,0], respectively, are padded with 0. In Eq (5), each element of m[i, j] represents
the length of the common substring obtained by comparing up to the i-th base of CDS 1 and the j-th
base of CDS 2. For example, if the element of m[i, j] is 3, it indicates that the substring from the (i−2)-
th base to the i-th base of CDS 1 and the substring from the (j− 2)-th base to the j-th base of CDS 2 are
matched.

Since the common substring is contiguous, if the i-th base of CDS 1 and the j-th base of CDS 2 are
identical when calculating the element m[i, j], the element m[i − 1, j − 1] is needed, which represents
the length of the common substring obtained by comparing up to the (i − 1)-th base of CDS 1 and
the (j − 1)-th base of CDS 2. Therefore, the element m[i, j] is computed by adding 1 to the element
m[i − 1, j − 1]. On the other hand, if the i-th base of CDS 1 and the j-th base of CDS 2 are different, it
indicates that the common substring is interrupted at that position. Consequently, the value 0 is stored
in m[i, j], indicating that the element m[i−1, j−1] may be required to compute the element m[i, j]. For
example, let us consider the calculation of the element m[3, 3] using the CDS 1 “AUGGCU” and CDS 2

“AUGGCC” as shown in Figure 6. To determine m[3, 3], we compare the 3rd base of the CDS 1, which

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5325

Figure 6. Example of calculating the longest length of substring.

is “G”, with the 3rd base of the CDS 2, which is also “G”. Since they are identical, we store the value
of m[2, 2] plus 1 in m[3, 3]. When calculating LRCS within the same CDS, if the indices of the base
pair are the same, that is, when the row index and column index of the matrix element are the same,
the element is computed as 0.

In Eq (5), it is important to consider the dependency. In order to calculate an element in the matrix
m[i, j], we need the element m[i−1, j−1], which means that the element m[i−1, j−1] must be calculated
before calculating the element m[i, j], as shown in Figure 6. The thread responsible for elements
along a column m[∗, j] must wait for the thread handling elements along the column m[∗, j − 1] to
complete. In the SIMT architecture, this synchronization increases the execution time because threads
within a warp work together. To minimize synchronization between threads, each thread performs its
own calculations diagonally, as shown in Figure 6. Diagonals in the matrix are assigned to threads
sequentially, starting from the bottom left and moving towards the top right, ensuring that each thread
can work independently. Furthermore, due to the dependency, each thread does not need to store the
entire matrix. Instead, each thread uses a single register file to store the maximum LRCS value per
diagonal. Once all threads complete their calculations, they store their intermediate values of LRCS in
shared memory in order to find the maximum LRCS value per matrix (a pair of CDSs). Similar to the
other two objective functions, the divide-and-conquer strategy is also used to find the maximum LRCS
value between a pair of CDSs. By calculating the maximum LRCS values of all pairs of CDSs as well
as individual CDSs in a solution, we can determine the maximum values of LRCS denoted as MLRCS
in the solution.

3.5. Non-dominated sorting and crowding distance sorting

In the selection step, a total of 2N solutions composed of N original solutions and N new solutions
are obtained from the mutation step. For selecting N solutions out of the 2N solutions, non-dominated
sorting is performed first. In our implementation, the CUDA kernel for the selection step requires
2N threads because each thread handles a single solution. Although the maximum number of threads
per block is normally 1024 in CUDA, we set the number of threads per block as 128 ensure better

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5326

occupancy, which is the ratio of active warps to the maximum number of warps supported on an SM
(streaming multiprocessor) of the GPUs. Furthermore, each thread compares the values of the multi-
objective functions (mHD, mCAI and MLRCS) with those of all others. Therefore, at the end of the
mutation step, the values of the objective functions are stored in global memory, which is accessible
by all threads on a grid.

First, each thread performs the Pareto comparison with the remaining (2N − 1) solutions in order to
identify a set of solutions with a rank of 0. In this process, np and S p are calculated for each solution,
where np indicates the number of other solutions that dominate the current solution and S p is the set
of solutions that are dominated by the current solution. Solutions with np equal to 0 are considered in
the set of solutions with rank 0. This is because if np is 0, there are no other solutions that dominate
the current solution. To determine the set of solutions with rank 1, we need to examine the solutions in
the set S p by traversing the solutions with rank 0. When visiting a solution in the set S p of solutions
with rank 0, its np is decreased by 1. After traversing all solutions with rank 0, we can identify the
solutions in the set S p of solutions with rank 0 that have np = 0. These solutions were only dominated
by solutions with rank 0 and therefore they are assigned a rank of 1. Similarly, to find the solutions in
the next rank, we visit S p set of solutions in the previous rank and decrease the np value of the solutions
in S p by 1.

In our implementation, we use a 2N × 2N Boolean matrix to represent the S p set consisting of
2N solutions. In this matrix, each row represents the set S p of a solution and the value of each col-
umn indicates whether the corresponding solution is dominated by the solution in the respective row.
Consequently, each thread independently accesses different columns when visiting the set S p of each
solution. Furthermore, the crowding distance sorting is utilized to sort solutions with identical ranks.
When selecting N solutions from 2N solutions, there may be cases where it is necessary to choose
solutions from a group with the same rank, as shown in Figure 3. In such cases, an alternative method
is required to sort solutions with identical ranks because the three objective functions cannot be uti-
lized for sorting. After each thread computes the crowding distance(s) according to Section 2.2, the
solutions are sorted in descending order based on their the crowding distance. For this purpose, we
employ bitonic mergesort, which is a parallel algorithm with a time complexity of O(log2n).

4. Experimental results and discussion

In our experiments, we used an AMD Ryzen 7 5800X 8-Core processor and an NVIDIA GeForce
RTX 4090 (128 Ada SMs, 128 CUDA cores/SM, 24GB global memory). The implementation was
compiled using GCC 11.3 and CUDA 12.1, with the driver version was 530.30.02, running on Ubuntu
22.04.2 LTS. For both the initialization and mutation CUDA kernels, we used 512 threads per thread
block. This configuration resulted in the highest occupancy, considering the required shared memory
and the number of register files as well as achieving the fastest execution time for the protein instances
shown in Table 1.

On the other hand, in the selection CUDA kernel we used 128 threads per thread block, resulting
in the highest occupancy. Among the four CUDA kernels, namely (1) random number generator, (2)
initialization, (3) mutation, and (4) selection, the first two kernels were executed only once. On the
other hand, the third and fourth CUDA kernels accounted for over 99% of the execution time because
applying mutations and calculating the multi-objective functions are time-consuming tasks, which are

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5327

Table 1. Protein Instances Used in the Experiment.

Code Name CDSs Length(AA) CDS × Length
Q5VZP5 DUS27 HUMAN 2 1158 2316
A4Y1B6 FADB SHEPC 3 716 2148
B3LS90 OCA5 YEAS1 4 679 2716
B4TWR7 CAIT SALSV 5 505 2525
Q91X51 GORS1 MOUSE 6 446 2676
Q89BP2 DAPE BRADU 7 388 2716

also repeated multiple times.
Unfortunately, we could not access to the implementations of Gonzalez-Sanchez et al.’s method,

AP-MOABC and NSGA-II-CPU. Therefore, we relied on published experimental results [28] to com-
pare our approach with theirs. This comparison demonstrated the accuracy of our implementation.
According to [28], their experimental results are based on CPUs and its experimental results were lim-
ited to 100 cycles and 128 solutions. In Section 4.1, we therefore provide limited experimental results
using the same parameters (100 cycles and 128 solutions) to facilitate a direct comparison with their
methods. However, due to the improved computing performance achieved through parallel data pro-
cessing in our implementation, we also present expanded experimental results with varying numbers
of cycles and solutions ranging from 25 to 1600 cycles and from 128 to 2048 solutions, respectively,
in Section 4.2.

Table 2. Nadir and ideal points for the calculation of quality indicators.

Objective functions Nadir value Ideal value
mCAI 0 1
mHD 0 0.4
MLRCS 1 0

In our experiments, we used the protein instances listed in Table 1. Additionally, Table 2 provides
the nadir value and ideal value needed for the calculation of quality indicators. These indicators, such
as the hypervolume indicator and the minimum distance to the ideal point, are widely used to evaluate
the quality of solutions in multi-objective optimization problems. The amino acid sequences of the
target proteins were obtained from the UniProt databases [31]. Furthermore, for calculating the CAI
values of the CDSs, we utilized previously published codon usage frequencies [23].

4.1. Limited experiments with 100 cycles and 128 solutions

In this section, we compare the following three methods using a limited number of cycles (100)
and solutions (128): our method, AP-MOABC (the method of parallel execution of the MOABC using
OpenMP) and NSGA-II-CPU. All three methods were executed with the same parameters: 100 cycles,
128 solutions and 5% mutation probability. Our implementation was run on NVIDIA RTX 4090, while
the experimental results of AP-MOABC and NSGA-II-CPU were obtained from published evaluations
[28], which were conducted on four 16-core AMD Opteron Abu Dhabi 6376 processors (64 [16 × 4]
physical cores, 2.3 GHz) with 96 GB DDR3 RAM. Although it is expected that their execution times

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5328

would improve if we were able to run them on faster CPUs, their execution times would still be more
than a second.

Table 3. Hypervolume results and minimum distances to the ideal points.

Hypervolume results Minimum distances to the ideal points
Protein Our method AP-MOABC NSGA-II-CPU Our method AP-MOABC NSGA-II-CPU
Q5VZP5 60.01% 59.27% 59.92% 0.508467 0.489408 0.503676
A4Y1B6 51.04% 52.71% 52.53% 0.569039 0.542613 0.551986
B3LS90 54.79% 55.59% 54.62% 0.524125 0.512751 0.512885
B4TWR7 48.67% 49.79% 48.91% 0.583531 0.563227 0.574876
Q91X51 50.88% 52.02% 50.47% 0.582617 0.574168 0.589626
Q89BP2 48.83% 50.09% 48.61% 0.593861 0.565618 0.569445
Average 52.37% 53.25% 52.51% 0.560273 0.541298 0.550416

As shown in Table 3, for most proteins, AP-MOABC slightly outperformed both our method
and NSGA-II-CPU, excluding the Q5VZP5 protein. The average hypervolume of AP-MOABC was
53.25%, while our method achieved 52.37% and NSGA-II-CPU achieved 52.51%. As for the average
minimum distance to the ideal points, AP-MOABC achieved 0.541298, our method achieved 0.560273
and NSGA-II-CPU achieved 0.550416. Since our method is based on NSGA-II-CPU, the experimental
results of our method was similar to thosed of NSGA-II-CPU when using the same number of cycles
and solutions, in terms of hypervolume and minimum distance to the ideal point. Table 4 shows the
execution time for our method and AP-MOABC. For the protein A4Y1B6, our method presented the
most significant speedup of 229.2× times faster than AP-MOABC. Although AP-MOABC exhibited
a performance improvement of 33.28× compared to MOABC on four 16-core CPUs, our method at-
tained a speedup of 187.5× on average compared to AP-MOABC. This indicates that our method can
quickly catch up with the outputs of AP-MOABC, hypervolume and minimum distance by increasing
the number of cycles as the execution time of our method on GPUs was significantly faster, although
the outputs of our method were inferior to those of AP-MOABC.

Table 4. Execution times (in seconds).

Protein Our method AP-MOABC
Q5VZP5 0.4284 87.937
A4Y1B6 0.3574 81.924
B3LS90 0.5217 100.989
B4TWR7 0.4672 88.211
Q91X51 0.5246 92.550
Q89BP2 0.5648 85.567
Average 0.4774 89.530

4.2. Expanded experiments with varying solutions and cycles

In this section, we present the expanded experimental results of our implementation with varying
numbers of solutions and cycles. As shown in Table 4, because the execution times of our method were
extremely short, we were able to test our method with various numbers of cycles and solutions in order

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5329

to demonstrate that our implementation has considerable potential in practice: 25, 50, 100, 200, 400,
800 and 1600 cycles, coupled with 128, 256, 512, 1024 and 2048 solutions, resulting in 35 cases for
each protein. In addition to, we used a mutation probability of 5%. The experiments were performed
10 times, and the average results are presented.

(a) Q5VZP5 protein (b) A4Y1B6 protein

Figure 7. Experimental results of our method with Q5VZP5 7(a) and A4Y1B6 7(b).

Figures 7–9 show the hypervolume values, minimum distance values and executions times of our
method with varying number of solutions and cycles. Figure 7 presents the experimental results for
the proteins Q5VZP5 and A4Y1B6. The proteins B3LS90 and B4TWR7 are shown in Figure 8, while
Q91X51 and Q89BP2 are shown in Figure 9. In Figures 7–9, the x-axis represents the number of cycles
and the y-axis represents the hypervolume, minimum distance or execution time. The legend indicates
the number of solutions. Increasing the number of solutions and cycles improved the hypervolume
and minimum distance for all proteins. However, the hypervolume and minimum distance did not pro-
portionally increase with increasing number of solutions and cycles. The trends appeared to approach
their upper bounds, such as the Pareto fronts. For all proteins, the hypervolumes increased rapidly
at the beginning of the cycles, followed by gradual increases. Likewise, the values of the minimum
distance to ideal point rapidly decreased initially, followed by gradual decreases. For example, let us

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5330

(a) B3LS90 protein (b) B4TWR7 protein

Figure 8. Experimental results of our method on B3LS90 8(a) and the B4TWR7 8(b).

consider the A4Y1B6 protein with 128 solutions. When the number of cycles increased from 25 to 50,
the hypervolume improved by 1.32% and the minimum distance improved by 0.0162345. In contrast,
when the number of cycles increased from 800 to 1600, the hypervolume improved by 0.77% and the
minimum distance improved by 0.0051251. Thus, the rate of improvement in hypervolume and min-
imum distance was higher at the initial cycles compared to later cycles. However, the execution time
showed a linear increase in proportion to the number of solutions and cycles.

In our method, doubling either the number of solutions or the number of cycles approximately dou-
bled the execution time. However, increasing the number of solutions or cycles did not result in similar
improvements in the hypervolume and minimum distance. In most of our experiments, increasing the
number of cycles had a greater impact on improving both the hypervolume and minimum distance com-
pared to increasing the number of solutions. For example, let us consider the Q5VZP5 protein. When
the number of cycles was 25 and the number of solutions was 128, the hypervolume was 56.80%, the
minimum distance was 0.546836 and the execution time was 0.111 seconds. Doubling the number of
cycles to 50 while maintaining 128 solutions resulted in a hypervolume of 58.42%, a minimum dis-
tance of 0.527110 and an execution time of 0.216 seconds. However, when we doubled the number

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5331

(a) Q91X51 protein (b) Q89BP2 protein

Figure 9. Experimental results of our method with Q91X51 9(a) and Q89BP2 9(b).

of solutions to 256 while maintaining 25 cycles, the hypervolume was 57.42%, the minimum distance
was 0.540800 and the execution time was 0.214 seconds. Therefore, increasing number of cycles to 50
with 128 solutions yielded better results compared to doubling the number of solutions. Let us consider
the same protein, Q5VZP5, for another example. With 800 cycles and 1024 solutions, the hypervol-
ume was 68.59%, the minimum distance was 0.436226 and the execution time was 26.143 seconds.
Doubling the number of cycles to 1600 with 1024 solutions resulted in a hypervolume of 70.80%, a
minimum distance of 0.416322 and an execution time of 52.255 seconds. On the other hand, when we
doubled the number of solutions to 2048 while maintaining 800 cycles, the hypervolume was 69.34%,
the minimum distance was 0.428807 and the execution time was 51.973 seconds.

However, there were cases where increasing the number of solutions was more effective than in-
creasing the number of cycles. Let us take the Q5VZP5 protein as an example. With 800 cycles and
128 solutions, the hypervolume was 64.79%, the minimum distance was 0.470478 and the execution
time was 3.398 seconds. Doubling the number of cycles to 1600 while maintaining 128 solutions re-
sulted in a hypervolume of 65.68%, a minimum distance of 0.464115 and an execution time of 6.801
seconds. On the other hand, when we doubled the number of solutions to 256 while maintaining 800

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5332

cycles, the hypervolume was 66.44%, the minimum distance was 0.451541 and the execution time was
6.645 seconds. It seems that when the number of solutions is too small compared to the number of
cycles, increasing the number of solutions leads to better improvements in hypervolume and minimum
distance than increasing the number of cycles. Therefore, while increasing the number of cycles gen-
erally improves the hypervolume and minimum distance, when the number of solutions is insufficient
compared to the number of cycles, increasing the number of solutions is beneficial. This pattern was
not only limited to the Q5VZP5 protein but was also observed with other proteins in our experiments.

Table 5. Experimental results for the protein Q5VZP5 on different solutions with similar
execution times to AP-MOABC.

Solutions Cycles Hypervolume Min. distance Time
128 20730 68.81% 0.449367 88.023
256 10600 71.80% 0.406582 87.922
512 5350 72.54% 0.404609 87.691
1024 2670 72.00% 0.406844 87.043
2048 1350 71.21% 0.412504 87.513

To determine the optimal number of solutions among 128, 256, 512, 1024 and 2048, we conducted
tests with each protein, aiming for similar execution times as the AP-MOABC method [28]. Table 5
presents the experimental results for protein Q5VZP5 with indicated numbers of solutions. Notably,
when using 512 solutions, we achieved the best results in terms of hypervolume (72.54%) and mini-
mum distance (0.404609). The corresponding number of cycles for this configuration was 5350 with
an execution time of 87.691 seconds. Remarkably, the use of 512 solutions consistently provided the
best results for both hypervolume and minimum distance across other proteins as well.

Table 6. Experimental results of our method (512 solutions) and AP-MOABC (128 solutions
and 100 cycles).

Our method AP-MOABC
Protein Cycles Hypervolume Min. distance Time Hypervolume Min. distance Time
Q5VZP5 5350 72.54% 0.404609 87.691 59.27% 0.489408 87.937
A4Y1B6 5950 59.83% 0.488580 81.343 52.71% 0.542613 81.924
B3LS90 5000 61.03% 0.459070 100.304 55.59% 0.512751 100.989
B4TWR7 4900 53.88% 0.530695 87.820 49.79% 0.563227 88.211
Q91X51 4550 56.30% 0.529353 91.853 52.02% 0.574168 92.550
Q89BP2 3900 53.51% 0.548313 84.911 50.09% 0.565618 85.567
Average 4942 59.52% 0.493436 88.987 53.25% 0.541298 89.530

Table 6 shows the experimental results for each protein when the number of solutions was 512
and the execution times were similar those of AP-MOABC. For the Q5VZP5 protein, our method
achieved a hypervolume that was 13.27% larger and a minimum distance value that was 0.084799
smaller compared to AP-MOABC. Similarly, for the A4Y1B6 protein, our method resulted in a hy-
pervolume that was 7.12% larger and a minimum distance that was 0.054133 smaller compared to
AP-MOABC. Additionally, our method outperformed AP-MOABC the B3LS90, B4TWR7, Q91X51
and Q89BP2 proteins as well. Therefore, when execution times were similar to AP-MOABC, our

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5333

method consistently delivered better results compared to AP-MOABC and utilizing 512 solutions was
the the optimal choice among 128, 256, 512, 1024 and 2048.

5. Related works

Several tools have been developed for designing CDSs to increase protein production, such as
COOL (codon optimization online) [32], D-Tailor (DNA-Tailor) [33] and OPTIMIZER [34]. While
they take into account the CAI (codon adaptation index) of the host organism during the CDS design,
they do not consider the similarity between CDSs. However, Terai et al. [14] proposed a method based
on NSGA-II and NSGA-II-CPU, that considers both the CAI and CDS similarity during the design pro-
cess. In addition, Gonzalez-Sanchez et al. proposed an ABC (artificial bee colony) algorithm-based
method, MOABC, with the same objective functions as Terai et al. In their subsequent research [28],
they accelerated the method using the parallel programming API called OpenMP [26], AP-MOABC.
The main difference between NSGA-II-CPU and Gonzalez-Sanchez et al.’s method lies in how they
handle solutions in the generation. Although the latest work of Gonzalez-Sanchez et al. improves the
quality of solutions in terms of hypervolume and minimum distance, which are used to scalarize a
multi-objective optimization problem, it requires approximately twice the number of computations of
the multi-objective functions (and the mutations) within a generation.

Furthermore, there are other recent and relevant studies such as MOBOA (multi-objective butterfly
optimization algorithm) [35] and MaOMPE (many-objective mutation-based protein encoding) [36]
for designing CDSs to increase protein production. However, they use objective functions that are
different from ones used in our method and they are also not parallelized. MaOMPE was based on
NSGA-III [37] that is extended from NSGA-II to handle problems with a large number of objective
functions. Although MOBOA is similar to NSGA-II, it differs in the introduciton of special structures
called BestList that stores good six solutions which can be used multiple times to generate new N
solutions and TabooList that stores solutions which cannot be included in the BestList.

5.1. Method based on MOABC

MOABC is multi-objective optimization algorithm based on the swarm intelligence of ABC (arti-
ficial bee colony). Gonzalez-Sanchez et al. [25] proposed a method based on MOABC to design a set
of CDSs to encode proteins. Similar to NSGA-II-CPU, this method initializes N solutions and does
not perform the crossover operation. The generation process of MOABC consists of three steps based
on ABC: (1) employed bees step, (2) onlooker bees step and (3) scout bees step. In the employed bees
step, N new solutions are generated from the N original solutions using mutation operators, respec-
tively. Then, the Pareto comparison is performed between an original solution and a corresponding
mutated solution. If the mutated solution dominates its corresponding original solution, the original
solution is replaced with the mutated solution. Prior to the onlooker bees step, non-dominated sort-
ing and crowding distance sorting are applied to the N solutions from the employed bees step and the
selection probability of each solution is calculated. Lower ranks and the higher crowding distances
lead to higher selection probabilities. These N solutions are then used as the input population for the
onlooker bees step. In the onlooker bees step, N additional solutions are generated according to the
selection probabilities of the N input solutions, resulting in 2N solutions. Solution with relatively high
selection probabilities have a greater chance of being selected multiple times to generate new solutions.

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5334

However, if a newly generated solution does not dominate its original solution, the original solution is
retained as a new solution. Thus, there may be multiple instances of the same solutions. Finally, these
2N solutions serve as the input population for the scout bees step. In the scout bees step, the solutions
that failed to generate good solutions predefined limit times are replaced with new solutions, which are
randomly generated and then mutated in proportion to the number of current cycles. After the scout
bees step, non-dominated sorting and crowding distance sorting are performed on the set of 2N solu-
tions. Then, N solutions are selected and used as the input population for the subsequent generation.
Therefore, in terms of calculating the multi-objective functions and performing non-dominated sorting
and crowding distance sorting, the MOABC-based method requires 2× and 1.5× more computations
per cycle, respectively, compared to our method and NSGA-II-CPU.

5.2. Method based on MOBOA

In the method based on MOBOA, GC3 is introduced to indicate the amount of guanine or cytosine at
the third position of codons and it is associated with gene stability. As gene stability increases, protein
expression level also increase. Instead of LRCS, the method based on MOBOA optimizes CAI, HD
and GC3 objective functions based on the intelligent foraging behavior of butterflies for designing a set
of CDSs. This method is similar to our method and NSGA-II-CPU in that it has a cycle of generating
N new solutions from N original solutions, performing non-dominated sorting and crowding distance
sorting and the selected N solutions are used as N original solutions in the next cycle. However, this
method accumulates the solutions with a rank value of 0 in each cycle in a file. Furthermore, this
method mutates either one of the solutions in the BestList or one solution among N original solutions
for generating one new solution. The BestList contains six good solutions selected from the N original
solutions, excluding solutions in the TabooList. When a new solution is generated mutating the solution
in the BestList, if the generated solution dominates its original solution, the original solution is moved
from the BestList to the TabooList. Therefore, the TabooList is accumulated with solutions that are not
included in the BestList. The BestList is filled with the next best solution from the N original solutions.
Because checking the TabooList is needed to select the solution for the BestList, this incurs additional
cost compared with our method.

5.3. Method based on MaOMPE

MaOMPE optimizes CAI, HD, GC3 and SL (stem length) objective functions based on NSGA-III
for designing CDSs. The SL is the longest length within a CDS that can potentially induce hairpin loop
formation that decreases protein expressin levels. If this objective function value is high, the probability
of hairpin loop occurrence increases. This method is very similar to the NSGA-II approach. One
difference is that in the non-dominated sorting and crowding distance sorting, the crowding distance
sorting for selecting the better solution among solutions with the same rank is replaced with reference
point-based sorting. The reference points are initialized using the Das and Dennis [38] method.

6. Conclusions

In this paper, we proposed an approach to accelerate the process of designing a set of CDSs for
achieving high protein expression levels on NVIDIA GPUs. Our implementation optimized the method
based on NSGA-II proposed by Terai et al. by efficiently performing the multi-objective functions and

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5335

mutation operations on GPUs. We optimized the three objective functions to ensure efficient execution
on GPUs as they are the main bottleneck in designing of a set of CDSs with satisfactory protein ex-
pression levels. Experimental results demonstrated that our approach achieved significant performance
improvement compared to others. We further analyzed the impacts of varying the numbers of cy-
cles and solutions for designing multiple genes encoding the same protein. The open-source software
developed in this study is available at: https://github.com/CAU-HPCL/CUDA-protein.

7. Future work

Multiple multi-objective optimization algorithms have been used to solve problems across differ-
ent domains. For example, Dulebenets [39] addressed the truck scheduling problem for reducing the
operational cost of a cross-docking terminal (CDT) using the adaptive polyploid memetic algorithm
(APMA). Pasha et al. [40] proposed a hybrid multi-objective evolutionary algorithm (HMOEA) for the
vehicle routing problem with a factory-in-a-box, which is crucial in urgent scenarios such as COVID-19
for the production and distribution of goods. Gholizadeh et al. [41] implemented a modified scenario-
based GA (msb-GA) to optimize preventive maintenance schedules in a waste-to-energy production
system. Dulebenets et al. [42] proposed a self-adaptive evolutionary algorithm (SAEA) to solve the
berth scheduling problem. Zhao and Zhang [43] designed the online-learning-based reference vec-
tor evolutionary many-objective algorithm (RVMEA/OL) to optimize problems with many-objective
functions and this approach is similar to the traditional evolutionary many-objective optimization al-
gorithms (EMaOAs), but it incorporates a dynamic mutation strategy based on feedback about the
optimization level of each sub-problem during the optimization process.

In future works, we plan to extend the application of our approach to include other objective func-
tions commonly used in various multi-objective optimization problems in bioinformatics. We will
achieve this by parallelizing them for efficient execution on GPUs. Additionally, we aim to make po-
tential improvements by dynamically adjusting mutation probabilities instead of a static mutation prob-
ability. This adjustment will help alleviate the impact of other objective functions when one objective
function is revised. Furthermore, we will revise mutation operators that tend to intentionally improve
an objective function simultaneously with others. Finally, our objective is to develop an open-source
framework on GPUs that can facilitate high-performance biological experiments in computational bi-
ology.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was supported in part by the Chung-Ang University Research Grants in 2021 and
in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. NRF-2022R1G1A1013586).

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

5336

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. S. Fields, O. Song, A novel genetic system to detect protein–protein interactions, Nature, 340
(1989), 245–246. https://doi.org/10.1038/340245a0

2. S. Varambally, S. M. Dhanasekaran, M. Zhou, T. R. Barrette, C. Kumar-Sinha, M. G. Sanda,
et al., The polycomb group protein ezh2 is involved in progression of prostate cancer, Nature, 419
(2002), 624–629. https://doi.org/10.1038/nature01075

3. G. Blander, L. Guarente, The sir2 family of protein deacetylases, Annu. Rev. Biochem., 73 (2004),
417–435. https://doi.org/10.1146/annurev.biochem.73.011303.073651

4. S. P. Kaur, V. Gupta, Covid-19 vaccine: A comprehensive status report, Virus Res., 288 (2020),
198114. https://doi.org/10.1016/j.virusres.2020.198114

5. M. Ahmad, M. Hirz, H. Pichler, H. Schwab, Protein expression in pichia pastoris: Recent achieve-
ments and perspectives for heterologous protein production, Appl. Microbiol. Biotechnol., 98
(2014), 5301–5317. https://doi.org/10.1007/s00253-014-5732-5

6. D. Fouque, K. Kalantar-Zadeh, J. Kopple, N. Cano, P. Chauveau, L. Cuppari, et al., A proposed
nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney dis-
ease, Kidney Int., 73 (2008), 391–398. https://doi.org/10.1038/sj.ki.5002585

7. A. D. Bandaranayake, S. C. Almo, Recent advances in mammalian protein production, FEBS
Lett., 588 (2014), 253–260.

8. J. Dehghani, A. Movafeghi, E. Mathieu-Rivet, N. Mati-Baouche, S. Calbo, P. Lerouge,
et al., Microalgae as an efficient vehicle for the production and targeted delivery of
therapeutic glycoproteins against sars-cov-2 variants, Marine Drugs, 20 (2022), 657.
https://doi.org/10.3390/md20110657

9. S. C. Spohner, H. Müller, H. Quitmann, P. Czermak, Expression of enzymes for the us-
age in food and feed industry with pichia pastoris, J. Biotechnol., 202 (2015), 118–134.
https://doi.org/10.1016/j.jbiotec.2015.01.027

10. A. Haldimann, B. L. Wanner, Conditional-replication, integration, excision, and retrieval plasmid-
host systems for gene structure-function studies of bacteria, J. Bacteriol., 183 (2001), 6384–6393.

11. P. Gu, F. Yang, T. Su, Q. Wang, Q. Liang, Q. Qi, A rapid and reliable strategy for
chromosomal integration of gene (s) with multiple copies, Sci. Rep., 5 (2015), 1–9.
https://doi.org/10.1038/srep09684

12. C. A. Scorer, J. J. Clare, W. R. McCombie, M. A. Romanos, K. Sreekrishna, Rapid selection using
g418 of high copy number transformants of pichia pastoris for high–level foreign gene expression,
Nat. Biotechnol., 12 (1994), 181–184. https://doi.org/10.1038/nbt0294-181

13. K. E. Tyo, P. K. Ajikumar, G. Stephanopoulos, Stabilized gene duplication enables long-
term selection-free heterologous pathway expression, Nat. Biotechnol., 27 (2009), 760–765.
https://doi.org/10.1038/nbt.1555

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

http://dx.doi.org/https://doi.org/10.1038/340245a0
http://dx.doi.org/https://doi.org/10.1038/nature01075
http://dx.doi.org/https://doi.org/10.1146/annurev.biochem.73.011303.073651
http://dx.doi.org/https://doi.org/10.1016/j.virusres.2020.198114
http://dx.doi.org/https://doi.org/10.1007/s00253-014-5732-5
http://dx.doi.org/https://doi.org/10.1038/sj.ki.5002585
http://dx.doi.org/https://doi.org/10.3390/md20110657
http://dx.doi.org/https://doi.org/10.1016/j.jbiotec.2015.01.027
http://dx.doi.org/https://doi.org/10.1038/srep09684
http://dx.doi.org/https://doi.org/10.1038/nbt0294-181
http://dx.doi.org/https://doi.org/10.1038/nbt.1555

5337

14. G. Terai, S. Kamegai, A. Taneda, K. Asai, Evolutionary design of multi-
ple genes encoding the same protein, Bioinformatics, 33 (2017), 1613–1620.
https://doi.org/10.1093/bioinformatics/btx030

15. A. Vassileva, D. A. Chugh, S. Swaminathan, N. Khanna, Expression of hepatitis b surface antigen
in the methylotrophic yeast pichia pastoris using the gap promoter, J. Biotechnol., 88 (2001),
21–35. https://doi.org/10.1016/S0168-1656(01)00254-1

16. R. Aw, K. M. Polizzi, Can too many copies spoil the broth?, Microbial cell factories, 12 (2013),
1–9. https://doi.org/10.1186/1475-2859-12-128

17. J. M. Buerstedde, N. Lowndes, D. G. Schatz, Induction of homologous recombination between
sequence repeats by the activation induced cytidine deaminase (aid) protein, Elife, 3 (2014),
e03110. https://doi.org/10.7554/eLife.03110

18. J. Jurka, P. Klonowski, V. Dagman, P. Pelton, Censor–a program for identification and elim-
ination of repetitive elements from dna sequences, Comput. Chem., 20 (1996), 119–121.
https://doi.org/10.1016/S0097-8485(96)80013-1

19. J. Athey, A. Alexaki, E. Osipova, A. Rostovtsev, L. V. Santana-Quintero, U. Katneni, et
al., A new and updated resource for codon usage tables, BMC Bioinf., 18 (2017), 1–10.
https://doi.org/10.1186/s12859-017-1793-7

20. J. M. Comeron, M. Aguadé, An evaluation of measures of synonymous codon usage bias, J. Mol.
Evol., 47 (1998), 268–274. https://doi.org/10.1007/PL00006384

21. M. Gouy, C. Gautier, Codon usage in bacteria: correlation with gene expressivity, Nucleic Acids
Res., 10 (1982), 7055–7074. https://doi.org/10.1093/nar/10.22.7055

22. T. Ikemura, Correlation between the abundance of escherichia coli transfer rnas and the oc-
currence of the respective codons in its protein genes: A proposal for a synonymous codon
choice that is optimal for the E. coli translational system, J. Mol. Biol., 151 (1981), 389–409.
https://doi.org/10.1016/0022-2836(81)90003-6

23. P. M. Sharp, W. H. Li, The codon adaptation index-a measure of directional synonymous
codon usage bias, and its potential applications, Nucleic Acids Res., 15 (1987), 1281–1295.
https://doi.org/10.1093/nar/15.3.1281

24. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:
Nsga-ii, IEEE Trans. Evol. Comput., 6 (2002), 182–197. https://doi.org/10.1109/4235.996017

25. B. Gonzalez-Sanchez, M. A. Vega-Rodrı́guez, S. Santander-Jiménez, J. M. Granado-Criado,
Multi-objective artificial bee colony for designing multiple genes encoding the same protein, Appl.
Soft Comput., 74 (2019), 90–98. https://doi.org/10.1016/j.asoc.2018.10.023

26. L. Dagum, R. Menon, Openmp: An industry standard api for shared-memory programming, IEEE
Comput. Sci. Eng., 5 (1998), 46–55. https://doi.org/10.1109/99.660313

27. Y. Zhou, Y. Tan, Gpu-based parallel multi-objective particle swarm optimization, Int. J. Artif.
Intell., 7 (2011), 125–141.

28. B. Gonzalez-Sanchez, M. A. Vega-Rodrı́guez, S. Santander-Jiménez, Parallel multi-
objective optimization approaches for protein encoding, J. Supercomput., 5118–5148.
https://doi.org/10.1007/s11227-021-04073-z

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

http://dx.doi.org/https://doi.org/10.1093/bioinformatics/btx030
http://dx.doi.org/https://doi.org/10.1016/S0168-1656(01)00254-1
http://dx.doi.org/https://doi.org/10.1186/1475-2859-12-128
http://dx.doi.org/https://doi.org/10.7554/eLife.03110
http://dx.doi.org/https://doi.org/10.1016/S0097-8485(96)80013-1
http://dx.doi.org/https://doi.org/10.1186/s12859-017-1793-7
http://dx.doi.org/https://doi.org/10.1007/PL00006384
http://dx.doi.org/https://doi.org/10.1093/nar/10.22.7055
http://dx.doi.org/https://doi.org/10.1016/0022-2836(81)90003-6
http://dx.doi.org/https://doi.org/10.1093/nar/15.3.1281
http://dx.doi.org/https://doi.org/10.1109/4235.996017
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2018.10.023
http://dx.doi.org/https://doi.org/10.1109/99.660313
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/s11227-021-04073-z

5338

29. F. C. Holstege, E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R. Green, et
al., Dissecting the regulatory circuitry of a eukaryotic genome, Cell, 95 (1998), 717–728.
https://doi.org/10.1016/S0092-8674(00)81641-4

30. Z. Jia, M. Maggioni, B. Staiger, D. P. Scarpazza, Dissecting the nvidia volta gpu architecture via
microbenchmarking, preprint, arXiv:1804.06826.

31. T. U. Consortium, UniProt: The universal protein knowledgebase in 2023, Nucleic Acids Res., 51
(2023), D523–D531. https://doi.org/10.1093/nar/gkac1052

32. J. X. Chin, B. K. S. Chung, D. Y. Lee, Codon optimization online (cool): A web-based multi-
objective optimization platform for synthetic gene design, Bioinformatics, 30 (2014), 2210–2212.
https://doi.org/10.1093/bioinformatics/btu192

33. J. C. Guimaraes, M. Rocha, A. P. Arkin, G. Cambray, D-tailor: Automated
analysis and design of DNA sequences, Bioinformatics, 30 (2014), 1087–1094.
https://doi.org/10.1093/bioinformatics/btt742

34. P. Puigbo, E. Guzmán, A. Romeu, S. Garcia-Vallve, Optimizer: A web server for opti-
mizing the codon usage of DNA sequences, Nucleic Acids Res., 35 (2007), W126–W131.
https://doi.org/10.1093/nar/gkm219

35. B. Gonzalez-Sanchez, M. A. Vega-Rodrı́guez, S. Santander-Jiménez, A multi-objective but-
terfly optimization algorithm for protein encoding, Appl. Soft Comput., 139 (2023), 110269.
https://doi.org/10.1016/j.asoc.2023.110269

36. M. V. Dı́az-Galián, M. A. Vega-Rodrı́guez, Many-objective approach based on problem-aware
mutation operators for protein encoding, Inf. Sci., 613 (2022), 376–400.

37. K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-
based nondominated sorting approach, part i: Solving problems with box constraints, IEEE Trans.
Evol. Comput., 18 (2013), 577–601. 10.1109/TEVC.2013.2281535

38. I. Das, J. E. Dennis, Normal-boundary intersection: A new method for generating the pareto
surface in nonlinear multicriteria optimization problems, SIAM J. Optim., 8 (1998), 631–657.

39. M. A. Dulebenets, An adaptive polyploid memetic algorithm for scheduling trucks at a cross-
docking terminal, Inf. Sci., 565 (2021), 390–421. https://doi.org/10.1016/j.ins.2021.02.039

40. J. Pasha, A. L. Nwodu, A. M. Fathollahi-Fard, G. Tian, Z. Li, H. Wang, et al., Exact and meta-
heuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective
settings, Adv. Eng. Inf., 52 (2022), 101623. https://doi.org/10.1016/j.aei.2022.101623

41. H. Gholizadeh, H. Fazlollahtabar, A. M. Fathollahi-Fard, M. A. Dulebenets, Preventive mainte-
nance for the flexible flowshop scheduling under uncertainty: A waste-to-energy system, Environ.
Sci. Pollut. Res., 1–20. https://doi.org/10.1007/s11356-021-16234-x

42. M. A. Dulebenets, M. Kavoosi, O. Abioye, J. Pasha, A self-adaptive evolutionary algorithm for
the berth scheduling problem: Towards efficient parameter control, Algorithms, 11 (2018), 100.
https://doi.org/10.3390/a11070100

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

http://dx.doi.org/https://doi.org/10.1016/S0092-8674(00)81641-4
http://dx.doi.org/https://doi.org/10.1093/nar/gkac1052
http://dx.doi.org/https://doi.org/10.1093/bioinformatics/btu192
http://dx.doi.org/https://doi.org/10.1093/bioinformatics/btt742
http://dx.doi.org/https://doi.org/10.1093/nar/gkm219
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2023.110269
http://dx.doi.org/
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.02.039
http://dx.doi.org/https://doi.org/10.1016/j.aei.2022.101623
http://dx.doi.org/https://doi.org/10.1007/s11356-021-16234-x
http://dx.doi.org/https://doi.org/10.3390/a11070100

5339

43. H. Zhao, C. Zhang, An online-learning-based evolutionary many-objective algorithm, Inf. Sci.,
509 (2020), 1–21. https://doi.org/10.1016/j.ins.2019.08.069

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 9, 5313–5339.

http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.08.069
http://creativecommons.org/licenses/by/4.0

	Introduction
	Background and related works
	Multi-objective optimization
	NSGA-II
	Three objective functions
	Minimum value of codon adaptation index (mCAI)
	Minimum value of Hamming distance (mHD)
	Maximum length of repeated or common substring (MLRCS)

	Four mutation operators

	Efficient parallel implementation on GPUs
	Overview of our implementation
	How to map the population to thread blocks
	How to mutate codons on GPUs
	How to calculate three objective functions on GPUs
	Calculation of HD
	Calculation of CAI
	Calculation of LRCS

	Non-dominated sorting and crowding distance sorting

	Experimental results and discussion
	Limited experiments with 100 cycles and 128 solutions
	Expanded experiments with varying solutions and cycles

	Related works
	Method based on MOABC
	Method based on MOBOA
	Method based on MaOMPE

	Conclusions
	Future work

