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ABSTRACT
This paper presents a novel approach for enhancing long-term runoff simulations through the inte-
gration of empiricalmode decomposition (EMD)with fourmachine learning (ML)models: ensemble,
support vector machine (SVM), convolutional neural networks (CNN), and artificial neural networks
with backpropagation (ANN-BP). The proposed methodology uses EMD to decompose precipita-
tion and temperature time-series into intrinsic mode functions, thereby revealing underlying data
patterns. Subsequently, these components are incorporated into the ML models to simulate the
runoff time-series. The effectiveness of the hybrid models is evaluated using streamflow runoff data
obtained from the Grand, Winnipeg, andMoosonee Rivers in Ontario, Canada. Four widely used per-
formance indices, namely, correlation coefficient, root mean square error (RMSE), mean absolute
relative error, and Nash–Sutcliffe efficiency, are employed to assess the models’ performance. The
results demonstrate that the hybrid EMD-MLmodels exhibit significantly superior performance com-
paredwith the standaloneMLmethods. During the validation phase, the EMD-Ensemble, EMD-SVM,
EMD-CNN, and EMD-ANN-BPmodels exhibit notable reductions in the RMSEs ofmonthly streamflow
estimates for the Grand River, amounting to 11%, 22%, 8%, and 33%, respectively, compared with
their non-EMD counterparts. Additionally, these hybrid models exhibit improved RMSEs for yearly
simulations in the Winnipeg River, with reductions of 54%, 0.08%, 6%, and 4.5% respectively. To
further enhance the accuracy of monthly and yearly streamflow estimates, an SVM-recursive fea-
ture elimination technique is employed to select a more appropriate EMD dataset in all study cases.
This research underscores the potential of integrating EMD with ML models to enhance long-term
runoff simulations. The outcomes highlight the superior performance of the hybrid EMD-MLmodels,
demonstrating their ability in generating lower biases than the standaloneMLmethods. These find-
ings hold significant implications for the field of computational fluid mechanics and can contribute
to the understanding of hydrological processes.
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Introduction

A key task in hydrological modelling studies is to accu-
rately simulate the runoff in a basin over a long-term
period, for example, monthly and yearly time-series,
which affects the water supply efficiency, flood man-
agement, and water resource management (Moham-
madi, 2021; Soltani et al., 2021). Several methods have
been applied to simulate the runoff, including concep-
tual models, machine learning (ML) models, and cou-
pled models (Kratzert et al., 2018). In particular, several
researchers have developed time-series statistical models
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such as moving average (MA), autoregressive (AR),
and/or autoregressive moving average for runoff time-
series simulation (He et al., 2019; Weeks & Boughton,
1987). Recently, ML and deep learning (DL) models
have been applied for runoff modelling (Hu et al., 2018;
Mallick et al., 2022; Parisouj et al., 2020, 2022).

ML is a broad field that covers artificial intelli-
gence, probability, psychology, and statistics, among
other domains. ML methods can be used to simplify and
solve problems (Nasteski, 2017). Recently, DL methods,
as a subset of ML methods, have received considerable
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attention in hydrology and community studies (Barzegar
et al., 2021; Goliatt et al., 2021; Nasteski, 2017). Artificial
neural networks (ANNs) are widely used in hydrology
for runoff simulation. However, their learning process is
slow, and they are prone to being trapped in local min-
ima (Parisouj et al., 2020). To address this limitation,
Cortes and Vapnik (1995) proposed the support vector
machine (SVM) technique to efficiently find global opti-
mum solutions (Meng et al., 2019). Several researchers
have highlighted the superiority of support vector regres-
sion (SVR) over artificial neural network with backprop-
agation (ANN-BP) for simulating runoff (Bafitlhile & Li,
2019; Kalteh, 2013). DL architectures, such as long short-
term memory (LSTM), deep neural networks, and con-
volutional neural networks (CNNs) are beingwidely used
to predict the time-series of wind, solar, and streamflow
(Ghimire et al., 2021). Among these, the CNN algorithm
lacks post-processing capability (Liu et al., 2022).

Other promisingMLmodels include ensemblemodels
such as extra tree regressor, bagging regressor, adaptive
boosting regression (AdaBoost), and stack generalisa-
tion. Ensemble models combine multiple models, and
the output of one model is input to another model to
increase the prediction accuracy (Sagi & Rokach, 2018).
Recently, ensemblemodels have been applied for predict-
ing rainfall runoff (Barrera-Animas et al., 2022; Jose et al.,
2022; Zhao et al., 2022). Tarfaya et al. (2022) used ensem-
ble models for predicting the index rainfall and showed
that the extra tree model yielded reasonable results. Liu
et al. (2014) applied AdaBoost to enhance the accuracy
of runoff prediction. Elbeltagi et al. (2022) predicted the
river flow rate in the Moines watershed by applying ML
models, and the bagging model was noted to exhibit
acceptable performance.

The prediction accuracy of ML models can be
enhanced by extracting trends and harmonics from
hydrological time-series and removing noise through
appropriate data preprocessing techniques, such as
genetic algorithm optimisation, MA, principal compo-
nent analysis, singular spectrum analysis, wavelet analy-
sis, and gamma testing (Band et al., 2021; Bartoletti et al.,
2018; Cui et al., 2021; Golshan et al., 2020).

Huang et al. (1998) proposed the empirical mode
decomposition (EMD) technique for noise-assisted data
analysis. Several researchers have applied EMD to extract
signals from noisy nonstationary data in the analysis of
several aspects, such as hydroclimatic processes, solar
radiation, wind speed, speaker recognition, and ice-
snow coverage (Lee & Ouarda, 2012; Metzger et al.,
2020; Prasad et al., 2019; Sánchez-Martínez et al., 2022;
Zhang et al., 2018). The EMD technique is self-adaptive,
whichmakes it preferable to other traditional approaches
(Tayyab et al., 2018). Temperature, precipitation, and

runoff represent nonlinear and nonstationary time-series
(Chen et al., 2018). Therefore, the EMD approach can be
used to analyse these hydrological time-series data.

The objective of this study was to use the novel hybrid
EMD-Ensemble method to estimate runoff at monthly
and yearly time scales. To the best of our knowledge,
none of the existing studies have used the combined
EMD-Ensemble approach to estimatemonthly and yearly
streamflows. The hybrid EMD-Ensemble was compared
with hybrid EMD-SVR, EMD-CNN, and EMD-ANN-
BP. In addition, the performance of hybrid models was
compared with the standalone ensemble, SVR, CNN,
and ANN-BP models. Three monthly and annual runoff
time-series from the Grand, Winnipeg, and Moosonee
Rivers in Canada were investigated to ensure the appli-
cability of the proposed framework. These three rivers
were chosen because of differences in their drainage area
(watershed), landcover, discharge, watershed topography,
and climate.

Method andmaterials

Study area and data description

The study areas included the Grand, Winnipeg, and
Moosonee River basins in Ontario, Canada, which have
different sizes, geology, and hydro climatology. Figure 1
shows the locations of the three basins in Ontario.

The Grand River watershed, with a drainage area of
6965 km2 and length of 280 km, is located in southern
Ontario. Bahamonde et al. (2015) reported that 76% and
17% of the watershed pertain to agricultural land and
forest areas, respectively. Thirty treated effluents from
municipal wastewater are dumped into the Grand River
basin. The elevation difference in the regions upstream
and downstream of the Grand River basin is approxi-
mately 350m. The northwest region receives more rain
than the southeast, with annual precipitation levels aver-
aging 850mm with a peak of 1,000mm. January and
February are the driest months, and July and August are
the wettest months. Additionally, the mean annual tem-
perature varies from 5°C in the higher elevations in the
north to 8°C along the lakeside (Krause et al., 2001).Great
Lakes, the Arctic region, and theGulf ofMexico affect the
climate of the Grand River basin.

Most of the Winnipeg River watershed, with a
drainage area of approximately 150,000 km2, is located
in the northwestern Ontario province, with part of
it lying it the southeastern Manitoba province. The
basin’smain branch passes predominantly through forest
areas between the northern United States and northern
Canada. The Winnipeg River flows to the west, through
Manitoba province, into lake Winnipeg. The elevation
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Figure 1. Study area.

difference in the regions upstreamanddownstreamof the
Winnipeg River basin is approximately 217m. Approxi-
mately 30% of the precipitation is snowfall, with annual
precipitation averaging 780mm. Similar to the Grand
River basin, January and February are the driest months,
and June and July are the wettest months. The annual
mean temperature varies between −18°C and 25°C at
Slave Falls (St. George, 2007).

The Moosonee River watershed, with a drainage area
of approximately 109,000 km2, is located in northeast
Ontario, southwest of the James Bay region. The water-
shed consists of three main tributaries, including the
Missinaibi and Mattagami Rivers that constitute the
Moose and Abitibi Rivers. The basin is divided into
northern and southern portions. This study focused on
the southern portion, which is more topographically
diverse. The elevation difference in the regions upstream
and downstream of theMoosonee River basin is approxi-
mately 580m. Themean annual precipitation varies from
650 to 1,000mm, and the mean annual temperature is
between −9°C and 8°C. The correlation between pre-
cipitation and temperature is typically positive, but the
wettest period is July–December. Approximately 35%

of the mean annual precipitation is snowfall, and more
than half of the annual Moosonee River watershed dis-
charge occurs in spring (Ho et al., 2005; Story & Buttle,
2001).

The daily discharge data from January 1, 1973, to
December 31, 2020, was selected from the Water Sur-
vey of Canada for three measurement stations includ-
ing the watersheds (https://wateroffice.ec.gc.ca/). A daily
dataset including precipitation (P), maximum temper-
ature (Tmax), and minimum temperature (Tmin) was
selected, consistent with the discharge period from the
nearest weather stations. Records of weather obser-
vations are available at https://climate.weather.gc.ca/.
Figure 1 shows the locations and information of the
streamflow and weather stations.

Methodology

EMDmodel
Huang et al. (1998) developed the EMD algorithm for
nonlinear and nonstationary datasets. The core of this
algorithm is that most raw time-series have multiple
frequencies of different scales (Karthikeyan & Nagesh

https://wateroffice.ec.gc.ca/
https://climate.weather.gc.ca/
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Figure 2. Process flow of empirical mode decomposition (EMD).

Kumar, 2013). The algorithm defines the decomposition
dataset to a group of bands by several intrinsic mode
functions (IMFs) and a residual function that is calcu-
lated for all IMFs and remains constant. Owing to its
simplicity, EMD has been widely applied in hydrology
(Karthikeyan&NageshKumar, 2013). Kamath and Sena-
pati (2021) coupled the EMDmodel with ANN to predict
24-h wind speed. The results revealed that EMD-ANN
outperformed ANN. Sibtain et al. (2021) predicted the
runoff and explored the effect of EMD on the ANN-
BP model. The EMD-ANN-BP was noted to outperform
the standalone ANN-BP. Yuan et al. (2021) incorporated
ensemble EMD (EEMD) in an LSTM to predict daily
runoff and proved that the use of the EEMD model out-
put as input data to the LSTMmodel enhanced themodel
performance. In general, EMD intermittently extracts the

scales of the IFM time-series. The IMFs must satisfy two
requirements:

(1) The absolute value of the total local minima and
local maxima minus zero-crossing equals zero or
one.

(2) Themean between the upper and lower envelopes in
each time-series point equals zero.

To satisfy these requirements, the IMFmust be gener-
ated bymaking the function smooth with respect to zero.
The EMD breaks down time-series into IMFs through
‘sifting’. Chu and Huang (2020)_ENREF_11 demon-
strated that EMD can satisfactorily treat nonstationary
time-series in hydrological analyses. The process flow of
the EMD algorithm is illustrated in Figure 2.
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SVRmodel
SVR, a ML model introduced by Cortes and Vapnik
(1995), has been widely applied in hydrology (Achite
et al., 2022; Kolachian & Saghafian, 2021; Mozaffari
et al., 2022; Sun et al., 2021). Unlike methods such as
ANN, which implement empirical risk minimisation,
SVR implements the concept of structural riskminimisa-
tion. The SVR algorithm for regression computation can
be expressed as follows:

f (x) = a. k(x) + b (1)

where a represents the weight vectors or coefficients, k(x)
is the kernel function, and b is a bias term. In this study,
the radial basis function (RBF) kernel is used to solve
Equation (1).

maximize

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1
2

l∑
i, j=1

(αi − α∗
i )(αj − α∗

j )k(xi − xj)

+
l∑

i, j=1
yi(αi − α∗

i )

(2)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l∑
i=1

(αi − α∗
i ) = 0

l∑
i=1

(αi − α∗
i ) ≤ Cνl

αi,αj ∈ [0,C]

(3)

where l is the sample size, α and α∗ are Lagrange multi-
pliers,C is the cost of the kernel function, yi is the output,
and k(xi − xj) is the kernel function. Equation (2) must
satisfy the Karush–Kuhn–Tucker requirements to map
the dataset, which can be defined as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α∗
i (f (xi) − yi − η − ω∗

i ) = 0

αi(yi − f (xi) − η − ωi) = 0

α∗
i αi = 0;ω∗

i ωi = 0

(C − α∗
i )ω

∗
i = 0; (C − αi)ωi = 0

(4)

where η, ω∗
i , and ωi are slack variables. Finally, the SVR

can be solved using the following set of equations:

l∑
i, j=1

(αi − α∗
i ) · k(xi − xj) + b, (5)

b = yi + η −
l∑

i, j=1
(αi − α∗

i ) · k(xi − xj) + b (6)

CNNmodel
ML research focuses on DL modelled on the human
brain. ANNs are representative computational systems in
this context. Neural networks in DL must train comput-
ers to have the same functionality as that of the neural
system in the human brain. LeCun et al. (1998) designed
CNNs, which are DL models that have been widely used
in classification and regression tasks in several fields,
especially hydrology (Hussain et al., 2020; Sadeghi et al.,
2019; Tu et al., 2021). Unlike traditional neural net-
works, CNNs incorporate multiple architectures such as
pooling, local connections, and shared weights. CNNs
work on the principle that the input dataset consists of
images or data that can be represented as images. Con-
sequently, the processing time and number of param-
eters are reduced. A CNN typically includes convolu-
tional layers, pooling layers, and fully connected layers.
Convolutional layers, as key components, include filters
known as kernels that apply convolutional functions to
the input dataset and prepare pixels for the next pro-
cess. Pooling layers help the CNN model control over-
fitting, thereby limiting the required computation and
parameters by reducing the representation size in con-
volutions (Tu et al., 2021). The LeakyRelu function can
accelerate the convergence of the CNN model and facil-
itate the learning of the neuron weights, even if the
input includes zero values. Several structures have been
developed based on the type of input data and research
objectives, such as InceptionV3 (Szegedy et al., 2016),
VGG16 (Simonyan & Zisserman, 2014), ResNet50 (He
et al., 2016), Xception (Chollet, 2017), and InceptionRes-
NetV2 (Szegedy et al., 2017), and the corresponding lay-
ers, learning parameters, and training process have been
elucidated.

ANN-BPmodel
ANN-BP is a three-layer traditional ANN with feed-
forward that uses BP in the training dataset (Parisouj
et al., 2020, 2022). ML algorithms can be divided into
supervised and unsupervised methods. The ANN-BP
is a supervised learning method in which data passes
through the input layers. The weights minimise the error
through hidden layers and add biases to the calculation.
The output is generated by the output layer (Sudheer
et al., 2002). BP is implemented by assigning a gradient
of the loss function to each weight in the chain rule. The
gradient is computed one layer at a time, iterating back-
ward from the last layer to avoid superfluous intermediate
term calculations. Stochastic gradient descent is a repre-
sentative learning algorithm that uses BP to compute a
gradient.
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Ensemblemodel
Ensemble learning is an ML algorithm that uses a group
of base learners to assess and solve real-world issues.
Meta-learning pertains to learning from base learners,
and ensemble ML (EML) techniques are meta-learning
methods (Sagi & Rokach, 2018; Tyralis et al., 2021; Zhang
& Ma, 2012) that merge two or more models to enhance
the generalisation and performance.

AdaBoost: AdaBoost is an effective ensemble tech-
nique that adapts a sequence of base learners to a larger
dataset using a more recent dataset. To reproduce the
final prediction, base learner predictions are merged
using a weighted summation (Idris et al., 2012). The
training set is enhanced by the addition of weights ω1,
ω2, . . . , ωN in each boosting iteration. The initial boost-
ing iteration uses the same weights and data. Subse-
quently, the learner algorithm is applied to the newly
weighted data. In subsequent rounds, the weights of
the incorrectly (correctly) predicted training data are
increased (decreased). Eventually, each poor learner is
forced to focus on the samples missed by the previous
learners (Liu et al., 2014).

Bagging regressor: The bagging regressor is a boot-
strap aggregation-based ensemble meta-estimator. There
exist m bootstrap copies of a sample data point drawn
with replacement, and the base learner is used for each
bootstrap sample. Finally, the results of each base learner
are averaged or voted on. In certain cases, the base learner
is a regression or a classification algorithm. Aggregation
helps reduce the variance of an individual base learner
(Breiman, 1996; Meddage et al., 2021; Singh et al., 2022).
Notably, research on runoff prediction using the bagging
regressor is limited at present.

Extra tree regressor: Geurts et al. (2006) presented
the extra tree model as a decision tree based on an ML
algorithm. The model builds a group of decision trees
that do not have to be pruned (the trees grow in a top-
to-down configuration). The advantages of the extra tree
model can be summarised as follows: (1) can easily avoid
overfitting, (2) is robust to noise, and (3) can efficiently
handle high-dimensional data without feature selection.
Similar to other tree-based ensemble approaches, the
extra tree regressor produces a collection of decision trees
but emphasises randomisation to reduce variance with-
out increasing bias (Eslami et al., 2020; Geurts et al.,
2006). The extra tree regressor technique generates ran-
dom split nodes, allowing it to be implemented faster
than other decision-tree-based approaches. To prevent
any subsequent increase in bias, three parameters are
imported: (1) number of randomly selected attributes
at each node (random state), (2) minimum number
of samples required to split an internal node (min

samples split), and (3) number of trees in the forest
(n estimators).

Stack generalisation: Wolpert (1992) introduced the
stacking generalisation method, in which several models
are assembled to develop an efficient meta-learner. This
model takes advantage of singular models to enhance the
generalisation. Severalmodels are used as estimators, and
one model is used as the final estimator. The results of
estimators are used as the input of the final estimator.
In this manner, the stacking generalisation method can
enhance the performance of the final estimator model.
To avoid overfitting, the meta-model does not directly
learn the outputs of the base models. The model can be
mathematically expressed as follows:

ŷ(x) =
m∑
i=1

ωihi(x) (7)

where ωi is the weight determined for each base learner,
and hi(x) is the model prediction.

The optimal final prediction is defined by minimis-
ing the set of stacking weights using mean square linear
regression. Equation (8) mathematically represents the
least-squares regression:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω∗ = argnminω

n∑
j=1

(y(xj) −
∑

ωih
(−i)
i (xj))

2

ωi ≥ 0
M∑
i=1

ωi = 1

(8)

where n is number of samples, y(xj) denotes the observed
values, h(−i)

i (xj) represents the output or prediction
of the ith base learner for the jth data point, and
ω∗ = (ω1, ω2, . . . , ωm) is the set of weights assigned to
the base learners.

Model development and input

The ability of four methods (ANN-BP, SVR, CNN, and
ensemble stackingmodel) in simulating the monthly and
yearly runoff in the three selected basins was evaluated.
To enhance the performance, the IMFs of P, Tmin, and
Tmax were applied as input variables. Different numbers
of IMFs were set for the monthly and yearly simula-
tions. The optimal group of variables of the input dataset
was selected by applying two feature algorithms: SVM-
recursive feature elimination (SVM-RFE) and random
forest-Boruta (RF-Boruta) feature selection algorithm for
all three basins and models. For a more comprehensive
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Table 1. (a) Variables selected for each method for the Grand River basin. (b) Variables selected for each method for the Winnipeg River
basin. (c) Variables selected for each method for the Moosonee River basin.

(a)

Time scale Method Feature selection Variables

Monthly SVR-RFE Main variables and IMFs P, P′4, P′5, Tmax, Tmax
′1, Tmax

′2, Tmax
′3, Tmax

′7, Tmin, Tmin
′2, Tmin

′3, Tmin
′5

IMFs P′1, P′2, P′3, P′4, P′5, Tmax
′1, Tmax

′2, Tmax
′3, Tmin

′2, Tmin
′3

RF-Boruta Main variables and IMFs P, Tmax, Tmax
′5, Tmin

IMFs P′1, P′2, P′4, P′5, Tmin
′2

Yearly SVR-RFE Main variables and IMFs P, P′1, Tmax, Tmax
′1, Tmax

′2, Tmin
′1, Tmin

′4
IMFs P′1, P′2, P′4, Tmax

′1, Tmin
′3, Tmin

′4
RF-Boruta Main variables and IMFs P, P′1, Tmax, Tmax

′1
IMFs P′1, Tmax

′1

(b)

Monthly SVR-RFE Main variables and IMFs P′2, P′4, P′7, P′8, Tmax, Tmax
′2, Tmax

′3, Tmax
′4, Tmin, Tmin

′1, Tmin
′6, Tmin

′7
IMFs P′3, P′4, P′7, P′8, Tmax

′2, Tmax
′3, Tmax

′4, Tmin
′3, Tmin

′6, Tmin
′7

RF-Boruta Main variables and IMFs P′3, P′4, P′5, P′6, P′7, P′8, Tmax
′1, Tmax

′2, Tmax
′4, Tmax

′5, Tmax
′6, Tmax

′7,
Tmin, Tmin

′1, Tmin
′2, Tmin

′3, Tmin
′4, Tmin

′5, Tmin
′7

IMFs P′3, P′4, P′5, P′6, P′7, P′8, Tmax
′1, Tmax

′2, Tmax
′4, Tmax

′5, Tmax
′6, Tmax

′7,
Tmin

′1, Tmin
′2, Tmin

′3, Tmin
′4, Tmin

′5, Tmin
′7

Yearly SVR-RFE Main variables and IMFs P, P′2, P′3, Tmax, Tmax
′1, Tmin, Tmin

′1
IMFs P′2, P′3, Tmax

′1, Tmax
′2, Tmax

′3, Tmin
′1

RF-Boruta Main variables and IMFs P, P′2, Tmax, Tmin
′1

IMFs P′3, Tmax
′1

(c)

Monthly SVR-RFE Main variables and IMFs P, P′2, P′3, P′4, P′6, Tmax
′2, Tmax

′5, Tmin, Tmin
′1, Tmin

′2, Tmin
′5, Tmin

′6
IMFs P′1, P′2, P′3, P′4, P′6, Tmax

′1, Tmax
′5, Tmax

′6, Tmin
′1, Tmin

′2, Tmin
′5

RF-Boruta Main variables and IMFs P, P′1, Tmax, Tmax
′2, Tmin

IMFs Tmax
′1, Tmax

′2, Tmin
′1, Tmin

′2
Yearly SVR-RFE Main variables and IMFs P, P′1, P′2, Tmax, Tmax

′2, Tmax
′4, Tmin

IMFs P′1, P′2, P′3, P′4, Tmax
′2, Tmax

′4
RF-Boruta Main variables and IMFs P, P′1

IMFs P′1, P′2

Note: P.: precipitation; T.: temperature; min.: minimum; max.: maximum; the symbol ′ represents the IMF.

understanding of the SVM-RFE and RF-Boruta feature
selection algorithms, please refer to the works of Ahmad-
pour et al. (2021), Parisouj et al. (2022), Jamei et al.
(2023), Farhana et al. (2023), Kursa and Rudnicki (2010),
and Maguire et al. (2022). Five groups of input vari-
ables were considered for each model: (1) P, Tmin, and
Tmax, and their IMFs selected by SVM-RFE; (2) P, Tmin,
and Tmax, and their IMFs selected by RF-Boruta feature
selection; (3) IMFs of the main values obtained using
SVM-RFE; (4) IMFs of the main values obtained using
RF-Boruta feature selection; and (5) only the three main
variables (P, Tmin, and Tmax). Table 1(a–c) presents the
input variables of each method for the Grand, Winnipeg,
and Moosonee River basins at monthly and yearly time
scales, respectively.

The average monthly and yearly P, Tmin, and Tmax
and their IMFs were applied as the model input, and the
observed streamflow variable was used to evaluate the
prediction accuracy of each model. Data from January
1973 to August 2006 were used for model training and
those from September 2006 to December 2020 were used
formodel testing. The normalisationmethodwas used to
normalise input variables to improve the model’s learn-
ing ability. The mean and standard deviation (μ and σ ,

respectively) were used in the training phase, defined as
in Equation (9).

normalized x = x − μ

σ
, (9)

where x represent the original value.

Model parameterisation

To avoid overfitting, the 10-fold cross-validation method
was applied to minimise the root mean square error
(RMSE) to determine the optimal parameters of the
ANN-BP, SVR, CNN, and ensemble models for training
each model. The optimal hyperparameters were applied
to build the optimal model for simulating the runoff for
the training and testing phases. Python 3.8 was used for
preparing scripts.

The ANN-BP model was built based on a three feed-
forward layer configuration with the limited-memory
Broyden–Fletcher–Goldfarb–Shanno solver. The hid-
den layer consisted of the logistic sigmoid function
that delineates the input weights that are transformed
into an output from the nodes. The learning rate and
max-iteration of the ANN-BP were 0.07 and 10,000,
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respectively. The optimal hyperparameters of ANN-
BP were defined by random generalisation and 10-
fold cross-validation for the training model. Three hid-
den layers were applied to generate the highest runoff
accuracy by minimising the RMSE function. There-
fore, the network structure was (number of inputs
for each state):5:1 for the input, hidden, and output
layers.

The SVR model was built based on the RBF kernel,
and random generalisation was applied for each parame-
ter to determine the optimal hyperparameters. The three
hyperparameters of the RBF kernel were set to have the
following ranges to tune the model: γ (30 values from
0.0001 to 1) C (100 values from 2000 to 5000), and ε (21
values from 0.5 to 3).

The CNN architecture included two one-dimensional
CNN layers, a dropout layer for regulation, and a pool-
ing layer. CNN layers are frequently created in pairs to
aid the model in learning properties from the input data.
The dropout layer aims to lower the learning rate of the
CNNs to produce a more accurate final model. The pool-
ing layer decreases the size of the learned features to a
quarter of their original size, allowing them to be con-
centrated on the most relevant aspects. Next, the flatten

function is used to flatten learned features as a vector
and pass them into a fully connected layer. The fully
connected layer prevents the learned features and tar-
get value to define the learned features before making
a prediction. In this study, 512 and 256 filter features
with kernel sizes 5 and 2 were used for the first and
second CNN layers, respectively. RMSprop was used as
the network optimiser. LeakyRelu was used as an acti-
vation function. A random generalisation process and
10-fold cross-validation were applied to determine the
parameters.

The AdaBoost model involves three key factors: esti-
mators, learning rate, and loss. The estimator and learn-
ing rate were set to range as follows: 30 values from 1
to 200 and from 0.0001 to 1, respectively. In the train-
ing phase, linear, square, and exponential loss functions
were evaluated. In the bagging regressor and extra tree
regressormodels, the optimal estimator valueswere iden-
tified from a candidate set of thirty variables ranging
from 1 to 200 and from 300 to 500, respectively, dur-
ing training through 10-fold cross-validation. Stacking
generation was incorporated into the models to enhance
the accuracy of target data. The bagging regressor and
extra tree regressor models were selected as estimators,

Table 2. (a) Monthly model performance indicators during the calibration and validation phases for the Grand River basin (combination
of P, T, and EMD dataset). (b) Monthly model performance indicators during the calibration and validation phases for theWinnipeg River
basin (combination of P, T, and EMD dataset). (c) Monthly model performance indicators during the calibration and validation phases for
the Moosonee River basin (combination of P, T, and EMD dataset).

(a)

Calibration Validation

Model Input Selection RMSE (m3s−1) R NSE MARE RMSE (m3s−1) R NSE MARE

SVR-EMD SVM-RFE 30.95 0.79 0.57 25.96 33.57 0.71 0.49 37.87
RF-Boruta 34.36 0.7 0.47 38.9 40.09 0.57 0.27 50.14

ANN-BP-EMD SVM-RFE 11.55 0.97 0.94 12.96 40.22 0.63 0.27 50.87
RF-Boruta 22.52 0.88 0.77 25.99 44.86 0.52 0.09 56.75

CNN-EMD SVM-RFE 37.16 0.67 0.38 53.36 39.4 0.67 0.3 39.64
RF-Boruta 36.2 0.64 0.41 54.44 38.86 0.58 0.31 52.65

Ensemble-EMD SVM-RFE 21.47 0.9 0.79 26.09 34.62 0.75 0.46 47.22
RF-Boruta 15.19 0.97 0.9 21.42 37.28 0.62 0.37 50.1

(b)

SVR-EMD SVM-RFE 285.17 0.77 0.58 29.14 329.62 0.67 0.44 30.53
RF-Boruta 286.5 0.77 0.57 28.34 348.17 0.62 0.37 37.36

ANN-BP-EMD SVM-RFE 205.01 0.88 0.78 18.4 356.43 0.63 0.34 35.92
RF-Boruta 101.18 0.97 0.95 5.41 374.72 0.55 0.27 40.50

CNN-EMD SVM-RFE 316.15 0.71 0.48 29.78 493.46 0.64 −0.26 63.27
RF-Boruta 333.89 0.68 0.42 32 431.72 0.6 0.03 52.38

Ensemble-EMD SVM-RFE 188.36 0.92 0.82 22.8 345.85 0.7 0.38 39.81
RF-Boruta 258.93 0.81 0.65 25.67 340.3 0.66 0.40 39.84

(c)

SVR-EMD SVM-RFE 62.78 0.79 0.60 64.39 71.48 0.74 0.51 68.87
RF-Boruta 50.5 0.87 0.74 47.04 75.41 0.68 0.46 82.43

ANN-BP-EMD SVM-RFE 60.56 0.79 0.63 78.62 70.56 0.73 0.52 79.04
RF-Boruta 59.39 0.80 0.64 83.48 67.43 0.76 0.57 88.47

CNN-EMD SVM-RFE 70.88 0.71 0.49 86.15 79.06 0.65 0.40 91.24
RF-Boruta 71.88 0.70 0.48 106.92 81.30 0.61 0.37 116.04

Ensemble-EMD SVM-RFE 49.86 0.87 0.75 47.43 66.35 0.77 0.58 56.83
RF-Boruta 31.03 0.95 0.90 35.76 72.26 0.71 0.50 88.26
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and the AdaBoost model was chosen as the final estima-
tor to simulate the runoff values. To enhance the model
performance, 10,000 runs of eachmodel were performed,
and the RMSE was used to evaluate the highest accuracy
among training periods.

Model evaluation

The coefficient of correlation (R), RMSE, mean abso-
lute relative error (MARE), and Nash–Sutcliffe efficiency
(NSE) were applied to assess the runoff accuracy for
ANN-BP, SVR, CNN, and ensemble model for the train-
ing and testing periods. The definitions of these statistical

indices are presented in the following equations:

RMSE =
√√√√1

n

n∑
i=1

(si − oi)2 (10)

R =
( 1
n
)∑n

i=1 (oi − ō)2(si − s̄)√( 1
n
)∑n

i=1 (oi − ō)2 ×
√( 1

n
) ∑n

i=1 (si − s̄)2

(11)

NSE = 1 −
∑n

i=1 (si − oi)2∑n
i=1 (si − ō)2

(12)

Figure 3. Best monthly line-graph using a combination of P, T, and EMD dataset.
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MARE = 1
n

n∑
i=1

∣∣∣∣
si − oi
oi

∣∣∣∣ × 100 (13)
where oi and si refer to the observed and estimated val-
ues, respectively; and ō and s̄ are the average observed and
estimated values, respectively.

Figure 4. Scatter plots of monthly streamflow simulation using a combination of P, T, and EMD dataset in the validation period. The
different rows present the results of different models.
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Results and discussion

EMD was performed to simulate the monthly and yearly
streamflow based on five scenarios: (1) using precip-
itation (P), maximum temperature (Tmax), and min-
imum temperature (Tmin); (2) using the RF-Boruta
algorithm to select appropriate variables among decom-
posed variables; (3) using the RF-Boruta algorithm to
select appropriate variables among decomposed variables
including P, Tmax, and Tmin; (4) using the SVM-RFE
algorithm to select appropriate variables among decom-
posed variables; (5) using the SVM-RFE algorithm to
select appropriate variables among decomposed vari-
ables including P, Tmax, and Tmin. All the models
were applied for the Grand, Winnipeg, and Moosonee
River basins. To clarify the influence of EMD on the
simulation performance, simulation models both with
and without the EMD dataset were prepared. Addi-
tionally, the results for the different feature selection
methods were compared to identify the most accu-
rate model for simulating the runoff in Canadian
basins.

Decomposingmonthly and yearly runoff time-series
using EMD

The EMD approach was used to decompose the runoff
time-series for the three basins into IMFs at the monthly
and yearly scales for the precipitation and maximum
andminimum temperatures. Notably, several researchers
have applied decomposition methods for analysing the
runoff fluctuations of rivers and investigated the causes
of cyclical changes in hydrological data and correspond-
ing occurrence mechanisms (Pekárová et al., 2003; Wang
et al., 2015; Williams, 1961). Decomposition can help
enhance the prediction ability by transforming nonlin-
ear and nonstationary time-series into stationary time-
series.

Simulation results using a combination of P, T, and
EMDdataset

Monthly time-series
Table 2(a–c) summarises the calibration and valida-
tion phase results for Grand, Winnipeg, and Moosonee

Table 3. (a) Yearly model performance indicators during the calibration and validation phases for the Grand River basin (combination
of P, T, and EMD dataset). (b) Yearly model performance indicators during the calibration and validation phases for the Winnipeg River
basin (combination of P, T, and EMD dataset). (c) Yearly model performance indicators during the calibration and validation phases for
the Moosonee River basin (combination of P, T, and EMD dataset).

(a)

Calibration Validation

Model Input Selection RMSE (m3s−1) R NSE MARE RMSE (m3s−1) R NSE MARE

SVR-EMD SVM-RFE 3.4 0.96 0.92 2 10.81 0.91 0.59 12.19
RF-Boruta 6.61 0.84 0.71 7.93 11.88 0.76 0.5 15.91

ANN-BP-EMD SVM-RFE 0 1 1 0 12.44 0.76 0.45 15.68
RF-Boruta 0 1 1 0 24.16 0.26 −1.07 28.3

CNN-EMD SVM-RFE 10.01 0.81 0.33 12.52 11.29 0.78 0.55 15.96
RF-Boruta 8.4 0.8 0.53 10.51 18.26 0.47 −0.18 21.4

Ensemble-EMD SVM-RFE 5.17 0.91 0.82 6.04 12.35 0.88 0.46 13.73
RF-Boruta 8.64 0.73 0.5 11.4 12.88 0.79 0.41 16.51

(b)

SVR-EMD SVM-RFE 148.00 0.93 0.75 13.67 191.23 0.87 0.52 16.49
RF-Boruta 156.90 0.85 0.72 12.29 244.92 0.55 0.21 21.62

ANN-BP-EMD SVM-RFE 27.14 1.00 0.99 1.26 261.63 0.71 0.10 20.38
RF-Boruta 92.07 0.95 0.90 6.04 432.03 0.19 −1.45 37.14

CNN-EMD SVM-RFE 183.33 0.84 0.61 18.76 221.49 0.80 0.36 17.90
RF-Boruta 221.51 0.75 0.43 21.66 515.22 0.42 −2.49 49.29

Ensemble-EMD SVM-RFE 36.56 0.99 0.98 2.70 96.22 0.94 0.88 7.73
RF-Boruta 117.19 0.93 0.84 11.97 230.10 0.62 0.30 18.55

(c)

SVR-EMD SVM-RFE 6.38 0.95 0.88 6.06 16.71 0.82 0.36 14.54
RF-Boruta 11.08 0.81 0.65 9.95 14.33 0.73 0.53 11.41

ANN-BP-EMD SVM-RFE 0.00 1.00 1.00 0.00 19.15 0.53 0.16 15.80
RF-Boruta 0.00 1.00 1.00 0.00 23.10 0.29 −0.23 18.60

CNN-EMD SVM-RFE 9.80 0.86 0.72 8.36 13.37 0.79 0.59 11.83
RF-Boruta 11.82 0.78 0.60 9.06 15.06 0.70 0.48 12.67

Ensemble-EMD SVM-RFE 0.00 1.00 1.00 0.00 12.40 0.83 0.65 9.96
RF-Boruta 1.21 1.00 1.00 0.63 13.14 0.79 0.60 11.35
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Rivers.When combinedwith EMDand SVM-RFE or RF-
Boruta for input selection, the ANN-BP and ensemble
models are more efficient during calibration. For exam-
ple, the ANN-BPmodel with SVM-RFE outperforms the
RF-Boruta in the Grand River calibration phase by 48%
and 22% in terms of the RMSE and NSE, respectively. In
the calibration phase for Winnipeg River, the ensemble
model using SVM-RFE outperforms RF-Boruta with a
27% lower RMSE and 26% higher NSE. In most cases,
SVM-RFE performs better than RF-Boruta during cali-
bration. However, in the Moosonee River watershed, the
situation is reversed. In this case, the SVR-EMD model

optimised with RF-Boruta exhibits a 24% higher RMSE
and 19% lower NSE compared with SVM-RFE.

During the validation phase, the SVR model outper-
forms the other models in terms of the RMSE, NSE, and
MARE for the Grand River, although its R value is infe-
rior. The SVR model using SVM-RFE has an 81% higher
NSE and a 16% lower RMSE, which confirms (Luo et al.,
2022) that SVM-RFE typically selects better variables
than RF-Boruta. The ensemble model outperforms other
models forWinnipeg andMoosonee Rivers, regardless of
its integration with SVM-RFE or RF-Boruta. Compared
with RF-Boruta, SVM-RFE and EMD exhibit 1.3% and

Figure 5. Yearly line-graph using a combination of P, T, and EMD dataset.
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Figure 6. Scatter plots of yearly streamflow simulation using a combination of P, T, and EMD dataset in the validation period.
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8.1% lower RMSEs and 5% and 16% higher NSEs, respec-
tively, for theWinnipeg andMoosoneeRivers. TheANN-
BPmodel outperforms the CNNmodel in the Moosonee
River, with a 14% lower RMSE and 20% higher NSE.

The R values of the ensemble model match those of
the SVR model, suggesting a similar correlation between
the observed and modelled values. SVR and ensemble
models exhibit reduced biases, indicating improved gen-
eralizability. The SVR model utilises a structural risk
minimisation approach, resulting in a superior solution,
whereas the ensemblemodel adoptsmultiple weak learn-
ers, yielding accurate predictions (Gizaw & Gan, 2016;
Htike, 2017; Kumar et al., 2019; Shrestha& Shukla, 2015).
Despite the overall superior performance of the ensemble
model against SVR, ANN-BP, and CNNmodels, the SVR
model is significantly superior in the Grand River basin.

Figures 3 and 4 show that the simulated and observed
streamflows are consistent for both the calibration and
validation phases, especially for the Moosonee River.
Figure 4 demonstrates that the values predicted by the
CNN andANN-BPmodels lie in ranges of 50–250m3s−1

for the Grand River, 550–2,500m3s−1 for the Winnipeg
River, and 50–300m3s−1 for the Moosonee River. These
variances indicate that the ensemble and SVR models

are more flexible and accurate in their predictions. In
summary, the combination of ensemble and SVR mod-
els with SVM-RFE yields superior results, rendering
them promising alternatives for streamflow prediction
and similar tasks. This observation is consistent with
previously reported findings and highlights exciting pos-
sibilities for future work.

Yearly time-series
Table 3(a–c) summarises the performancemetrics of var-
ious models for the Grand, Winnipeg, and Moosonee
River basins at the yearly scale. The findings, especially
those of the NSE and MARE, emphasise the advan-
tage of SVM-RFE over RF-Boruta in feature selection
across these basins. For the Grand River basin, the SVR-
EMDmodel using SVM-RFE exhibits a 30% higher NSE
and lower MARE during the calibration phase compared
with RF-Boruta. This enhancement is also observed in
the validation phase, with an 18% higher NSE. Similar
trends can be observed in the cases of the Winnipeg and
Moosonee River basins.

Figures 5 and 6 present line graphs for the cali-
bration and testing periods, and scatter plots for the

Table 4. (a) Monthly model performance indicators during the calibration and validation phases for the Grand River basin (using only
the EMD dataset). (b) Monthly model performance indicators during the calibration and validation phases for the Winnipeg River basin
(using only the EMD dataset). (c) Monthly model performance indicators during the calibration and validation phases for the Moosonee
River basin (using only the EMD dataset).

(a)

Calibration Validation

Model Input Selection RMSE (m3s−1) R NSE MARE RMSE (m3s−1) R NSE MARE

SVR-EMD SVM-RFE 16.13 0.95 0.88 3.82 42.97 0.43 0.16 56.08
RF-Boruta 38.96 0.59 0.32 41.56 37.76 0.62 0.35 43.80

ANN-BP-EMD SVM-RFE 12.05 0.97 0.93 13.59 60.02 0.22 −0.63 80.10
RF-Boruta 22.46 0.88 0.77 31.74 52.57 0.38 −0.25 73.35

CNN-EMD SVM-RFE 39.34 0.56 0.3 61.72 42.94 0.42 0.16 61.89
RF-Boruta 42.43 0.45 0.19 64.98 42.34 0.45 0.19 60.49

Ensemble-EMD SVM-RFE 23.5 0.92 0.75 18.04 39.07 0.56 0.31 54.81
RF-Boruta 33.61 0.73 0.49 40.81 37.72 0.60 0.35 56.76

(b)

SVR-EMD SVM-RFE 284.63 0.76 0.58 32.20 389.54 0.56 0.21 45.50
RF-Boruta 290.59 0.77 0.56 28.15 377.18 0.56 0.26 42.59

ANN-BP-EMD SVM-RFE 238.26 0.84 0.71 26.12 400.18 0.51 0.17 39.47
RF-Boruta 66.97 0.99 0.98 4.49 635.00 0.40 −1.09 58.28

CNN-EMD SVM-RFE 324.91 0.69 0.45 32.00 381.12 0.55 0.25 42.65
RF-Boruta 325.32 0.69 0.45 30.95 479.92 0.47 −0.20 42.69

Ensemble-EMD SVM-RFE 215.90 0.88 0.76 23.18 390.41 0.59 0.21 48.69
RF-Boruta 230.15 0.86 0.73 25.09 347.61 0.65 0.37 40.82

(C)

SVR-EMD SVM-RFE 75.58 0.71 0.42 52.35 92.05 0.51 0.19 94.85
RF-Boruta 68.25 0.75 0.53 53.95 88.16 0.53 0.26 101.44

ANN-BP-EMD SVM-RFE 89.53 0.46 0.19 92.30 100.95 0.46 0.03 97.01
RF-Boruta 52.14 0.85 0.72 69.92 100.95 0.46 0.03 97.01

CNN-EMD SVM-RFE 87.58 0.61 0.22 78.45 97.43 0.49 0.09 86.46
RF-Boruta 78.72 0.62 0.37 121.53 87.54 0.53 0.27 122.22

Ensemble-EMD SVM-RFE 57.50 0.86 0.66 41.53 89.01 0.51 0.24 120.60
RF-Boruta 57.50 0.86 0.66 41.53 89.01 0.51 0.24 120.60
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testing period in the three Canadian basins. The ANN-
BP-EMD model paired with SVM-RFE achieves per-
fect calibration across all studied basins. However,
its inconsistent outcome in the validation phase may
suggest potential overfitting. In contrast, the SVR-
EMD and ensemble-EMDmodels combined with SVM-
RFE yield more consistent results in both calibration
and validation phases. Specifically, the ensemble-EMD
model paired with SVM-RFE exhibits robust perfor-
mance across all basins. For example, in the case of
the Winnipeg River basin, it achieves an NSE of 0.98
and a MARE of 2.70 during calibration, significantly

surpassing both CNN-EMD and SVR-EMD. This high
performance is retained in the validation phase, with
an NSE of 0.88. Similar trends are observed for the
Moosonee River basin. Overall, in the annual simula-
tions involving scenario 5, SVM-RFE consistently out-
performs RF-Boruta in feature selection across all basins,
and the ensemble-EMD model outperforms the other
models.

To clarify the influence of the combined P, T, and
EMD on the model efficiency, simulation models using
only the EMD technique were evaluated, as described in
the following section.

Figure 7. Best monthly line-graph using the EMD dataset.
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Figure 8. Scatter plots of monthly streamflow simulation using the EMD dataset in the validation period.
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Simulation results using the EMDdataset

Monthly time-series
Valuable insights could be derived from the analysis
of models across the three river basins. In the case of
the Grand River basin (Table 4(a)), the ANN-BP-EMD
model with SVM-RFE selection achieves the highest
NSE of 0.93 during calibration, but this value sharply
deteriorates to −0.63 in the validation phase, indicating
potential overfitting. In contrast, the ensemble-EMD
model with RF-Boruta consistently performs well in both
stages with an NSE of 0.49 and 0.35 in the calibration and
validation phases, respectively.

In the case of the Winnipeg River basin (Table 4(b)),
the ANN-BP-EMDmodel with RF-Boruta demonstrates
satisfactory calibration performance with anNSE of 0.98.
However, its performance deteriorates during the vali-
dation phase. In comparison, the ensemble-EMD model
with RF-Boruta consistently exhibits a strong perfor-
mance, with an NSE of 0.73 and 0.37 during calibration
and validation, respectively. Notably, the ensemblemodel
outperforms all othermodels, and theworst performance
corresponds to the ANN-BP model using RF-Boruta.

For the Moosonee River basin (Table 4(c)), the
ANN-EMD model with RF-Boruta for feature selection

demonstrates strong performance during calibration
(NSE = 0.72), but its performance deteriorates in the
validation phase (NSE = 0.03). In contrast, the ensemble-
EMD model exhibits a high performance in both phases
(NSE = 0.66 and 0.24 in calibration and validation,
respectively), regardless of the feature selection method
used (SVM-RFE or RF-Boruta).

In general, the inclusion of main variables such
as precipitation and temperature in the EMD dataset
improves model performance, except for the SVR model
with RF-Boruta in the Grand River basin, where the
improvement is minimal. This observation is consis-
tent with that reported by Zhu and Pierskalla (2016),
which emphasises the potential bias introduced by
a large number of input features. Figures 7 and 8
present the performance metrics of models using the
EMD dataset with RF-Boruta across the three Cana-
dian basins. The model ranking in calibration and
validation is ANN-BP > ensemble > SVR > CNN and
ensemble > SVR > CNN > ANN-BP, respectively.

Yearly time-series
Table 5(a–c) presents the RMSE, R, NSE, and MARE
metrics for the model during the training and validation

Table 5. (a) Yearly model performance indicators during the calibration and validation phases for the Grand River basin (using only the
EMD dataset). (b) Yearly model performance indicators during the calibration and validation phases for the Winnipeg River basin (using
only the EMD dataset). (c) Yearlymodel performance indicators during the calibration and validation phases in theMoosonee River basin
(using only the EMD dataset).

(a)

Calibration Validation

Model Input Selection RMSE (m3s−1) R NSE MARE RMSE (m3s−1) R NSE MARE

SVR-EMD SVM-RFE 7.43 0.8 0.63 9.01 15.2 0.88 0.18 16.95
RF-Boruta 8.8 0.71 0.49 10.95 10.18 0.85 0.63 11.66

ANN-BP-EMD SVM-RFE 0 1 1 0 18.41 0.66 −0.2 18.57
RF-Boruta 0 1 1 0 18.03 0.53 −0.15 20.51

CNN-EMD SVM-RFE 19.69 0.8 −1.58 28.97 21.74 0.7 −0.67 29.51
RF-Boruta 10.82 0.57 0.22 14.98 13 0.65 0.4 18.63

Ensemble-EMD SVM-RFE 7.49 0.8 0.63 9.7 10.06 0.82 0.64 13.91
RF-Boruta 8.66 0.78 0.50 11.78 12.81 0.66 0.42 18.12

(b)

SVR-EMD SVM-RFE 139.57 0.93 0.78 12.23 191.39 0.85 0.52 16.90
RF-Boruta 155.03 0.86 0.72 9.87 211.75 0.73 0.41 17.83

ANN-BP-EMD SVM-RFE 0.01 1.00 1.00 0.00 274.01 0.68 0.01 22.05
RF-Boruta 45.85 0.99 0.98 2.48 271.54 0.45 0.03 22.69

CNN-EMD SVM-RFE 130.80 0.90 0.80 12.25 235.64 0.72 0.27 18.63
RF-Boruta 170.93 0.82 0.66 17.33 231.12 0.60 0.30 22.68

Ensemble-EMD SVM-RFE 42.08 0.99 0.98 3.48 213.66 0.76 0.40 15.47
RF-Boruta 187.61 0.79 0.59 14.95 185.94 0.77 0.55 15.37

(c)

SVR-EMD SVM-RFE 10.21 0.85 0.70 7.34 16.67 0.71 0.36 13.97
RF-Boruta 13.76 0.71 0.45 11.65 16.71 0.67 0.36 14.85

ANN-BP-EMD SVM-RFE 9.21 0.87 0.75 7.46 18.21 0.53 0.24 15.35
RF-Boruta 9.49 0.86 0.74 8.37 22.52 0.47 −0.17 18.85

CNN-EMD SVM-RFE 16.10 0.73 0.25 11.62 34.71 0.68 −1.77 31.36
RF-Boruta 15.68 0.63 0.29 11.15 25.28 0.55 −0.47 21.03

Ensemble-EMD SVM-RFE 12.45 0.76 0.55 11.83 14.71 0.72 0.50 12.50
RF-Boruta 8.18 0.94 0.81 4.72 16.11 0.71 0.40 11.74
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periods. Because of the inherent structure of neural net-
work models, their performance during the validation
phase is inferior to that during calibration. In the case of
the Grand River basin, the SVR model using RF-Boruta
and the ensemble model using SVM-RFE exhibit excel-
lent performances, with the highest R values of 0.85 and
0.82, respectively, during validation. The corresponding
RMSEvalues are 10.18 and 10.06m3s−1, and theNSE val-
ues are 0.63 and 0.64. Table 5(a) reveals that although the
models combined with RF-Boruta generally outperform
those combined with SVM-RFE, the ensemble model
that uses SVM-RFE for feature selection demonstrates
the best performance among all models.

Table 5(b) shows that for the Winnipeg River basin,
the SVR model based on SVM-RFE outperforms the
other models, with the highest R values. Moreover,
the NSE is 0.52 and RMSE is 191.39m3s−1. For the
Moosonee River basin (Table 5(c)), the ensemble model
exhibits excellent performance during the validation
period, achieving the highest R values of 0.72 and 0.71
when coupled with the SVM-RFE and RF-Boruta selec-
tion methods, respectively. The corresponding NSE val-
ues are 0.50 and 0.40, and the RMSE values are 14.71 and
16.11m3s−1. These metrics are highly improved com-
pared with the othermodels, and in particular, the RMSE
is 5% lower.

Figure 9. Best yearly line-graph using the EMD dataset.
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Figure 10. Scatter plots of yearly streamflow simulation using the EMD dataset in the validation period.
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Figures 9 and 10 show the plots of the observed
and simulated yearly streamflows. The simulation results
obtained using the SVR and ensemble models are closer
to the observed streamflows than those of the CNN
and ANN-BP, which tend to overestimate the yearly
streamflow values. The overall performance ranking of
the models can be summarised as follows: SVR is com-
parable or superior to the ensemble model, which out-
performs CNN, which in turn is superior to ANN-BP.

Simulation results using P and T

Monthly time-series
Table 6(a–c) summarises the performance metrics of the
models in the training and testing phases. In both phases,

the ensemble model consistently outperforms the other
models, with the highest R, RMSE, NSE, and MARE val-
ues across the Grand, Winnipeg, and Moosonee Rivers.
For the Grand River basin, the ensemble model shows an
RMSE of 36.27m3s−1 in the validation phase, approxi-
mately 15% lower than that of the SVR (42.44), indicating
reduced prediction errors. Moreover, its NSE is nearly
two times higher, indicating an increase of almost 100%,
and its MARE is approximately 8% lower than that of
the SVR model. Table 6(b) reveals that the trends for the
Winnipeg River are similar: The RMSE is 329.46m3s−1,
which is approximately 40% lower than that of the SVR
(543.86m3s−1). The NSE of the ensemblemodel (0.44) is
significantly higher than that of the SVR (−0.53), and its
MARE is nearly 53% lower (72.29). In Table 6(c), similar

Table 6. (a) Monthly model performance indicators during the calibration and validation phases for the Grand River basin (using P and
T). (b) Monthly model performance indicators during the calibration and validation phases for the Winnipeg River basin (using P and T).
(c) Monthly model performance indicators during the calibration and validation phases for the Moosonee River basin (using P and T).

(a)

Calibration Validation

Model RMSE (m3s−1) R NSE MARE RMSE (m3s−1) R NSE MARE

SVR 32.23 0.74 0.53 33.72 42.44 0.51 0.18 46.73
ANN-BP 22.02 0.88 0.78 29.56 54.76 0.31 −0.36 61.01
CNN 39.03 0.65 0.32 40.42 43.23 0.62 0.15 51.4
Ensemble 20.17 0.91 0.82 19.6 36.27 0.65 0.4 42.94

(b)

SVR 323.72 0.69 0.46 31.34 543.86 0.60 −0.53 72.29
ANN-BP 238.26 0.84 0.71 26.12 485.98 0.22 −0.23 48.71
CNN 349.49 0.61 0.37 40.46 490.70 0.62 −0.25 64.34
Ensemble 286.20 0.77 0.58 34.19 329.46 0.66 0.44 34.03

(c)

SVR 68.08 0.76 0.53 53.42 84.31 0.59 0.32 122.38
ANN-BP 46.81 0.90 0.78 109.95 111.97 0.50 −0.20 183.62
CNN 78.98 0.67 0.37 84.24 79.03 0.68 0.40 80.03
Ensemble 42.53 0.91 0.82 34.29 72.42 0.71 0.50 85.59

Table 7. (a) Yearly model performance indicators during the calibration and validation phases for the Grand River basin (using P and T).
(b) Yearly model performance indicators during the calibration and validation phases for the Winnipeg River basin (using P and T). (c).
Yearly model performance indicators during the calibration and validation phases for the Moosonee River basin (using P and T).

(a)

Calibration Validation

Model RMSE (m3s−1) R NSE MARE RMSE (m3s−1) R NSE MARE

SVR 7.37 0.81 0.64 8.62 13.62 0.88 0.34 14.52
ANN-BP 0 1 1 0 17.3 0.55 −0.06 20.2
CNN 8.8 0.73 0.48 11.2 12.33 0.71 0.46 16.82
Ensemble 7.76 0.79 0.6 9.03 11.43 0.77 0.54 14.03

(b)

SVR 155.75 0.85 0.72 11.65 196.04 0.72 0.50 19.60
ANN-BP 101.17 0.94 0.88 4.67 298.07 0.53 −0.17 20.35
CNN 212.12 0.70 0.48 23.02 232.46 0.58 0.29 23.06
Ensemble 142.28 0.91 0.77 9.78 187.45 0.79 0.54 17.48

(c)

SVR 10.82 0.82 0.66 8.55 15.19 0.72 0.47 13.09
ANN-BP 0.00 1.00 1.00 0.00 24.18 0.55 −0.35 23.30
CNN 14.33 0.73 0.41 11.70 21.99 0.67 −0.11 17.91
Ensemble 11.95 0.77 0.59 11.94 15.79 0.68 0.43 13.21
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Figure 11. Best monthly line-graph using P and T.

observations can be made for the Moosonee River. The
ensemble model exhibits a 14% lower RMSE and 56%
higher NSE compared with the SVR model.

Figure 11 compares the observed and predicted
streamflows by the SVR and ensemble models, high-
lighting the superior performance of these two models.
As shown in Figure 12, during the validation phase,
the ensemble model outperforms the CNN, SVR, and
ANN-BP across all river basins. In the validation phase
(Figure 12), the ensemble model outperforms the CNN,
SVR, and ANN-BP across all river basins. Therefore,

the ensemble model is noted to be the most reliable for
predicting streamflow.

Yearly time-series
Table 7(a–c) indicate that during the calibration phase,
the ANN-BP model exhibits excellent performance
across all basins. However, its performance deteriorates
in the validation phase, particularly for the Grand River
basin (Table 7(a)). This deterioration is evidenced by the
R value, which decreases from 1 to 0.55, corresponding
to a 45% reduction, and its RMSE, which increases from
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Figure 12. Scatter plots of monthly streamflow simulation using P and T in the validation period.



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 23

Figure 13. Yearly line-graph using P and T.

0 to 17.3m3s−1. Similar trends are observed for theWin-
nipeg River basin (Table 7(b)): The RMSE of ANN-BP
increases by nearly 195%, from 101.17 to 298.07m3s−1.
Similarly, in the case of the Moosonee River basin
(Table 7(c)), the model performance deteriorates, with
the RMSE increasing from 0 to 24.18m3s−1 and the R
value decreasing from 1 to 0.55, corresponding to a 45%
reduction. These findings highlight the inconsistency of
the model performance in the calibration and validation
phases.

In the validation phase, the SVR and ensemblemodels
outperform the ANN-BP across all basins. In the case of
the Grand River basin, the ensemble records a 30% lower

RMSE (11.43m3s−1) and a 40% higher R value (0.77).
Similarly, in the case of the Winnipeg River basin, the
validation RMSE of the ensemble model is 37% lower
(187.45m3s−1) and its R value is 49% higher (0.79).
Finally, in the case of the Moosonee River basin, the SVR
model exhibits superior performance with a 37% lower
RMSE (15.19m3s−1) and 31% higher R value (0.72). The
SVRmodel, which has an RMSE only 4% lower than that
of the ensemblemodel, can be considered slightly inferior
to the ensemble model.

Figures 13 and 14 show the results of simulations
using the three main variables as the predictor vari-
ables. Figure 13 shows that the performance of most
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Figure 14. Scatter plots of yearly streamflow simulation using P and T in the validation period.
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models in the case of the Grand River basin is higher
than those for the Winnipeg and Moosonee River
basins. Figure 14 shows the scatter plots for each
model for the three Canadian basins in the validation
period. For all three basins, all four models, especially
ANN-BP, overestimate or underestimate the streamflow
variable.

Conclusions

This paper proposes a hybrid model based on EMD
and four ML models: ensemble, SVR, CNN, and ANN-
BP models, to simulate the monthly and yearly runoff
time-series and increase the simulation accuracy of long-
term runoff. ML models based on the original variables
(monthly and yearly time-series of the precipitation and
maximum and minimum temperatures) were developed
as a comparative standard. Monthly and yearly runoff
data from the Grand, Winnipeg, and Moosonee Rivers
in Canada were used, and four statistical metrics (RMSE,
MARE, R, and NSE) were adopted to assess the model
performances. The results demonstrated that the EMD
increases the simulation precision, and the proposed
EMD-ML models are superior to the standalone ML
models in monthly and annual runoff time-series mod-
elling. The proposed hybrid approach can be applied
in future research for simulating monthly and annual
runoff. The advantages of the proposed technique can be
summarised as follows: First, despite the simplicity of the
EMD, it can offer valuable insights into the characteristics
of the monthly and yearly runoff time-series. Second, the
monthly scale is associated with a lower accuracy than
the yearly scale. Third, the ensemble model outperforms
the SVR, CNN, and ANN-BP for the Grand, Winnipeg,
and Moosonee River basins. Finally, the proposed mod-
els donot necessitate intricate decision-making regarding
the explicit form for each instance. Overall, a hybrid
simulation model with EMD can yield precise and con-
sistent simulation results, and it is thus a valuable tool for
studies that focus on hydrological time-series simulations
to address various problems associated with reservoir
management.
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