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ABSTRACT
Most bridge failures result from scouring around bridge piers, resulting in economic losses and risks
to public safety. The conventional equations for predicting the depth of scour at bridge piers have
several limitations: (1) They mainly use regression-based techniques that cannot robustly capture
the nonlinear relationship between the scour depth and its effective variables; (2) they are applica-
ble only to a narrow range of variability of data; and (3) they are typically calibrated using laboratory
data rather than fieldmeasurements and thus cannot simulate the prototype environment. To over-
come these limitations, in this study, three novel hybrid machine learning methods: particle swarm
optimization - extreme gradient boosting (PSO – XGBoost), red fox optimization - XGBoost (RFO
– XGBoost), and relativistic particle swarm optimization - XGBoost (RPSO – XGBoost) are applied
to estimate the scour depth around circular bridge piers, and their effectiveness is validated using
three statistical metrics, i.e. the mean absolute error (MAE), root mean square error (RMSE), and
coefficient of determination (R2). RPSO – XGBoost generates the best results for both dimensional
and dimensionless data. Moreover, the proposed approaches outperform the state-of-the-art tech-
niques. The SHapley Additive exPlanations (SHAP) method is used to assess the relative significance
of the contributing factors for predicting the scour depth.
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1. Introduction

Scouring around bridge piers is a notable driving fac-
tor of bridge collapses (Wardhana & Hadipriono, 2003;
Wang et al., 2017). According to the US Department
of Transportation, scouring led to the damage of 17
bridges in New York and New England during the flood
in 1987 (Richardson & Davis, 2001). The Federal High-
way Administration defines scouring as the process in
which the streambed sediments are eroded and removed
from bridges by the water flowing over the bed (Mueller
& Wagner, 2005). Different bed materials undergo vari-
ous levels of scouring, leading to different scour rates. For
example, non-cohesive materials such as sand and gravel
may erode over a few hours, butmore time is required for
cohesive bedmaterials to be eroded (Richardson&Davis,
2001).

The scouring process around bridge piers is composed
of two mechanisms: three-dimensional flow separation
and sediment transport, which render it complex (Sreed-
hara et al., 2019). The water rushing around the pier
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experiences three-dimensional separation, which gener-
ates pressure resulting in a downward flow upstream of
the pier. This downward flow creates a vortex system
upstream of the pier, termed a horseshoe vortex owing
to its appearance being similar to that of a horseshoe
from the top view (Pandey et al., 2020a). The shear stress
increases due to the vortex system and corresponding
downflow around piers, leading to accelerated sediment
transport, which finally creates a scour hole near the pier.
After the scour hole is fully developed and reaches its
maximum size, the flow pattern is altered, and the shear
stress and sediment transport diminish (Pandey et al.,
2020b).

The safe design of bridge foundations is critical for
preventing bridge failures. The scour depth must be
precisely estimated to ensure the economic and secure
design of bridges. Hence, many regression-based for-
mulas have been established to determine the depth
of equilibrium scour around bridge piers (Laursen &
Toch, 1956; Shen et al., 1969; Hancu, 1971; Jain &
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Fischer, 1979; Kothyari et al., 1992; Lee & Sturm,
2009; Melville & Coleman, 2000; Khan et al., 2017;
Pandey et al., 2018). Notably, the existing equations
suffer from the following limitations: (1) They are
mainly based on limited experimental data and are
thus applicable to only a narrow range of variability
of inputs (e.g. flow depth, flow velocity, pier diame-
ter, and sediment size) and output (scour depth) for
which they are calibrated; (2) they cannot robustly cap-
ture the highly nonlinear relationship between scour
depth and its determining factors; and (3) they are
typically calibrated based on laboratory data and thus
cannot accurately capture the prototype environment,
resulting in overestimation of the scour depth (Bateni
et al., 2007a).

In a departure from regression-based approaches,
machine learning (ML) techniques have been used to
predict scour depth. Sharafi et al. (2016) showed that
the support vector machine (SVM) outperforms artificial
neural networks (ANN), adaptive neuro-fuzzy infer-
ence systems (ANFIS), and nonlinear regression meth-
ods in estimating the scour depth. Ebtehaj et al. (2017)
compared the scour depth prediction performance of
the self-adaptive extreme learning machine with those
of regression-based, ANN, and SVM techniques. Choi
et al. (2017) used ANFIS to determine the scour depth
around circular bridge piers. While their approach out-
performed the conventional equations, the small num-
ber of data points in their study restricts the generaliz-
ability of their proposed method. Genetic programming
and ANFIS were proposed as alternatives to conven-
tional methods owing to their promising performance
in estimating the scour depth near piers (Abd El-
Hady Rady, 2020). Shamshirband et al. (2020) devel-
oped several PSO-based equations to predict the scour
depth around circular bridge piers using different input
variables.

Dang et al. (2021) optimized ANN by PSO and fire-
fly algorithms to enhance its efficiency in scour depth
estimation. However, the performances of their proposed
methods were not compared with other studies, lim-
iting the ability to assess their effectiveness. Sreedhara
et al. (2021) utilized gradient tree boosting (GTB) to
estimate the temporal scour depth around circular, rect-
angular, sharp-nosed, and round-nosed bridge piers.
Their proposedMLmodel was calibrated based on a lim-
ited number of laboratory data points and was not evalu-
ated against previous studies. Chou and Nguyen (2022)
introduced the Metaheuristic-Optimized Stacking Sys-
tem (MOSS) to estimate the scour depth around bridge
piers. By combining a metaheuristic algorithm with
multiple ML methods, they showed the superiority of

MOSS over single ML models, conventional regression-
based methods, and mathematical approaches. Despite
the strength of their study, it used a small dataset, which
hinders its generalization. Also, none of the abovemen-
tioned studies used explainable artificial intelligence (AI)
to show the relative contribution of input features to
scour depth estimations.

This study overcomes the drawbacks of the exist-
ing studies by (1) using 841 experimental data points
from 35 field and laboratory studies in clear water
conditions, thereby covering a wide range of vari-
ability of the scour depth and other relevant vari-
ables; (2) applying three novel hybrid ML techniques:
particle swarm optimization–extreme gradient boost-
ing (PSO–XGBoost), red fox optimization–XGBoost
(RFO–XGBoost), and relativistic particle swarm opti-
mization–XGBoost (RPSO–XGBoost), given that PSO,
RFO, and RPSO can tune the hyperparameters of
XGBoost to improve its performance; and (3) interpret-
ing the proposed MLmodels using the SHapley Additive
exPlanations (SHAP) method. In particular, SHAP rep-
resents an intuitive and effective tool for exploring the
contribution of each input feature to the output of anML
model.

XGBoost is a robust and scalable MLmethod that was
proposed by Chen et al. (2015). This framework operates
on the basis of a gradient boosting (GB) tree for gradient
enrichment. XGBoost has demonstrated robust perfor-
mances in regression problems, in terms of speed, mem-
ory usage, scalability, and hardware (Lucca et al., 2021;
Qiu et al., 2021), in applications such as detection inwater
delivery systems (Wu et al., 2022), evaluation of flash
flood risk (Ma et al., 2021), groundwater level estimation
(Osman et al., 2021), and flood forecasting (Venkatesan
&Mahindrakar, 2019). In general, XGBoost can model a
variety of water resource problems, and its performance
can be improved by tuning its hyperparameters (Ni et al.,
2020; Yu et al., 2020; Shi et al., 2021; Nguyen et al.,
2021; Demir & Sahin, 2023). Although this tuning can be
performed through trial and error, such approaches are
extremely time-consuming and cumbersome.

PSO is a popular swarm-based metaheuristic opti-
mization technique that draws inspiration from animal
foraging behaviours (Kennedy & Eberhart, 1995). RFO,
as one of the newest metaheuristic optimization tools,
was introduced by Połap and Woźniak (2021). Its con-
cept is based on the predation tricks of red foxes (Cui
et al., 2022; Natarajan et al., 2022). RPSO, introduced by
Roder et al. (2020), is a variant of the PSO algorithm that
functions based on the concept of relativity. These opti-
mization strategies have been successfully used to adjust
hyperparameters of ANN (Alizamir & Sobhanardakani,
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2018), XGBoost (Yu et al., 2020; X. Zhang et al., 2020),
and random forest platforms (Pham et al., 2020).

In this study, we exploit the PSO, RFO, and RPSO
techniques to identify the optimal hyperparameters of
XGBoost to improve its performance (Gu et al., 2021;
Lucca et al., 2021). To the best of our knowledge, the pro-
posed hybrid approaches have not been previously used
to predict the scour depth. Moreover, the performances
of the developed hybrid models are compared with those
of state-of-the-art methods.

Furthermore, the interpretation of ML methods is
crucial to explain how these algorithms obtain optimal
predictions. To this end, explainable artificial intelli-
gence (XAI) methods have attracted increasing attention
in recent years. Representative XAI techniques include
SHAP, accumulated local effects, and partial dependence
plots (Ishfaque et al., 2022).

In this study, the relative significance of the different
input parameters for scour depth prediction is deter-
mined using SHAP values. SHAP, proposed by Lundberg
and Lee (2017), quantifies the significance of each feature
and explains howMLmodels make predictions. The pre-
dictions of a model can be expressed as the summation
of a fixed base value and each feature’s corresponding
SHAP values. Unlike the conventional feature impor-
tance methods such as feature importance and mean
decrease impurity (Mangalathu et al., 2020; Demir &
Sahin, 2023), SHAP can determine whether the contri-
bution of each feature is positive or negative. SHAP has
been used to interpret several MLmethods for dam seep-
age problems (Ishfaque et al., 2022) and drought fore-
casting (Dikshit & Pradhan, 2021) owing to its notable
advantages such as local and global model interpretation,
scalability, robustness, and feasibility for a vast range of
problems such as regression, classification, and ranking
(Lundberg et al., 2020). To the best of the authors’ knowl-
edge, this study represents the first attempt at performing
SHAP analysis to interpret ML methods for scour depth
prediction.

The rest of the paper is organized as follows: Section
2 describes the variables affecting the scour depth and
data sources. Section 3 discusses theXGBoost, PSO, RFO,
RPSO, and SHAP techniques. Section 4 presents the find-
ings, and Section 5 presents the concluding remarks.

2. Data

The scour depth, influenced by flow characteristics,
sediment properties, and pier dimensions, is inherently
complex due to the intricate interplay of hydraulic forces,
sediment dynamics, and morphological changes (Choi
et al., 2017). This complexity accentuates the need for
extensive understanding and modeling techniques to

analyze and predict the scour depth accurately. How-
ever, conducting three-dimensional physical-based sim-
ulations around bridge piers to accurately represent the
scour mechanism is challenging (Dang et al., 2021).
Given the physical complexity and the limitations of
physical models, the availability of a comprehensive
scour dataset becomes crucial. When utilized with ML
approaches, such a dataset provides valuable insights into
the intricate scour phenomena and enables the rapid gen-
eration of accurate scour depth estimates (Dang et al.,
2021). Importantly, our study stands out as the first one
to employ such a comprehensive dataset to model scour
depth around circular bridge piers, further highlighting
its significance.

The maximum scour depth, also known as the equi-
librium, scour depth, is reached around bridge piers after
a period of gradual development. The equilibrium scour
depth near circular bridge piers is determined by the
fluid flow, bed materials, and pier diameter (Melville &
Coleman, 2000):

dse = f (ρ,μ,V ,Y , g, d50,Vc,D) (1)

where dse is the equilibrium scour depth, ρ is the den-
sity of water, μ is the dynamic viscosity of water, V is the
flow mean velocity, Y is the flow depth, g is the gravita-
tional acceleration, d50 is the median sediment size, Vcis
the mean critical velocity, and D is the pier diameter.

Using the�Buckingham theory and consideringρ,D,
andV as repeating parameters, the dimensionless formof
Eq. (1) can be expressed as follows:

dse
Y

= f
(
V
Vc

,
V√
gY

,
D
Y
,
d50
Y

,
ρVD
μ

)
(2)

Here, V√
gY is the Froude number (Fr), and ρVD

μ
is the

Reynolds number (Re).
Reynolds number determines the flow regime around

bridge piers, where a higher Reynolds number signifies
a more turbulent condition that may enhance the ero-
sive potential and increases scouring (Hu et al., 2022).
Therefore, including Re in simulating scouring around
bridge piers can be beneficial to account for its under-
lying effect and ensure a thorough understanding of the
scouring process (Tavouktsoglou et al., 2017). However,
it is worth mentioning that our results in Section 4.2.
show that Re has a marginal impact on the scour depth
estimates, and its effect on dse/ Y is less than the other
variables in equation (2).

In this study, 841 field and laboratory data points in
clear water condition for circular bridge piers are col-
lected from 35 published and unpublished reports, which
are listed in Table 1.
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Table 1. Sources for scour depth data used in this study.

Study Type of data Number of data points

Chabert and Engeldinger
(1956)

Laboratory 87

Shen et al. (1969) Laboratory 2
Hancu (1971) Laboratory 1
Ettema (1976) Laboratory 19
Jain and Fischer (1979) Laboratory 6
Ettema (1980) Laboratory 97
Jain (1981) Laboratory 2
Chiew (1984) Laboratory 11
Yanmaz and Altinbilek (1991) Laboratory 33
Kothyari et al. (1992) Laboratory 92
Dey et al. (1995) Laboratory 18
Graf (1995) Laboratory 3
Melville (1997) Laboratory 17
Melville and Chiew (1999) Laboratory 27
Oliveto and Hager (2002) Laboratory 44
Mia and Nago (2003) Laboratory 5
Sheppard (2004) Laboratory 12
Raikar and Dey (2005) Laboratory 20
Ettema et al. (2006) Laboratory 6
Kumar (2007) Laboratory 6
Unpublished (Bateni et al.,

2007a)
Laboratory 33

Unpublished (Bateni et al.,
2007a)

Field 27

Coleman (unpublished)
(Sheppard et al., 2010)

Laboratory 6

Jones (unpublished) (Sheppard
et al., 2010)

Laboratory 16

Sheppard et al. (2010) Laboratory 5
Kumar (2011) Laboratory 3
Lança et al. (2013) Laboratory 38
Lodhi et al. (2014) Laboratory 3
López et al. (2014) Laboratory 29
Aksoy and Eski (2016) Laboratory 28
Fael et al. (2016) Laboratory 4
Aksoy et al. (2017) Laboratory 16
Williams et al. (2017) Laboratory 22
Pandey (unpublished) Laboratory 18
Pandey et al. (2020a) Laboratory 85

Table 2 summarizes the mean, minimum value, max-
imum value, standard deviation (SD), and coefficient of
variation (CV) of the data.

3. Models andmethods

3.1. XGBoost

XGBoost is a novel variant of the GB technique (Fried-
man, 2001, 2002). Unlike the GB technique, XGBoost
can efficiently manage a considerable amount of data by

generating boosted trees and implementing them in par-
allel (Le et al., 2019; Zhang et al., 2020). Consequently,
reliable and fast simulations can be performed for engi-
neering problemswith a large number of data points. The
complexity of trees is addressed by the variation of a loss
function. In other words, the residuals are used to cali-
brate the former predictions in each iteration through the
optimization of a loss function. Furthermore, XGBoost
uses a regularization function in the objective function
(Zhou et al., 2021).

The process flow of XGBoost can be mathematically
illustrated as follows:

Consider a dataset withm data and n feature :

S = (xi, yi)(|S| = m, xi ∈ Rn, yi ∈ R).

xi and yiare the input and output, respectively. The output
of a tree ensemble model can be obtained by adding P
functions:

ŷi = ψ(xi) =
P∑

p=1
fp(xi), fp ∈ F (3)

where F is the area containing regression trees and is
expressed as:

F = {f (x) = ωq(x)} (q : Rn → T,ω ∈ RT) (4)

where q indicates the associated leaf for each data point as
a tree structure, T is the number of leaves on the tree, fp is
a function corresponding to a stand-alone tree structure,
and ω is the output weight of leaves.

The target function (J) for the XGBoost method is
defined as in Eq. (5) to minimize the error of ensemble
trees:

J(t) =
m∑
i=1

L(yi, ŷ
(t−1)
i + ft(xi))+�(ft) (5)

where L is the training loss function used to determine
the distance between the estimated (ŷi) and observed (yi)
values, superscript t denotes the number of iterations,
and � is the regularization function that controls the

Table 2. Statistical indices of variables.

Variable Minimum Maximum Mean
Standard deviation

(SD)
Coefficient of
variation (CV)

d50(mm) 0.220 14.250 2.333 2.619 1.122
D (m) 0.010 1 0.129 0.153 1.194
V (m/s) 0.149 1.270 0.417 0.223 0.535
Vc(m/s) 0.223 1.274 0.525 0.243 0.464
Y (m) 0.020 1.900 0.231 0.215 0.927
dse (m) 0 1.410 0.129 0.124 0.964
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model complexity:

�(f ) = γT + 1
2
λω2 (6)

where λ is the penalty coefficient, and γ shows the
complexity of each tree. A higher value of γ means
fewer complex trees. The hyperparameters of XGBoost
are the learning rate, max_delta_step, max_depth, and
min_child_weight. The learning rate demonstrates the
shrinkage (reduction in the size of incremental steps)
used to prevent overfitting in the learning process. A
shrinking weight in each step will result in a more con-
servative model. Max_delta_step indicates the weight
estimate of each tree. A positive value results in a con-
servative update step. The maximum depth of the tree,
max_depth, is used to control overfitting in the learning
phase. Min_child_weight is the minimum summation
of weights in a child tree, higher values of which make
the model more conservative. In this study, we apply
three optimization techniques to find the optimal hyper-
parameters of XGBoost, as described in the following
subsections.

3.2. PSO

PSO, introduced by Kennedy and Eberhart (1995), is
a metaheuristic algorithm that draws inspiration from
nature. Each particle has an assigned position (x) and
velocity (v). The initial position (x) and velocity (v) of
each particle are defined by an n-dimensional random
vector and vector of zeros, respectively. Each dimension
represents a specific decision parameter. Assume that
particle i moves at velocity vti at iteration t, as a part of a
swarm sizedP, where i ∈ {1, 2, . . . , P}. The particle veloc-
ity at the time t + 1 (vt+1

i .) can be obtained as (Le et al.,
2019):

vt+1
i = wvti + c1r1(x∗

i − xti)+ c2r2(g − xti) (7)

where x∗
i represents the best location achieved by parti-

cle i upo the current iteration, g is the present best global
solution among all swarmsw is the inertial weight, c1 and
c2 are the cognitive and social parameters, respectively;
and r1 and r2are random numbers that vary from 0 to 1.

In the following step, given the updated velocity of
particle i, the particle’s position is adjusted as follows:

xt+1
i = xti + vt+1

i (8)

where xti indicates the location of particle i at iteration t.

3.3. RFO

Red foxes are highly populated species of foxes that can
live and survive in different climatic conditions. Based on

the red foxes’ lifestyle and method of hunting, Połap and
Woźniak (2021) developed a metaheuristic optimization
algorithm named RFO. The RFO initialization is simu-
lated by a fixed number of foxes, with the coordinates of
each fox defined as:

X = [x0, x1, . . . , xn−1] (9)

where n describes the number of coordinates.
Each fox in each iteration is identified using the nota-

tion (Xi
j)
t , where i indicates the number of a fox in the

population, j is the coordinate based on the dimension of
the searching area, and t is the number of iterations.

Assuming f ∈ Rn to be a condition function of n vari-
ables, each point in the search space [a, b]n, where a, b ∈
R, can be expressed as in Eq. (10):

(X)i = [(x0)i, (x1)i, . . . , (xn−1)
i] (10)

(X)i is considered the optimum solution once the value of
f ((X)i) yields the global optimal. Every fox must partici-
pate in protecting the flock from threats. If adequate prey
is not available in the area, the foxes must move to farther
regions to achieve a better result for the exploration term.
The information collected by a fox for the best location is
shared with the others if a region with adequate prey is
found. The fitness value is used to sort the results of the
evaluated function.

The Euclidean distance (D) is used to find (Xbest)t :

D[(Xi)
t , (Xbest)

t
] =

√
||(Xi)t − (Xbest)

t|| (11)

where || . || is the Euclidean norm. Thus, the foxes travel
toward the optimum solution as follows:

(Xi)t = (Xi)t + a × sign((Xbest)t − ((X)i)t) (12)

where a is a randomly chosen integer number in the range
of a ∈ (0,D[(Xi)

t , (Xbest)
t])

Then, the appropriate solution is obtained using the
updated position of the candidates. Otherwise, the for-
mer location is retained. The probability of a fox being
observed while they move to capture the prey is modeled
using a random variable λ:{

move closer λ > 0.75
stay and camouflage λ ≤ 0.75 (13)

The radius (r) is another important term in the RFO,
which indicates the vision radius of the predator fox:

r =
⎧⎨
⎩ α

sinϕ0
ϕ0

ϕ0 �= 0

β ϕ0 = 0
(14)

where α is the scaling coefficient for modeling changes in
the fox’s vision radius while they approach a prey and lies
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in the range [0, 0.2]. β is a random value between 0 and
1 that denotes the impact of adverse weather such as rain
or fog on the foxes’ vision angle. ϕ0, which represents the
fox’s angle of sight, varies in the range [0, 2π]. Therefore,
the fox population approaching prey can be simulated as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xNew0 = αr cos(ϕ1)+ xOld0
xNew1 = αr sin(ϕ1)+ αr cos(ϕ2)+ xOld1
xNew2 = αr sin(ϕ1)+ αr sin(ϕ2)+ αr cos(ϕ3)+ xOld2
...

xNewn−2 = αr
n−2∑
k=1

sin(ϕk)+ αr cos(ϕn−1)+ xOldn−2

xNewn−1 = αr sin(ϕ1)+ αr sin(ϕ2)+ ... + αr sin(ϕn−1)

+xOldn−1
(15)

where xNew is the updated coordinate, xOld is the coordi-
nate in the previous iteration, and ϕ1,ϕ2, . . . .ϕn−1 are the
foxes’ angles of sight for the corresponding coordinates.

3.4. RPSO

RPSO is a variant of the PSO, which was introduced by
Roder et al. (2020). We introduce the theory of relativ-
ity to illustrate the RPSO. The theory of relativity is one
of the most significant theories in physics, proposed by
Albert Einstein in 1916. Conventional mechanics’ the-
ories were implemented to numerically model the phe-
nomena detected by Einstein. One of the most famous
theories pertains to momentum, which can be calculated
in three-dimensional coordinates as:

M(v) = ς(v)mv (16)

whereM is themomentum, v = (vx, vy, vz) andm are the
velocity and mass of a body, respectively. ς is the Lorentz
factor, which is defined as follows:

ς(v) = 1√
1 −

( |v|
c

)2 (17)

where |v| denotes the size of vector v, and c is the speed
of light.

Unlike PSO, RPSO considers the effects of the speed of
light, improved social behaviour of swarms, and particles’
mass on the optimum values of the solution. RPSO trans-
forms the three-dimensional momentum formula (Eq.
16) into an n-dimensional formula to compute the veloc-
ity of each particle in an n-dimensional search space:

vt+1
i = M(vti)+ c1r1(x∗

i − xti)+ c2r2(g − xti) (18)

whereM(.) is the typical relativistic momentum in three
dimensions, which is extended to the n-dimensional

space. Mass m is selected from a uniform distribution
with values between [0, 1] to compute the relativistic
momentum of each particle (Roder et al., 2020).

3.5. Model performance evaluationmetrics

Three statistical indices are used to assess the efficiency of
the proposed methods: root mean square error (RMSE),
mean absolute error (MAE), and coefficient of determi-
nation (R2). LowerMAE andRMSE denote better results.
R2, which indicates the percentage of variation in depen-
dent variable that can be accounted for by independent
variables, lies in the range [0,1]. R2 values closer to 1 indi-
cate a stronger relationship between the predictions and
observations. The three metrics are defined as follows:

RMSE =

√√√√∑N
i=1 (dobssei − dpredsei )

2

N
(19)

MAE =
∑N

i=1 |dobssei − dpredsei |
N

(20)

R2 = 1 −
∑N

i=1 (d
obs
sei − dpredsei )

2

∑N
i=1 (dobssei − d̄se)

2 (21)

where N is the number of data points, dpredsei and dobssei are
the estimated and observed scour depths for the ith data
point, respectively, and d̄se indicates the average values of
observed scour depth.

3.6. SHAP

Lundberg and Lee (2017) developed the SHAP method
based on game theory to interpret ML models. The con-
cept was used in game theory to assess a player’s par-
ticipation in a cooperative team game and distribute a
fair reward among players based on their contributions
(Shapley, 1953). SHAP determines the degree of contri-
bution of each input to the model’s output prediction.
Moreover, it evaluates whether the effect of each input on
the model’s prediction is positive or negative. The use of
SHAP to interpret MLmodels can help prevent the prob-
lem of these models operating as black boxes. The model
behaviour in both global (for the entire dataset) and local
(for a single prediction) aspects is explained by assign-
ing SHAP values to each feature (Zhang et al., 2022). The
contribution of each input feature can be determined as:

κi =
∑
ζ⊆G

|ζ |!(n − |ζ | − 1)!
n!

[τ(ζ ∪ {i})− τ(ζ )] (22)

where κi indicates the contribution of the i-th feature (in
terms of Shapley values),G is the collection of all features,
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Figure 1. Process flow of the proposed hybrid ML models and SHAP for estimating the scour depth near circular bridge piers.

n is the number of features in G, and ζ is a subset of G, |.|
denotes the number of members in a set, τ(ζ ∪ {i}) and
τ(ζ )indicate the mel’s output with and without the i-th
feature, respectively. The model output can be written as
a linear summation of a constant base value and SHAP
values as (Khattak et al., 2022):

e(z′) = κ0 +
n∑

i=1
κiz′ (23)

where κ0 is a base value, z′ ∈ {0, 1}n, where z′ = 1 when
a feature is present and z′ = 0otherwise.

Figure 1 illustrates the process of developing hybrid
ML models for scour depth prediction.

4. Results and discussion

4.1. Model evaluation

The 841 experimental data points are split randomly
into training (70%), validation (15%), and testing (15%)
datasets. The training dataset is used to train the ML
models and typically includes most of the data. The
model uses the training data to minimize the differences
between observed and predicted values by adjusting
the hyperparameters (Brownlee, 2020). The validation
dataset is used to assess themodel efficiency during train-
ing and to obtain the best set of hyperparameters. The
validation dataset is distinct from the training dataset to
prevent overfitting (Brownlee, 2020). The performance
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Table 3. Initial hyperparameters of the XGBoost model and val-
ues optimized using the PSO, RFO, and RPSO techniques for the
dimensional dataset.

Parameter XGBoost PSO–XGBoost RFO–XGBoost RPSO–XGBoost

learning_rate 0.3 0.7917 0.1350 0.2575
max_delta_step 0 9.7905 1.0746 9.9969
max_depth 6 10 19 17
min_child_weight 1 1.1900 6.0487 1.1051
Number of

iterations
100 72 369 369

Table 4. Initial hyperparameters of the XGBoost model and val-
ues optimized using the PSO, RFO, and RPSO techniques for the
dimensionless dataset.

Parameter XGBoost PSO–XGBoost RFO–XGBoost RPSO–XGBoost

learning_rate 0.3 0.4902 0.3994 0.4848
max_delta_step 0 8.0483 7.1944 2.9955
max_depth 6 17 20 6
min_child_weight 1 7.142 10 7.69
Number of

iterations
100 181 188 363

of the final (calibrated) ML model is assessed using the
testing dataset, which is completely withheld from the
model during the training and validation stages (Man-
galathu et al., 2020). In this manner, testing data enable
an unbiased evaluation of ML models. All three datasets
should be used to ensure that the ML model is precise,
robust, and not overfitted to training data.

In this study, the hyperparameters of the XGBoost
method, i.e. learning rate, max_delta_step, max_depth,
min_child weight, and n_estimators are optimized using
PSO, RFO, and RPSO. The default values of these param-
eters are used to initialize XGBoost. The merits of hybrid
models include higher accuracy, flexibility, and robust-
ness in handling high-dimensional data (Jalil et al., 2022).
Tables 3 and 4 present the optimal values of the hyperpa-
rameters obtained by different optimization approaches
for dimensional and dimensionless datasets, respectively.

First, the original variables in Eq. (1) are used in
the developed models to estimate the scour depth.
Figure 2 presents the scatter plot of scour depth pre-
dictions from XGBoost, PSO–XGBoost, RFO–XGBoost,
andRPSO–XGBoost versus observations for the training,
validation, and testing stages. The scour depth estima-
tions from all models are close to the 45° line, which
shows that the proposed models can efficiently predict
the scour depth.However, the predictions for larger scour
depths deviate from the 1:1 line in the validation and test-
ing steps, owing to the lower frequency of data in this
range. Scour predictions in the training and validation
phases are better than those in the testing step because
the training and validation data are used in the learning
process.

Table 5 summarizes the performance metrics of the
proposedmodels (i.e. RMSE,MAE, and R2) for the train-
ing, validation, and testing stages.

As expected, XGBoost is the least accurate method
with MAEs of 0.0035, 0.0154, and 0.0228m and RMSEs
of 0.0102, 0.0255, and 0.0434m in the training, vali-
dation, and training stages, respectively. Figure 2 and
Table 5 demonstrate that all three hybrid models are
more accurate than the XGBoost method owing to the
use of optimized hyperparameters. In the training phase,
PSO–XGBoost, RFO–XGBoost, and RPSO–XGBoost
reduce the RMSE of XGBoost by 0.98%. The corre-
sponding RMSE reductions are 2.30%, 2.53%, and 8.29%
for testing and 25.09%, 32.94%, and 40.78% for val-
idation. In terms of the MAE, in the training step,
PSO–XGBoost, RFO–XGBoost, and RPSO–XGBoost
enhance the accuracy of XGBoost by 5.71%, 17.14%,
and 34.28%, respectively. RPSO–XGBoost exhibits the
highest performance with the lowest RMSEs (0.0101,
0.0151, and 0.0398m) and MAEs (0.0023, 0.0104,
and 0.0207m) for the training, validation, and test-
ing phases, respectively, followed by RFO–XGBoost
and PSO–XGBoost. In the training step, the MAEs of
RPSO–XGBoost are 30.30% and 20.68% lower than those
of PSO–XGBoost and RFO–XGBoost, respectively. In
the validation step, RPSO–XGBoost improves the MAE
(RMSE) of PSO–XGBoost and RFO–XGBoost by 21.21%
(40.78%) and 7.96% (11.69%), respectively. A similar
trend of MAE (RMSE) reduction is seen in the testing
stage, where the MAEs (RMSEs) of RPSO–XGBoost are
13.38% (6.13%) and 0.95% (5.91%) smaller than those of
PSO–XGBoost and RFO–XGBoost, respectively. Over-
all, the proposed models can be ranked in the decreas-
ing order of their ability to predict the scour depth
around bridge piers as RPSO–XGBoost, RFO–XGBoost,
PSO–XGBoost, and XGBoost.

Subsequently, the dimensionless parameters in Eq. (2)
are used in the models to estimate dse/Y. Figure 3 com-
pares the dse/Y estimates from XGBoost, PSO–XGBoost,
RFO–XGBoost, and RPSO–XGBoost with observations
for the training, validation, and testing stages.

Figure 3 shows that the scour depth predictions from
all proposedmodels are concentrated around the 45° line,
indicating their satisfactory accuracies. A comparison of
Figs. 2 and 3 demonstrates that all models produce more
reliable results when trained by dimensional data (Eq.
(1)) instead of dimensionless data (Eq. (2)). A possible
explanation for this may be that the use of raw vari-
ables rather than a combination of variables enhances
the flexibility of models in simulating the highly non-
linear relationship between the inputs and output. This
result is in line with those of Bateni et al. (2007a, 2007b)
and Zounemat-Kermani et al. (2009), who reported that
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Table 5. Statistical indicators of scour depth predictions made by the proposed machine learning techniques using the dimensional
variables in Eq. (1).

Training data Validation data Testing data

Method RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2 RMSE (m) MAE (m) R2

XGBoost 0.0102 0.0035 0.9935 0.0255 0.0154 0.8644 0.0434 0.0228 0.9152
PSO–XGBoost 0.0101 0.0033 0.9936 0.0191 0.0132 0.9238 0.0424 0.0239 0.9188
RFO–XGBoost 0.0101 0.0029 0.9936 0.0171 0.0113 0.9392 0.0423 0.0209 0.9191
RPSO–XGBoost 0.0101 0.0023 0.9936 0.0151 0.0104 0.9526 0.0398 0.0207 0.9284

Figure 2. Scatter plot of predicted versus observed scour depth values for the training, validation, and testing phases using XGBoost,
PSO–XGBoost, RFO–XGBoost, and RPSO–XGBoost.

the results of ANN and ANFIS models trained by the
dimensional dataset were superior to the models trained
by dimensionless data.

Table 6 presents a comparison of the predictive
performances of the proposed methods for dse/Y.

The MAEs (RMSEs) of the hybrid models are lower
than those of XGBoost. The best dse/Y estimates are
attributed to RPSO–XGBoost with RMSE = 0.1723,
MAE = 0.0431, and R2 = 0.9765 for training; RMSE =
0.2065, MAE = 0.1354, and R2 = 0.9714 for validation;
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Figure 3. Scatter plot of predicted versus observed dimensionless scour depth (dse/Y) in the training, validation, and testing phases,
derived using XGBoost, PSO–XGBoost, RFO–XGBoost, and RPSO–XGBoost.

Table 6. Statistical indices of (dse/Y) predictions from the proposed methods using the dimensionless variables in Eq. (2).

Training data Validation data Testing data

Method RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

XGBoost 0.1825 0.0763 0.9735 0.4066 0.1832 0.8889 0.3435 0.1712 0.7824
PSO–XGBoost 0.1823 0.0649 0.9736 0.3222 0.1733 0.9302 0.3340 0.1690 0.7945
RFO–XGBoost 0.1765 0.0532 0.9753 0.2452 0.1483 0.9596 0.3301 0.1593 0.7992
RPSO–XGBoost 0.1723 0.0431 0.9765 0.2065 0.1354 0.9714 0.3157 0.1657 0.8164

and RMSE = 0.2065, MAE = 0.1354, and R2 = 0.9714
for testing. For the testing phase, the RMSE of RPSO–
XGBoost is 4.36% and 5.48% lower than those of
RFO–XGBoost andPSO–XGBoost, respectively. XGBoost

has the weakest performance among all proposed
methods with RMSE = 0.1825, MAE = 0.0763, and
R2 = 0.9735 in the training phase; RMSE = 0.4066,
MAE = 0.1832, and R2 = 0.8889 in the validation
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phase; and RMSE = 0.3435, MAE = 0.1712, and R2 =
0.7824 in the testing phase. Table 6 and Figure 3 also
highlight the superiority of all hybrid models over
XGBoost: In the training stage, the MAEs (RMSEs) of
PSO–XGBoost, RFO–XGBoost, and RPSO–XGBoost are
14.94%, (0.11%), 30.27% (3.29%), and 43.51% (5.59%)
lower than that of XGBoost, respectively. Similarly, for
validation data, the MAEs (RMSEs) of PSO–XGBoost,
RFO–XGBoost, and RPSO–XGBoost are lower than
those of XGBoost by 5.40% (20.76%), 19.05% (39.69%),
and 26.09% (49.21%), respectively. These results indi-
cate that PSO, RFO, and RPSO can successfully tune
the hyperparameters of XGBoost, thereby enhancing its
scour depth prediction capabilities. Therefore, the pro-
posed models can be ranked in decreasing order of
their accuracy in predicting dse/Y as RPSO–XGBoost,
RFO–XGBoost, PSO–XGBoost, and XGBoost. This find-
ing is consistent with the previous ranking ofmethods for
scour depth prediction using the dimensional variables in
Eq. (1).

The superiority of RPSO–XGBoost over PSO–
XGBoost and RFO–XGBoost is attributed to several fac-
tors. Firstly, the RPSO technique incorporates relativistic
effects, allowing particles to move at speeds that can
approach the speed of light (Roder et al., 2020). These
relativistic effects enable RPSO–XGBoost to explore the
search space extensively, conducting a more comprehen-
sive and thorough search for optimal hyperparameters
(Roder et al., 2020). Secondly, the relativistic effects in
RPSO facilitate more efficient convergence of particles
towards the global optimum (Roder et al., 2020). The
effective navigation of the complex search space by RPSO
allows RPSO–XGBoost to reveal significant patterns and
dependencies that influence scour depth, resulting in
highly accurate predictions.

Based on testing data, Table 7 compares the per-
formances of the proposed models and 28 existing
techniques. The numbers in parentheses show the per-
centage of increase in the RMSE/MAE and decrease in
R2 compared with those of RPSO–XGBoost, which is
the highest-performing approach developed in this study.
Because the testing data are withheld from the model
in the training and validation steps, they can be used as
an independent data source to perform a fair evaluation
of the final models. The results show that the four pro-
posed methods outperform all the existing approaches.
Among the 28 existing methods, the model proposed by
Shamshirband et al. (2020) achieves the best scour depth
predictions with RMSE, MAE, and R2 of 0.0654, 0.0470,
and 0.8268m, respectively.

Shamshirband et al. (2020) used the PSO algorithm
to develop an explicit equation for estimating scour

depth around circular bridge piers. Their equation was
developed by minimizing the discrepancy between pre-
dicted and observed scour depth values via the PSO
algorithm (Shamshirband et al., 2020). The PSO tech-
nique enhances the capability of their expression to
capture inherent relationships among input and output
data, leading to improved prediction accuracy. Further-
more, the optimization process performed by the PSO
algorithm facilitates the generalizability of the equation
based on the available dataset (Taormina & Chau, 2015).
As a result, their derived equation has the potential to be
applied to a diverse range of scenarios beyond the spe-
cific dataset utilized for its development. The ability to
generalize effectively is of considerable significance for
practical applications.

Other studies in Table 7 mostly used regression
techniques to derive equations for predicting dse. The
traditional regression-based approaches cannot robustly
capture the nonlinearity and complexity among the scour
depth and its influential variables (Ebtehaj et al., 2017).

The RMSE (MAE) of the scour depth estimates
from RPSO–XGBoost is 39.14% (55.95%) lower than
those of Shamshirband et al. (2020). The model pro-
posed by Blench (1969) produces the least accurate
results, with RMSE = 0.7712m, MAE = 0.7463m, and
R2 = 0.1318. On average, RPSO–XGBoost improves the
RMSE and MAE of scour depth predictions by 64.91%
and 70.94% compared with those of the 28 existing
approaches. Figure 4 visually compares the scour depth
estimates from the four proposed models with those
obtained using the model of Shamshirband et al. (2020)
as the highest-performing method among the 28 con-
sidered techniques. Most of the scour depth predictions
obtained using the proposed models are closer to the 1:1
line, which demonstrates their superiority over those of
the model proposed by Shamshirband et al. (2020).

The violin plot in Fig. 5a shows the distribution of
scour depth estimates from RPSO–XGBoost (as the best
proposed model) in comparison with those obtained
using two famous models (i.e. HEC-18 and Sheppard
et al. (2014)) and the best method among the 28 consid-
ered existing methods (i.e. Shamshirband et al. (2020)).
A similar comparison is made for dse/Y in Fig. 5b. In
general, violin plots combine a kernel density plot with a
box plot. Unlike box plots, violin plots can show both the
statistic and density of data, thereby explaining the vari-
ability of data. The small white dot in the violin plots in
Fig. 5 represents themedian of the data. The interquartile
range is presented by a thick black line. The thin black line
indicates the data beyond the interquartile range except
outliers. The shape of the data distribution is shown by
the kernel density approximation on the two sides of the
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Table 7. Comparison of scour depth estimates from XGBoost, PSO–XGBoost,
RFO–XGBoost, and RPSO–XGBoost with those obtained using existing approaches.

Methods RMSE (m) MAE (m) R2

Inglis-Poona I (Inglis,
1949)

0.1272 (68.71%) 0.0892 (76.79%) 0.3617 (156%)

Inglis-Poona II (Inglis,
1949)

0.0921 (56.78%) 0.0609 (66%) 0.7872 (17.93%)

Laursen and Toch
(1956)

0.1009 (60.55%) 0.0580 (64.31%) 0.7522 (23.42%)

Chitale (1962) 0.2090 (80.95%) 0.1220 (83.03%) 0.1002 (826%)
Blench-Inglis I (Blench

et al., 1962)
0.0885 (55.03%) 0.0604 (65.72%) 0.7830 (18.56%)

Blench-Inglis II (Blench
et al., 1962)

0.1423 (72.03%) 0.0791 (73.83%) 0.2343 (296%)

Larras (1963) 0.1000 (60.2%) 0.0668 (69.01%) 0.7158 (29.70%)
Laursern I (Neill, 1964) 0.0926 (57.01%) 0.0634 (67.35%) 0.8727 (6.38%)
Breusers (1965) 0.1018 (60.90%) 0.0552 (62.5%) 0.7334 (26.58%)
Shen et al. (1969) 0.1007 (60.47%) 0.0710 (70.84%) 0.7471 (24.26%)
Blench (1969) 0.7712 (94.83%) 0.7463 (97.22%) 0.1318 (604%)
Shen (1971) 0.0828 (51.93%) 0.0586 (64.67%) 0.7321(26.81%)
Hancu (1971) 0.1051 (62.13%) 0.0714 (71%) 0.5507 (68.58%)
Coleman (1971) 0.1889 (78.93%) 0.1309 (84.18%) 0.7368 (26%)
Neill (1973) 0.1137 (64.99%) 0.0595 (65.21%) 0.7334 (26.58%)
Breusers et al. (1977) 0.1053 (62.20%) 0.0590 (64.91%) 0.5539 (67.61%)
Jain and Fischer

(1979)
0.0784 (49.23%) 0.0566 (63.42%) 0.8561 (8.44%)

Froehlich (1988) 0.1360 (70.73%) 0.0865 (76.07%) 0.8488 (9.37%)
Froehlich design

equation (1988)
0.0924 (56.92%) 0.0560 (63.03%) 0.7832 (18.54%)

Melville and
Sutherland (1988)

0.1388 (71.32%) 0.0854 (75.76%) 0.8706 (6.64%)

Ansari and Qadar
(1994)

0.1827 (78.21%) 0.1307 (84.16%) 0.6828 (35.96%)

Simplified Chinese
equation (Landers
&Mueller, 1996)

0.1283 (68.97%) 0.0678 (69.46%) 0.3873 (139%)

Melville (1997) 0.0984 (59.55%) 0.0566 (63.42%) 0.7633 (21.63%)
Lyn (2008) 0.1739 (77.11%) 0.1090 (81%) 0.1095 (747%)
HEC-18 (Arneson

et al., 2012)
0.0763 (47.83%) 0.0552 (62.5%) 0.8078 (14.93%)

Sheppard et al.
(2014)

0.0742 (46.36%) 0.0471 (56.05%) 0.8443 (9.96%)

Choi et al. (2017) 0.2552 (84.40%) 0.1890 (89.04%) 0.4278 (117%)
Shamshirband et al.

(2020)
0.0654 (39.14%) 0.0470 (55.95%) 0.8268 (12.28%)

XGBoost (this study) 0.0434 0.0228 0.9152
PSO–XGBoost (this

study)
0.0424 0.0239 0.9188

RFO–XGBoost (this
study)

0.0423 0.0209 0.9191

RPSO–XGBoost (this
study)

0.0398 0.0207 0.9284

black line. The wider shape of the violin plot around
the median denotes a high concentration of data in this
region. The tapered shape of the ends of the violin plot
indicates a lower concentration of data in that area.

Figure 5 shows that the median and interquartile val-
ues of the scour depths predicted by the RPSO–XGBoost
are close to the observations, highlighting its high pre-
dictive accuracy. For both dimensional and dimension-
less data, the scour depth estimates from all methods
are clustered around the median, indicating a higher
probability in this region. In the case of dimensional
data, the distribution of scour depth predictions from
RPSO–XGBoost is similar to that of the measurements.
In addition, the interquartile range, range of data, and

median of predictions fromRPSO–XGBoost are closer to
the observations for both dimensional and dimensionless
data, compared with those of Shamshirband et al. (2020),
Sheppard et al. (2014), and HEC-18. A comparison of
Figure 5(a,b) confirms the findings of the previous analy-
ses demonstrating the superiority of scour depth predic-
tions obtained using the dimensional variables in Eq. (1)
over those obtained using the dimensionless variables in
Eq. (2). The upper end of the violin plots for dse/Y pre-
dictions (Figure 5(b)) indicates a higher value than that
of dse/Y measurements because the models overestimate
dse/Y in the case of large values.

To further investigate the ability of the proposedmeth-
ods, the Taylor diagram for scour depth measurements
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Figure 4. Visual comparison of the predictions obtained using the proposedmethods and themethod proposed by Shamshirband et al.
(2020), based on testing data

and estimates is derived, as shown in Figure 6. Tay-
lor diagrams are valuable tools for visualizing results,
as they can graphically summarize several evaluation
metrics, i.e. the SD, correlation coefficient between the
predicted and measured values, and centered RMSE, in
a single plot. Thus, Taylor diagrams can help obtain
reliable conclusions regarding the efficiency of the pro-
posed models. Notably, the statistical indicators shown
in the Taylor diagram in Figure 6 correspond to the
testing data. When using the dimensional dataset, the
proposedXGBoost, PSO–XGBoost, andRPSO–XGBoost
models underestimate the range of scour depth variation,
whereas RFO–XGBoost tends to overestimate the scour

depth variations. When using dimensionless data, all
the proposed methods overestimate the variations in the
scour depth, as indicated by the higher SD comparedwith
the observations (i.e. the values lie beyond the red dashed
curve). Additionally, Figure 6 provides further evidence
of the higher accuracy of proposed models using dimen-
sional variables compared with those using dimension-
less variables, as the correlation coefficient of the former
is more than 0.95 but that of the latter ranges between 0.9
and 0.95. RPSO–XGBoost yields better results for both
input configurations given their higher correlation with
the observations and lower RMSE compared with those
of the other three methods. Furthermore, the variability
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Figure 5. Violin plots comparing the distribution of (top) dimensional dataset and (bottom) dimensionless dataset estimates from
different approaches with measurements.

(represented by SD) of dse and dse/Y predicted by all pro-
posed methods is close to that of the observations. For
both dimensional and dimensionless datasets, the predic-
tions of XGBoost, PSO–XGBoost, RFO–XGBoost, and
RPSO–XGBoost are closer to the scour depth observa-
tions (black triangle in the Taylor diagram) compared
with those obtained using the method of Shamshirband
et al. (2020), Sheppard et al. (2014), and HEC-18 (Arne-
son et al. 2012). Furthermore, the SD of dse/Y predic-
tions from Sheppard et al. (2014) and HEC-18 differs
significantly from the observations, which shows that
these methods cannot accurately predict the variability
in dse/Y.

Figure 7(a,b) show the RMSEs of dse and dse/Y predic-
tions from RPSO–XGBoost (the most accurate method)
under different numbers of iterations, respectively. As
the number of iterations increases, the RMSEs of dse
and dse/Y predictions from RPSO–XGBoost decrease
rapidly to their asymptotes. A learning curve of a
model is considered a good fit (i.e. neither underfit nor

overfit) if it satisfies two conditions: (1) The RMSEs
in the training phase decrease to the final stable value,
and (2) the RMSEs in the validation phase follows
the trend of the training phase with minor differ-
ences. According to Figure 7, the learning behaviour
of the proposed model (RPSO–XGBoost) can be a
good fit.

4.2. Model interpretation

A SHAP analysis is performed to identify the variable
with the most notable contribution to the scour depth
predictions. As mentioned previously, SHAP values not
only allow us to determine the contribution of each vari-
able contributes to the prediction but also to identify
and visualize the significant relationships in the model.
SHAP values can be visualized using various approaches
such as waterfall, force plot, decision plot, mean SHAP
plot, and beeswarm plot. A beeswarm plot aggregates
the SHAP values of all observations to ensure that all
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Figure 6. Taylor diagrams for scour depth estimates from various approaches and observations.

SHAP values can be visualized at once. Figure 8(a,b)
show the beeswarm plots based on RPSO–XGBoost (the
most accuratemodel) for dimensional and dimensionless
variables, respectively.

In this plot, the variables are ordered based on their
importance on the y-axis. The x-axis denotes the mean
SHAP value, and the colour of each point shows the
actual value of that feature (i.e. not the SHAP value).
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Figure 7. Variations in the RMSE of (left) dse and (right) dse/Y predictions from RPSO–XGBoost (the best model in this study) versus the
number of iterations in the training and validation stages.

Thicker parts of the beeswarm plot imply a higher den-
sity of predictions in that region. Figure 8(a) indicates
that for dimensional data, the pier diameter (D) has
the most notable effect on scour depth prediction. The
secondmost influential variable is the flow depth (Y), fol-
lowed by the flow velocity (V), median grain size (d50),
and critical velocity of sediments (Vc). This ranking is
consistent with the study of Bateni et al. (2007a), who
reported that the pier diameter and critical velocity have
the greatest and least impact on the estimation of scour
depth using ANN, respectively. Larger values of the pier
diameter correspond to larger SHAP values, which in
turn yield higher scour depth estimates. A similar pos-
itive relationship is observed for the flow depth and flow
velocity. In contrast, a clear inverse relationship is found
between the scour depth and the median grain size and
critical velocity, both of which are associated with sed-
iment characteristics. These relationships are compati-
ble with the physical nature of the scouring process, as
larger pier diameter, flow depth, and flow velocity result
in higher scour depths, and piers located in riverbeds
with finer sediments and sediments with a lower criti-
cal velocity typically experience larger scour depths. As
outlined in Figure 8(b), the most and least significant
dimensionless variables for predicting dse/Y areD/Y and
Re, respectively. The remaining dimensionless variables
can be listed in decreasing order of their importance as
V/Vc, d50/Y, and Fr. Higher values of D/Y and V/Vclead
to higher dse/Y predictions. Because of certain outliers in
the SHAP values of d50/Y, Fr, and Re, no clear relation-
ship can be concluded between these variables and dse/Y
predictions.

To ensure the physical consistency of scour depth
estimates from ML models, the following multifaceted
approach is essential (Najafzadeh & Oliveto, 2020):
(1) Compare predictions from ML models with those
obtained from established physical models and/or widely
used empirical equations to verify the physical consis-
tency of results (Kollet et al., 2017). In this study, we
met this criterion by comparing the scour depth esti-
mations from XGBoost, PSO–XGBoost, RFO–XGBoost,
and RPSO–XGBoost with those of 28 existing equations
in the literature (see Table 7); (2) Identify the importance
of input features to ensure an alignment with the physical
governing principles. Herein, the SHAP method is used
to find the relative significance of each input feature on
scour depth predictions. The results of SHAP are consis-
tent with those of Bateni et al. (2007a, 2007b), Najafzadeh
and Barani (2011), Sharafi et al. (2016), Ebtehaj et al.
(2019), and Shamshirband et al. (2020); (3) Evaluate the
performance of ML models using unseen data to pro-
vide additional evidence of their physical consistency and
generalization capability. This study assessed the feasibil-
ity of all ML models via the testing dataset. This dataset
is kept hidden from the models during the training and
validation phases. Hence, this study considered all the
criteria to ensure the physical consistency of our results.

5. Conclusions

Three novel hybrid ML methods: PSO–XGBoost, RFO
–XGBoost, and RPSO –XGBoost are applied to esti-
mate the equilibrium scour depth around circular bridge



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 17

Figure 8. SHAP summary plots based on RPSO–XGBoost to rank the significance of each feature in estimating (a) dse and (b) (dse/Y).

piers. A comprehensive laboratory and field dataset con-
taining 841 data points from 35 studies is used to
train, validate, and test the proposed ML methods. The
hyperparameters of the XGBoostmethod are tuned using
three optimization techniques (PSO, RFO, and RPSO).
The proposed models are trained using both dimen-
sional and dimensionless datasets. The results are evalu-
ated using three statistical metrics i.e. the RMSE, MAE,
and R2. All three proposed methods accurately pre-
dict the scour depth. The higher accuracy of the hybrid
models over XGBoost shows that the three optimiza-
tion techniques can efficiently tune the hyperparameters
of XGBoost and enhance its accuracy in scour depth
prediction.

For models trained by dimensional data, RPSO–
XGBoost yields the best scour depth predictions with

RMSE = 0.0101m, MAE = 0.0023m, and R2 = 0.9936
in training; RMSE = 0.0151m, MAE = 0.0104m, and
R2 = 0.9526 in validation; andRMSE = 0.0398m,MAE
= 0.0207m, and R2 = 0.9284 in the testing phrase.
Similarly, for dimensionless data, RPSO–XGBoost pro-
duces the most accurate scour depth predictions with
RMSE = 0.1723, MAE = 0.0431, and R2 = 0.9765 in
training; RMSE = 0.2065, MAE = 0.1354, and R2 =
0.9714 in validation; and RMSE = 0.3157, MAE =
0.1657, and R2 = 0.8164 in testing. Moreover, more
accurate results can be achievedwhen the proposedmod-
els are trained with dimensional data rather than dimen-
sionless data.

The results of the proposed methods are compared
with those of 28 existing methods, and their superior-
ity over the existing techniques is demonstrated. The
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MAE (RMSE) of RPSO–XGBoost (as the best method
from our study) is 55.95% (39.14%) lower than that
of the model proposed by Shamshirband et al. (2020)
(as the best method among the 28 studies). Finally, the
aggregated (SHAP) values of each variable for both
dimensional and dimensionless datasets are used to
determine the parameters, most notably affecting the
scour depth predictions and clarify the input–output
relationships. The SHAP analysis shows that among the
dimensional variables, the pier diameter (D) and critical
velocity (Vc) have the most and least notable effects on
the scour depth estimation, respectively. Higher values
of D, flow depth (Y), and flow velocity (V) yield larger
values of the scour depth, whereas higher median grain
size (d50) and Vc lead to lower values of the scour depth.
SHAP analysis on the dimensionless data shows thatD/Y
and Re have the most and least notable contributions to
dse/Y, respectively.

This finding highlights the marginal impact of Re on
the scour depth around circular bridge piers.
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Table A presents several well-known equations to determine
the depth of scour near bridge piers. In the equations, dse is
the equilibrium scour depth, Y is the flow depth, D is the pier
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Fr is the Froude number.
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Table A1. Well-known equations for the estimation of scour depth around bridge piers

No. Reference Equation

1 Inglis-Poona I (Inglis, 1949) dse = 1.7D0.22 V0.52Y0.52 − Y
All variables are in English units.

2 Inglis-Poona II (Inglis, 1949) dse = 1.73D0.22Y0.78 − Y

3 Laursen and Toch (1956)
dse
Y

= 1.35
(
D

Y

)0.7

4 Chitale (1962)
dse
Y

= 6.65Fr − 0.51 − 5.49Fr2

5 Blench-Inglis I (Blench et al., 1962) dse = 1.8D0.25Y0.75 − Y
All variables are in English units.

6 Blench-Inglis II (Blench et al., 1962) dse = 1.53D0.25V0.5Y0.5d−0.125
50 − Y

All variables are in English units except d50 which is in mm
7 Larras (1963) dse = 1.42KsD0.75

Ks is pier shape factor
All variables are in English units.

8 Neill (1964) dse = 1.5D0.7Y0.3

9 Breusers (1965) dse = 1.4D

10 Shen et al. (1969)
dse
D

= 3.4(Fr)2/3
(
Y

D

)1/3

11 Blench (1969)
dse + Y

Yr
= 1.8

(
D

Yr

)0.25

Yr = 1.48
(
q2

FB

) D
3

FB = 1.9(d50)0.5, d50 in mm, q in

(
m2

s

)

12 Shen (1971) dse = 0.00022
(
VD

ν

)0.619

ν is the kinematic viscosity of water.

13 Hancu (1971)
dse
D

= 2.42
(
2
V

Vc
− 1
)(

V2c
gD

) 1
3

14 Coleman (1971)
V√
2gdse

= 0.6
(
V

D

)0.9

15 Neill (1973) dse = KsD
Ks is pier shape factor.

16 Breusers et al. (1977)
dse
D

= f

(
V

Vc

)[
2 tanh(

Y

D
)

]
K1K2

f

(
V

Vc

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
V

Vc
≤ 0.5

(
2
V

Vc
− 1
)

0.5 <
V

Vc
< 1

1
V

Vc
≥ 1

K1: pier shape factor
K2: pier alignment factor

17 Jain and Fischer (1979)
dse
D

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(Fr − Frc)0.25
(
Y

D

)0.5

(Fr − Frc) ≥ 0.2

1.84Fr0.25c

(
Y

D

)0.3

(Fr − Frc) ≤ 0

max

(
2(Fr − Frc)0.25

(
Y

D

)0.5

, 1.84Fr0.25c

(
Y

D

)0.3
)

0<(Fr − Frc)<0.2

Frc

is critical Froude number.

18 Froehlich (1988)
dse
D

= 0.32KsFr0.2
(
Dp
D

)0.62( Y

D

)0.46( D

d50

)0.08

Ks is pier shape factor, Dp is the projected width of pier.

19 Froehlich design equation (1988)
dse
D

= 0.32KsFr0.2
(
Dp
D

)0.62( Y

D

)0.46( D

d50

)0.08

+ 1

Ks is pier shape factor, Dp is the projected width of pier.

20 Melville and Sutherland (1988)
dse
D

= KdKIKyKαKs

Kd = sediment size coefficient; KI = flow intensity coefficient; Ky = flow shallowness
coefficient; Ks = pier shape coefficient; Kα = pier alignment coefficient

21 Ansari and Qadar (1994) dse =
{

0.024 D3 D < 7.2 ft
2.238 D0.4 D > 7.2 ft

(continued).
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Table A1. Continued.

No. Reference Equation

22 Simplified Chinese equation (Landers & Mueller, 1996) dse = 1.141KsD0.6Y0.15d
−0.07
50

(
V − Vic
Vc − Vic

)

Vic = 0.645
(
d50
D

)0.053

Vc

All variables are in English units, and Ksis pier shape coefficient.
23 Melville (1997) dse = KyDKIKdKsKθ

KyD = depth-size coefficient; KI = flow intensity coefficient; Kd = sediment size
coefficient; Ks = pier shape coefficient; Kθ = pier alignment coefficient

24 Lyn (2008)
dse
Y

= min

[
0.21

(
V
Vc

)2.95

, 0.6

]

25 HEC-18 (Arneson et al., 2012)
dse
Y

= 2K1K2K3(Fr)0.43
(
D

Y

)0.65

K1 = pier shape factor
K2 = flow angle of attack factor
K3 = bed condition factor

26 Sheppard et al. (2014) dse =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.5Df1f2f3 0.4 ≤ V

Vc
< 1

Df1

⎡
⎢⎢⎣2.2

⎛
⎝ V

Vc
− 1

V1p
Vc

− 1

⎞
⎠+ 2.5f3

⎛
⎜⎜⎝

V1p
Vc

− V

Vc
V1p
Vc

− 1

⎞
⎟⎟⎠
⎤
⎥⎥⎦ 1 ≤ V

Vc
≤ V1p

Vc

2.2Df1
V

Vc
>

V1p
Vc

V1p = max
(
5Vc ; 0.6

√
gY
)

f1 = f

(
Y

D

)

f2 = f

(
V

Vc

)

f3 = f

(
D

d50

)

27 Choi et al. (2017)
dse
D

= 9.694Ks

(
V√
gD

)0.64( Y

D

)0.056( d50
D

)0.082( V

Vc

)1.53

28 Shamshirband et al. (2020)
dse
Y

= 0.893(Fr)1.016
(
D

Y

)0.625( d50
Y

)−0.262( V

Vc

)−0.836
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