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Abstract: The reliability and safety of advanced driver assistance systems and autonomous vehi-
cles are highly dependent on the accuracy of automotive sensors such as radar, lidar, and camera.
However, these sensors can be misaligned compared to the initial installation state due to external
shocks, and it can cause deterioration of their performance. In the case of the radar sensor, when the
mounting angle is distorted and the sensor tilt toward the ground or sky, the sensing performance
deteriorates significantly. Therefore, to guarantee stable detection performance of the sensors and
driver safety, a method for determining the misalignment of these sensors is required. In this paper,
we propose a method for estimating the vertical tilt angle of the radar sensor using a deep neural
network (DNN) classifier. Using the proposed method, the mounting state of the radar can be
easily estimated without physically removing the bumper. First, to identify the characteristics of
the received signal according to the radar misalignment states, radar data are obtained at various
tilt angles and distances. Then, we extract range profiles from the received signals and design a
DNN-based estimator using the profiles as input. The proposed angle estimator determines the tilt
angle of the radar sensor regardless of the measured distance. The average estimation accuracy of the
proposed DNN-based classifier is over 99.08%. Therefore, through the proposed method of indirectly
determining the radar misalignment, maintenance of the vehicle radar sensor can be easily performed.

Keywords: automotive radar; deep neural network; frequency-modulated continuous wave radar;
misalignment; tilt angle

1. Introduction

With the growing interest in autonomous driving systems, demand for automotive sen-
sors, such as radar, lidar, and camera, is also increasing [1]. Radar, short for radio detection
and ranging, employs electromagnetic waves to detect targets and estimate the range and
velocity information of targets [2]. The radar system transmits the electromagnetic waves
via transmitting antenna elements and receives the returning echo signal from the target
through receiving antenna elements. This echo signal is then processed to extract the infor-
mation about the target, such as its range and velocity. Similarly, lidar, an acronym for light
detection and ranging, is a sensor that uses pulsed laser light to estimate the range of the
targets [3]. While it shares the capability with radar to determine the range and velocity of
the targets, lidar distinguishes itself by using light waves instead of electromagnetic waves.

These sensors provide various functions for driver assistance systems and driver safety,
including advanced cruise control, collision damage mitigation, and pre-crash safety [4–8].
For the effective functioning of these sensors, a proper calibration process is required. In
general, parameters to be considered for calibration are divided into intrinsic and extrinsic
calibration parameters [9–11]. For radar sensors, intrinsic calibration includes the parame-
ters needed for precise determination of the target’s range, velocity, and angle of arrival.
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These parameters can involve such as the distance between antennas, phase and gain mis-
match, and characteristics of the chirp signal. On the other hand, the extrinsic calibration
parameters include the radar’s translation and rotation parameters, which specify the radar
mounting position and angle from the initially mounted reference point [12,13].

In the case of automotive sensor, the initial alignment may be distorted due to various
external shocks and continuous vibration of the vehicle while driving [14]. In particular,
because the radar sensor detects targets using radio waves if the vertical mounting angle is
tilted and the transmitted signal is directed toward the ground or sky, sensing performance
can be degraded [15]. Therefore, maintaining the initial alignment condition of the radar
sensor is essential to guarantee the stable detection performance of the radar. In general,
to discriminate the mounting state of the automotive radar sensor, the bumper should
be removed to check the mounting state directly, which involves a lengthy process and
incurs high expenses. Thus, an indirect method of determining the radar mounting state
and estimating the radar misalignment angle is needed. Therefore, in this paper, we
propose a method to indirectly determine the misalignment of vehicle radar for ease of
post-vehicle maintenance.

Several studies have been conducted to indirectly estimate the misalignment of various
automotive sensors. In [16], authors proposed a method to estimate the misalignment
of lidar by applying a nonlinear least square optimization method with the Levenberg-
Marquardt algorithm. The authors in [17] estimated the yaw misalignment of an inertial
measurement unit in a vehicle using onboard sensors and the Kalman filter. Also, in [18],
the authors employ the one-dimension Kalman filtering method to estimate the correction
value for each sector individually. Subsequently, this correction value was utilized to rectify
the horizontal misalignment of the radar sensor. Moreover, in the case of the radar sensor,
the authors in [19] proposed a method of estimating the angle of horizontal misalignment
of the radar through a stationary target while driving the vehicle. The authors in [20] also
estimate the angle of horizontal misalignment through a straight stationary reference (i.e.,
guardrail). On the other hand, the authors in [21] estimate the vertical misalignment angle
by using the received signal of the radar. They extracted features representing the statistical
characteristics of the distribution, such as the mean, variance, variance coefficient, kurtosis,
skewness, and maximum value of the received signal, and then applied the principal
component analysis [22] and the k-nearest neighbors algorithm [23].

In addition, studies applying deep learning in the field of radar signal processing
are being actively conducted [24]. In automotive radar signal processing, deep learning
is mainly applied for target detection or classification [25–29]. The authors in [26] use
range-Doppler maps as input of the deep learning network for target detection. For target
classification, images of the micro-Doppler spectrogram were used as input of the DNN
in [27] and authors in [28] use both range-Doppler map and Doppler-time map as input.
Moreover, it can be applied in a variety of ways in the radar signal processing, such as
mitigating interference [30] or estimating the angle of arrival [31].

In this paper, we propose a deep neural network (DNN)-based classifier to estimate the
vertical misalignment angle of the frequency-modulated continuous wave (FMCW) radar
sensor by measuring the signal strength of a specific target at a specific distance. First, we ob-
tain radar data according to various vertical tilt angles (e.g., −45◦, −30◦, −15◦, 0◦, 15◦, 30◦,
45◦) while changing the measurement distances. Then, range profiles are extracted from
the acquired radar sensor data and they are used as inputs for training the DNN-based
classifier. In the end, by adjusting the number of hidden layers in the DNN and the nodes
used in each layer, we select a structure that shows the highest accuracy with minimal
computation for our proposed misalignment angle estimator.
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In summary, the major contributions of our work can be summarized as follows:

• The misalignment angle of the radar sensor can be estimated through the proposed
DNN-based classifier.

• Unlike previous methods that directly check the radar mounting state by overhauling
the bumper, the proposed method can indirectly estimate the radar misalignment
angle.

• Compared with [21], the proposed DNN-based estimation method does not specifically
require the step of selecting appropriate features.

• The proposed DNN-based estimation method shows higher accuracy than feature-
based machine learning methods such as decision tree.

The remainder of this paper is organized as follows. In Section 2, we describe the basic
principles of the FMCW radar system. Then, in Section 3, the measurement environment
and the characteristics of range profiles acquired in the environment are described. In
Section 4, a DNN-based classifier for estimating the tilt angle is proposed and also its
estimation performance is evaluated. Finally, concluding summaries are drawn in Section 5.
The holistic pipeline of our proposed method is shown in Figure 1.

Figure 1. Holistic pipeline of proposed method to estimate misalignment state.

2. Signal Model in FMCW Radar System

The FMCW radar system, which is mainly used in automotive radar systems, con-
sists of transmit antenna elements (Tx), receiving antenna elements (Rx), waveform gen-
erator (WG), voltage-controlled oscillator (VCO), frequency mixer (FM), low-pass filter
(LPF), analog-to-digital converter (ADC), and digital signal processor (DSP), as shown in
Figure 2 [32]. The waveform generator generates a transmission signal with a frequency
that linearly changes over time as shown in Figure 3. The i-th (i = 1, 2, ..., Nc) chirp in the
transmitted waveform can be expressed in time-domain as

si(t) = Ai cos
(

2π fct + π
B
Tc

t2
)

((n − 1)Tc ≤ t ≤ nTc), (1)

where Ai, fc, B, and Tc represent the amplitude, center frequency, bandwidth, and duration
of each chirp, respectively.
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Figure 2. General block diagram of the FMCW radar system.

Figure 3. Transmitted signal in the FMCW radar system: form of repetitive chirp signal [33].

Then, the sum of received signals reflected from the k-th target (k = 1, 2, . . . , K) is
expressed as follows:

sr(t) =
K

∑
k=1

Ar, k cos
{

2π( fc + fd, k)(t − t0, k) + π
B
Tc

(t − t0, k)
2
}

((n − 1)Tc + t0, k ≤ t ≤ nTc),

(2)

where Ar, k represents the received signal strength. In addition, fd, k =
2Vk fc

c is the Doppler
frequency caused by the velocity of the k-th target and t0, k =

2Rk
c is the time delay caused by

the distance between the k-th target and the radar, where Rk, Vk, and c denote the distance
to the k-th target, velocity of the k-th target, and the speed of light, respectively.

Then, the received signal is passed through a frequency mixer along with the trans-
mitted signal. After passing through a low-pass filter, the output of the mixer yields an
in-phase (I) baseband signal, which can be expressed as

sd, I(t) =
K

∑
k=1

Ai Ar, k
2

cos
{

2π

(
B
Tc

t0, k − fd, k

)
t + 2πt0, k fc

}
((n − 1)Tc + t0, k ≤ t ≤ nTc). (3)

The signal of (3) is passed through an analog-to-digital converter and the discrete-time
signal can be expressed as follows:

sd, I [n] =
K

∑
k=1

Ai Ar, k

2
cos

{
2π

(
B
Tc

t0, k − fd, k

)
nTs + 2πt0, k fc

}
(n = 0, 1, . . . , N − 1),

(4)
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where Ts is the sampling period and N is the number of time samples. In addition, a
quadrature (Q) baseband signal can be obtained by applying the same process with a 90◦

phase-shifted transmitted signal, which can be expressed as

sd, Q[n] =
K

∑
k=1

Ai Ar, k

2
sin

{
2π

(
B
Tc

t0, k − fd, k

)
nTs + 2πt0, k fc

}
(n = 0, 1, . . . , N − 1).

(5)

The final IQ baseband signal can be obtained by combining the two signals of (4) and (5),
which can be expressed as

sd[n] =sd, I [n] + jsd, Q[n]

=
K

∑
k=1

At Ar, k

2
exp

[
j2π

{(
B
Tc

t0, k − fd, k

)
nTs + t0, k fc

}]
(n = 0, 1, . . . , N − 1).

(6)

The distance to the target can be estimated from the frequency of (6) [33]. Thus, the
fast Fourier transform (FFT) is applied to extract the frequency and the frequency-domain
baseband signal can be expressed as

Sd[m] =
N−1

∑
n=0

sd[n] exp
(
−j2πmn

N

)
(m = 0, 1, . . . , N − 1), (7)

where m indicates the frequency index in the frequency-domain. The magnitude of the
baseband signal in the frequency-domain is defined by the range profile. In general, the
time delay of wave propagation due to the distance between the radar and the target (i.e.,
B
Tc

t0,k) is much larger than the Doppler shift (i.e., fd,k). Therefore, the Doppler shift can be
ignored. When the frequency corresponding to the peak value from the result of the FFT is
denoted as f̂k, the distance between the radar and the target can be obtained as follows:

Rk = f̂k ×
Tcc
2B

. (8)

3. Measurement and Analysis for FMCW Radar Sensor Data

In this section, we describe our experimental setup and analyze the obtained radar
data. First, we describe the specifications of the radar system and our experimental
environment. Then, we analyze how the received radar signals are affected by the tilt angle
in the range profile.

3.1. Measurement Environment

In our measurements, we obtained radar data using an AWR1642BOOST board manu-
factured by Texas Instruments [34]. We used the AWR1642BOOST board connected with
a DCA1000EVM, as shown in Figure 4. The radar sensor uses a center frequency and a
bandwidth of 77 GHz and 3 GHz, respectively. In addition, a total of 128 chirps are used
and 256 time samples are taken from each chirp. Also, the chirp duration is 160 µs and
the frame time corresponding to one signal processing cycle is 20.48 ms. In this measure-
ment environment, 1 transmit antenna and 4 receiving antenna elements are used. The
specifications of the radar used in the measurement are summarized in Table 1.
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Figure 4. AWR1642BOOST and DCA1000EVM manufactured by Texas Instruments.

Table 1. Specifications of the FMCW Radar Sensor Used in the Measurement.

System parameter Value

Center frequency, fc 77 GHz
Bandwidth, B 3 GHz

Chirp duration, Tc 160 µs
The number of chirps, Nc 128

The number of time samples, N 256
Sampling frequency, fs 10 MHz

Frame time, Tf 20.48 ms
Range resolution, Rres 0.1172 m

Maximum detectable range, Rmax 29.9972 m
The number of transmit antenna element, NT 1

The number of receiving antenna elements, NR 4

With this radar system, we obtained the radar sensor data from various tilt angles
while changing the measurement distances, which is shown in Figure 5. As shown in
Figure 5, the radar sensor is positioned behind the target, and the sensor data are obtained
by adjusting the tilt angle of the radar. Furthermore, the radar sensor is positioned 0.6 m
above the ground, corresponding to the typical installation height of an automotive radar
sensor at the vehicle bumper. Then, the sensor data are measured according to elevation
angles ranging from −45◦ to 45◦ at measurement distances of 1 m, 2 m, and 3 m between
the target and the radar. The angular interval is set to 15◦ to obtain data for 7 different tilt
angles for each measurement distance.

A steel trihedral corner reflector with a side length of 20 cm and two vehicles are used
as targets. First, the range profiles according to the measurement angles and distances are
obtained using a corner reflector. Based on the acquired corner reflector data, the input of
the proposed vertical tilt angle estimator is determined and the structure of the DNN is
designed. Then, the measurement results on the actual vehicles are used for training and
verification of the proposed DNN along with corner reflector data. Measurement scenarios
are summarized in Table 2.
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Figure 5. Examples for radar signal measurements: (a) 0◦ (reference angle), (b) tilted at a negative
angle, and (c) tilted at a positive angle.

Table 2. Summary of Measurement Scenarios.

Target Measurement distance Tilt angle

Trihedral corner reflector 1 m, 2 m, 3 m −45◦, −30◦, −15◦, 0◦,
15◦, 30◦, 45◦

Mercedes-Benz CLA 1 m, 2 m, 3 m −45◦, −30◦, −15◦, 0◦,
15◦, 30◦, 45◦

Chevrolet Spark 1 m, 2 m, 3 m −45◦, −30◦, −15◦, 0◦,
15◦, 30◦, 45◦
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3.2. Analysis of Range Profiles

The range profiles according to various tilt angles for corner reflector are shown in
Figure 6. Figure 6a shows the comparison of range profiles of 0◦, 15◦, 30◦, and 45◦ tilt angles
when the measurement distance is 2 m. As shown in the figure, the peak values occur
around 2 m where the target is located. Moreover, there is a gradual decrease in the average
magnitude of the range profile as the tilt angle increase. Figure 6b shows the range profiles
for negative tilt angles, and even in this case, the peak values occur around 2 m and the
average magnitude decreases as the angle deviates from 0◦. In addition, Figure 7 shows
the comparison of range profiles according to the measurement distances. In both cases
where the tilt angles are 0◦ and 30◦, the peak values gradually decrease as the measurement
distance increases from 1 m to 3 m.
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Figure 6. Range profiles according to various tilt angles: (a) a radar mounted at positive angles and
(b) a radar mounted at negative angles.
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Figure 7. Range profiles according to the measurement distances: the tilt angles are (a) 0◦ and (b) 30◦.

4. Proposed DNN-Based Tilt Angle Estimation Method
4.1. Input Vector Generation for Training

As mentioned in Section 3.2, the range profile includes the signal strength information
according to the radar tilt at each measurement distance. Thus, we propose to use the
range profile as an input for the DNN-based tilt angle estimator. Because we detect a target
at a certain distance and discriminate the misalignment angle of the radar sensor, using
the full-range profile as the input vector of the DNN may reduce efficiency. Therefore, for
efficient tilt angle estimation, it is necessary to extract the input vector including the signal
component for the target instead of the entire range.
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Figure 8 represents the range profiles including the signal component of the target.
Figure 8a shows the range profile cropped based on the measured distance of the target
around 3 m. In this case, the signal component representing a detection result for the target
around 3 m is not fully included and is cut off based on the peak. Figure 8b shows a range
profile between 0 and 4 m, where the signal components representing the detection result
for all three targets are presented. Figure 8c, which shows a range profile between 0 and
15 m, also includes the signal components representing the detection result for all three
targets, but in this case, many unnecessary signal components are included. Thus, for
efficient radar sensor misalignment angle estimation, it is appropriate to use a range profile
between 0 and 4 m as shown in Figure 8b. As shown in Table 1, the range resolution in our
measurement environment is 0.1172 m, so the total length of the input vectors is set to 34
(i.e., 0.1172 × 34 = 3.9848).
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Figure 8. Range profiles for the input of the proposed DNN-based classifier: between (a) 0 m and
peak of the furthest target, (b) 0 and 4 m, and (c) 0 and 15 m.

After that, we define the training and test datasets to be used in training the proposed
DNN-based classifier and validating its performance. In our measurements, 100 frames of
data were obtained with 4 different channels. The range profiles are not exactly identical
due to the phase difference that exists between each channel (i.e., NT × NR). Thus, the data
set consisting of a total of 400 range profiles was obtained for each specific tilt angle and
measured distance. As a result, the data set consisting of a total of 8400 range profiles were
generated with 7 tilt angles and 3 measurement distances for each target. Finally, we split
the training and test data into 7200 and 1200 range profiles.
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4.2. Proposed DNN-based Misalignment Angle Estimator

In this section, we design a DNN-based classifier for estimating the misalignment
angles from −45◦ to 45◦ with 15◦ intervals based on the vectors extracted from the range
profiles. In other words, the proposed DNN outputs one value out of seven angles (i.e.,
−45◦, −30◦, −15◦, 0◦, 15◦, 30◦, and 45◦) regardless of measured distance when the input
vector passes through the proposed DNN. In general, the DNN for classification consists of
an input layer, hidden layers, an output layer, and a softmax layer [35]. We used a total of
34 nodes in the input layer to match the size of the input vector. In addition, the output
layer consists of nodes corresponding to 7 tilt angles, and the softmax layer converts the
values calculated at the output layer into the form of probability. As a result, the highest
probability value represents the estimated tilt angle for the corresponding input vector.

To determine the appropriate number of hidden layers and the nodes used in each
layer, we evaluated the estimation performance by varying the number of those hyper
parameters. In addition, we estimated the training time of the deep neural network while
varying the hyper parameters. Figure 9 shows the training time and the estimation accuracy
of each different hyper parameter. For example, in the case of using one hidden layer, we
increased the number of nodes in the hidden layer from 1 to 34, which is the same size as
the input data, and marked the corresponding accuracy and training time for each case
with blue dots. Even when two or three hidden layers were used, the number of nodes used
for each hidden layer was set to a minimum of 1 and a maximum of 34. In other words,
when two hidden layers are used, a total of 1156 (i.e., 34 × 34) structures are generated,
and in the case of three hidden layers, a total of 39304 (i.e., 34 × 34 × 34) structures are
generated.

In terms of training time, the case of using one hidden layer has an advantage over
the case of using two hidden layers, but when only one hidden layer is used, the maximum
accuracy is 90.83%, which is 8.25%p lower than the case of using two hidden layers. In
addition, if three hidden layers are used, the maximum accuracy is only slightly higher than
when using two hidden layers, with a difference of less than 1%p. However, the training
time required for the network with three hidden layers increases by more than 10%, which
may not be worth the marginal improvement in accuracy. Therefore, we decided to utilize
the highest accuracy DNN classifier structure with two hidden layers to determine the
vertical tilt angle of the automotive radar. The structure with the highest accuracy uses
11 nodes for the first hidden layer and 28 nodes for the second hidden layer, as shown in
Figure 10.
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Figure 9. Estimation accuracy and training time in terms of the number of hidden layers and the
number of nodes: (a) with one hidden layer, (b) two hidden layers, and (c) three hidden layers.
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Figure 10. Proposed DNN structure for vertical tilt angle estimation considering accuracy
and complexity.

4.3. Performance Evaluation

First, when a new radar signal is received, the FFT is applied to obtain the range
profile in the frequency-domain. Then, an input vector of length 34 containing all signal
components for the target is acquired and utilized as an input for the proposed DNN-
based classifier, as shown in Figure 10. Finally, the proposed deep learning-based classifier
generates a final estimate of one of the seven tilt angle values regardless of the measured
distance. Table 3 shows the estimation performance of the proposed DNN classifier. For
our test datasets, the estimation accuracies of the trihedral corner reflector, CLA, and Spark
were 99.25%, 99.33%, and 98.67%, respectively. Overall, the proposed misalignment angle
estimator showed an average estimation accuracy of 99.08%. In addition, Figure 11 shows
the confusion matrices for the tilt angle estimation accuracy of each of the three targets. As
shown in Figure 11, the accuracy of determining the initial mounting condition (i.e., 0◦)
and the misalignment condition is 100% for all targets.

Table 3. Radar Tilt Angle Estimation Performance of Each Target.

Target Estimation Accuracy

Trihedral corner reflector 99.25%
Mercedes-Benz CLA 99.33%

Chevrolet Spark 98.67%
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Figure 11. Confusion matrices for the tilt angle estimation using the proposed DNN-based classifier:
(a) trihedral corner reflector, (b) CLA, and (c) Spark.

Moreover, the performance comparison was conducted using the decision tree [36],
which is widely known as a feature-based machine learning algorithm for classification
tasks. The same input vectors, as shown in Figure 8b, were used as input for the decision
tree. The estimation results using the decision tree are shown in Figure 12, which are the
confusion matrices using decision tree. In this case, the tilt angle estimation accuracy of
each of the three targets is 93.8%, 94.1%, and 99.6%, respectively, showing an average
estimation accuracy of 95.83%. In addition, the accuracy of distinguishing between the
initial mounting state and the misalignment state is 98.25, 98.58%, and 99.92% for each
target. Therefore, the proposed DNN-based estimation technique is more efficient than the
feature-based machine learning method.



Sensors 2023, 23, 6472 14 of 16

Figure 12. Confusion matrices for the tilt angle estimation using decision tree: (a) trihedral corner
reflector, (b) CLA, and (c) Spark.

5. Conclusions

In this paper, we proposed an efficient method for estimating the vertical misalignment
state of automotive radar system by using the DNN-based classifier. The signal received
through the automotive FMCW radar was converted into a range profile and used as
the input. Then, we extracted input vectors containing signal components between 0
and 4 m where the target exists and passes them through the proposed DNN. Finally,
the DNN estimates the misalignment angle from the input vector. When evaluating the
performance with the acquired radar datasets, the proposed DNN-based misalignment
angle estimator classified the sensor data for 7 tilt angles with an average accuracy of 99.08%
regardless of the measurement distance. In addition, our proposed method showed 100% of
misalignment condition discrimination accuracy. Furthermore, we compared the estimation
performance with other feature-based machine learning algorithm and confirmed that our
proposed method is superior. This suggests that the proposed DNN-based estimator can
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be used to effectively detect the misalignment of the automotive radar system with a
simple inspection that does not require a professional technician and avoids the need
for disassembling the vehicle. However, as the proposed method uses data measured at
15 degree intervals, it is possible to determine the misalignment condition, but there is a
limit to precisely estimating the radar mounting angle. Therefore, future work through
data measured at smaller angular intervals should be conducted.
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