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ABSTRACT In this paper, we present a deep neural network aimed at enhancing the resolution of
range-Doppler (RD) maps in frequency-modulated continuous wave radar systems. The proposed deep
neural network consists of an U-net-based generator and a discriminator. The low-resolution (LR) RD map
is processed through the generator, resulting in a super-resolution (SR) RD map. Then, the discriminator
compares the SR RD map obtained from the generator with ground truth high-resolution (HR) RD map.
Finally, the generator continuously trains until the loss between the two RD maps is minimized. The
efficacy of the proposed method has been verified through simulations and real-world measurements. When
compared with the ground truth HR RD map, the generated SR RD map by proposed method showed
only 5.24% increase in pixel-wise mean squared error and a 0.477% decrease in peak signal-to-noise ratio.
Through the proposed method, target detection and tracking performance can be improved by efficiently
operating radar resources.

INDEX TERMS Frequency-modulated continuous wave (FMCW), generative adversarial network (GAN),
range-Doppler (RD) map, super-resolution (SR).

I. INTRODUCTION
Recently, the frequency-modulated continuous wave
(FMCW) [1] has become the most commonly used wave-
form in automotive radar systems. The FMCW radar system
determines the maximum detectable range, velocity, range
resolution, and velocity resolution based on the time and
frequency resources used. In other words, the radar system’s
target detection performance depends on its bandwidth or
the number of chirps used, which are referred to as radar
resources. For example, the range resolution depends on the
bandwidth used by the waveform, and the velocity resolution
depends on the frame time [2]. Because the chirp duration
is constant, using more chirps can lead to a longer frame
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time. Therefore when more chirps are used in one frame,
the velocity resolution of the target increases, but the number
of frames that can be obtained is reduced. Conversely, if the
frame time is shortened by reducing the number of chirps,
more frames can be obtained, but the velocity resolution of
the target decreases.

In this study, we propose a deep neural network to enhance
the velocity resolution of the targets in range-Doppler (RD)
maps obtained with the FMCW radar systems. The low-
resolution (LR) RD map is defined as the RD map generated
using a small number of chirps. The deep learning network
aims to increase the velocity resolution of these RD maps as
if more chirps were used. To accomplish this, we first create
a database of LR RD maps that use fewer radar resources.
Meanwhile, we also create a database of ground truth
high-resolution (HR) RDmaps that use more radar resources.
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Then, we design a generative adversarial network (GAN) [3]-
based network to transform the LR RD map into a super-
resolution (SR) RDmap. In general, the structure of the GAN
consists of two main parts: a generator and a discriminator.
When the generator receives input data of noise vector or
arbitrary form, it converts the input into the data desired by
the user. On the other hand, the discriminator numerically
compares the generated data with the ground truth data to
determine how similar the generated data is. After all, the
training objective of the GAN is to make the generated
data very similar to ground truth data, making the two data
indistinguishable.

Some studies have been conducted to improve the reso-
lution of the radar data by applying the deep neural network.
For example, the Dense U-Net, which consists of convolution
layers and skip connections, is used to enhance the resolution
of weather radar data in [4]. In [5], authors proposed the mod-
ified residual deep neural network to enhance the direction-
of-arrival resolution. In [6], authors proposed a noise-free
GAN to suppress the noise and enhance the overall resolution
in synthetic aperture radar images. Also, the GAN-based
network for medical image translation, which consists of
a CasNet generator and a patch discriminator, was used to
enhance the resolution in the time-velocity plane (i.e., micro-
Doppler signature) [7] and range-angle plane in [8]. In [9],
a radar-SRGAN using a radar coordinate transfer module
and a digital beam-forming method was proposed to improve
the resolution in the range-angle plane. Moreover, a deep
mutual GAN consisting of two generators and one discrim-
inator was used to enhance the angular resolution in the radar
system [10].

In our study, we employed the pix2pix [11]-based SR
image generation algorithm to enhance the image resolution.
Previous studies in the generation of LR radar data have
utilized 20-50% of the available radar resources. Our method
utilized only 12.5% of the chirps in one frame to produce
the LR data. This highlights that our method can achieve
a comparable enhancement of the resolution by utilizing a
smaller amount of radar resources. In addition, our method
does not require additional processing steps when generating
low-resolution images or using them as input for deep neural
network. Furthermore, the U-Net [12] structure, which can
show comparable results with a relatively small dataset, was
used as a pix2pix-based generator. Thus the training time can
be shortened.

Finally, the proposed network’s performance is evaluated
through simulations and actual radar signal measurements.
The SR RD map generated by the proposed network is com-
pared with the ground truth HR RD map generated using
more radar resources. Additional experiments are conducted
to verify the effectiveness of the proposed method in terms
of radar resource operation. Through the proposed method,
the number of frames that can be measured during the same
time interval increases so that the trajectory of the target can
be tracked more effectively.

FIGURE 1. Signal transmitted from the FMCW radar system.

In summary, the major contributions of our work can be
summarized as follows:
• Unlike the methods proposed in [8] and [9], our method
uses less radar resources and does not require addi-
tional processing steps when generating low-resolution
or high-resolution radar data.

• In contrast to the approach proposed in [10], which
utilizes a deep learning network to increase resolution
in the range-angle plane, our method employs a simple
structure to enhance resolution in the range-Doppler
plane through the use of deep learning.

• Because the same effect as using many chirps can be
obtained even with smaller number of chirps, the frame
time in radar can be shortened, and thus, the trajectory
of a target can be identified efficiently during the same
time period.

The remainder of the paper is organized as follows.
In Section II, we introduce a conventional RD map gener-
ation method in the FMCW radar system. Then, the GAN-
based deep learning network for generating SR RD maps
is presented in Section III. Next, in Section IV, the perfor-
mance of the proposedmethod is verified through simulations
and actual measurements. Finally, we conclude this paper
in Section V.

II. RD MAP GENERATION IN FMCW RADAR SYSTEM
In this section, we describe the basic principles of generating
RD maps in FMCW radar systems. In addition, we introduce
a conventional HR RD map generation method for building a
ground truth HR RD map database.

A. BASIC RD MAP GENERATION IN FMCW RADAR SYSTEM
Because the FMCW can simultaneously obtain range and
velocity information of targets, it has been widely used in
automotive radar systems in recent years [1]. As shown in
Fig. 1, a total ofNc chirps are transmitted sequentially. In each
chirp, the frequency linearly increases over a constant time
interval called the chirp duration. In Fig. 1, fc and B represent
the carrier frequency and operating bandwidth of the wave-
form, respectively. In addition, the entire transmission period,
which is expressed as Tf in the figure, is defined as one frame.
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FIGURE 2. Block diagram of the FMCW radar system.

Fig. 2 shows the overall block diagram of the FMCW radar
system. The FMCW radar system is composed of a waveform
generator, a voltage-controlled oscillator (VCO), amplifiers,
signal mixers, transmitting and receiving antennas (Tx and
Rx), a 90◦ phase shifter, frequency mixers, low-pass filters
(LPFs), an analog-to-digital converter (ADC), and a digital
signal processor. Let us assume that a total of L targets are
located in the field of view of the radar system. Also, let Rl
and vl represent the relative distance to the l-th target and
the relative velocity of the l-th target, respectively. When the
signal transmitted from the radar is reflected by the l-th target
and then returned to the radar, the time delay component is
added to the received signal due to the relative distance Rl .
In addition, the Doppler shift, which can be expressed as
fd = 2vl fc/c, is added to the received signal due to the relative
velocity vl , where c denotes the speed of light.

As shown in Fig. 2, the received signal passes through the
amplifier to compensate for the path loss in the receiving
process, and is converted into a baseband signal by frequency
mixer and the LPF. Finally, the signals passed through the
LPF are sampled at the ADC. The signal after passing through
the ADC can be expressed as

T [s, c] =
L∑
l=1

Al exp
(
j2π

(
2RlB
c1t

s

+fdTf c+
2fcRl
c

))
, (1)

where Al denotes the amplitude of the baseband signal corre-
sponding to the l-th target. In addition, s (s = 1, 2, . . . , Ns)
and c (c = 1, 2, . . . , Nc) in (1) denote the index of time
samples in each chirp and the index of each chirp.

Then, the time-sampled signal in (1) can be expressed
as a two-dimensional (2D) matrix, as shown in Fig. 3. The
ranges and theDoppler frequencies formultiple targets can be
obtained by applying the Fourier transform (FT) to the time-
sampled baseband signal. For example, the range information
of the target can be extracted by applying the FT to the
sampling axis (i.e., s-axis). In addition, the Doppler shift
by the target can be estimated by applying the FT to the
chirp axis (i.e., c-axis). To summarize, applying the 2D FT to
(1), the relative distance and velocity information of multiple
detected targets can be obtained simultaneously [13].

FIGURE 3. The basic process of generating the RD map.

The 2D FT for (1) can be expressed as

U [d, v] =
1

NsNc

Ns−1∑
s=0

Nc−1∑
c=0

T [s, c]

× exp
(
−j2π

(
s
Ns
d +

c
Nc
v
))

. (2)

In this work, we define the absolute value of U [d, v]
(i.e., |U [d, v]|) as a RD map. In general, the range resolution
of the FMCW is inversely proportional to the bandwidth
(Rres ∝ 1

B ) [14] and the velocity resolution is inversely
proportional to the number of chirps (Vres ∝ 1

Tf
).

B. CONVENTIONAL HR RD MAP GENERATION
In the radar system, HR frequency estimation algorithms
can be used to obtain HR RD maps. In this study, we use
spectrum-based frequency estimation algorithms, such as the
conventional beam-forming algorithm (i.e., Bartlett) [15] and
the multiple signal classification (MUSIC) algorithm [16].
The Bartlett algorithm finds a weight vector of received
signal that maximizes the signal strength while keeping the
noise component constant in terms of the signal-to-noise
ratio (SNR). Meanwhile, the MUSIC, which is one of the
subspace-based algorithms, uses the orthogonality between
the signal subspace and the noise subspace.

Both of these methods use the correlation matrix of the
received signal, and the correlation matrix for generating a
HR RD map can be expressed as

RCn = (FC (T [s, c]))Hn (FC (T [s, c]))n (3)

or

RSn = (FS (T [s, c]))Hn (FS (T [s, c]))n. (4)

In (3) and (4), F(·) and (·)H represent one-dimensional (1D)
FT and hermitian operator, respectively. In addition, the
superscript of F(·) represent the axis to where the FT is
applied, as shown in Fig. 4 (a). If the correlation matrix of
(3) is used, HR target detection on the range axis is possible.
On the other hand, HR target detection on the Doppler axis is
possible by using the correlation matrix of (4).
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1) HR RD MAP GENERATION USING BARTLETT METHOD
First, we describe how to generate a HR RDmap with respect
to the chirp axis. Before calculating the correlation matrix as
written in (4), 1D FT is performed on the sampling axis to the
data obtained in (1). Then, the pseudospectrum of the Bartlett
algorithm with n-th vector can be expressed as

Pn(v) =
aHA (v)Rn aA(v)

aHA (v) aA(v)
, (5)

where Rn is correlation matrix obtained by (4) and aA(v)T =

[1, e−jπ
2v
λ
T0 , . . . , e−jπ

2v
λ
(Nc−1)T0 ] is the steering vector con-

sidering the chirp duration. When generating a RDmap using
pseudospectrum of the Bartlett, the range of the relative
velocity are required. Let us assume that we divide the range
of relative velocity into k number of intervals. By using k
number of velocity values, k number of steering vectors can
be generated as shown in Fig. 4 (b). Then we create a correla-
tion matrix using the first vector based on the sampling axis
and calculate the pseudospectrum with k number of steering
vectors. The k × 1 size vector will be generated as a result.
If this process is repeated with all of the vectors based on the
sampling axis, the RD map can be generated consequently.

2) HR RD MAP GENERATION USING MUSIC ALGORITHM
Because we assumed L number of targets and Nc number of
chirps in II-A, the correlation matrix obtained through (4)
becomes a size of Nc × Nc matrix. In the MUSIC algorithm,
an eigenvalue decomposition is applied to the correlation
matrix and separates the entire space into the signal subspace
and the noise subspace. When the eigenvectors obtained
through eigenvalue decomposition are arranged in the order
of magnitude of the eigenvalues, the first L eigenvectors
correspond to targets, and the remaining Nc−L eigenvectors
correspond to noise components:

N =


ν1, 1 ν1, 2 · · · ν1,L · · · ν1,Nc
ν2, 1 ν2, 2 · · · ν2,L · · · ν2,Nc

...
...

...
...

. . .
...

︸ ︷︷ ︸
Signal subspace

νNc, 1 νNc, 2 · · · νNc,L ︸ ︷︷ ︸
Noise subspace

· · · νNc,Nc

 . (6)

To calculate the pseudospectrum of the MUSIC algorithm,
amatrix consisting of eigenvectors corresponding to the noise
components is used. The pseudospectrum of the MUSIC
algorithm can be expressed as

PM (v) =
aA(v)H aA(v)

aA(v)H EN EHN aA(v)
, (7)

where EN represents a matrix composed of eigenvectors
constituting the noise subspace. Finally, the velocity of the
target is determined by v that maximizes the value of the
normalized pseudospectrum. In order to generate the HR
RD map with the sampling axis, it is necessary to use the
correlation matrix of (4) and the steering vector considering
the sampling interval Ts.

FIGURE 4. (a) Visual representation of F(·) operator. (b) The overall
scheme of velocity estimation with the Bartlett algorithm.

III. PROPOSED NETWORK FOR SUPER-RESOLUTION
IMAGE GENERATION
In this section, we explain the structure of the generator and
discriminator used in the proposed deep learning network.
We also explain which loss functions are used to train the
generator and discriminator.

A. STRUCTURE OF THE GENERATOR
We designed a generator based on the U-net [12] that consists
of contracting paths and expansion paths, which is different
from the structure of the GAN proposed in [3]. The generator
proposed in [3] starts from an empty noise vector and makes
it look like the ground truth image, but the U-net-based gen-
erator does not. The U-net is an end-to-end (E2E) structured
deep neural network [17] proposed for image segmentation
in biomedical fields (e.g., finding boundaries between cells).
When deep neural network-based SR imaging techniques did
not exist, an algorithm that finds a target in an image must
be applied first. Then, the SR imaging was completed by
applying an algorithm that increases the resolution of the
target image. In other words, two different algorithms had to
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FIGURE 5. The pipeline of proposed network for enhancing the resolution of the RD map.

be used for the SR imaging tasks. However, the SR imaging
tasks can be completed with a single algorithm if a deep
neural network with an E2E structure is used. Also, most
deep neural networks require large amounts of data because
they use a data-driven approach rather than a rules-based one.
The most significant advantage of the U-net is that it shows
relatively accurate performance even with a small amount of
data.

Fig. 5 shows the structure of the proposed network con-
sisting of the generator and the discriminator. As shown in
the figure, in the contracting path, a total of 8 convolution
layers were used, and the kernel size and the number of strides
in each convolution layer are 4 and 2, respectively. Also, all
8 convolution layers use leaky rectified linear unit (Leaky
ReLU) functions as an activation function. Furthermore, the
number of filters used in each of the eight layers is set to 64,
128, 256, 512, 512, 512, 512, and 512, respectively.

Next, the expansion path is a process opposite to
the contracting path and consists of 8 layers identically.
To reconstruct the image size reduced after passing through
8 consecutive convolution layers, up-convolution layers
(i.e., convolution transpose layers) are used. The kernel size
and the number of strides of the up-convolution layers are
the same as those in the contracting path, and the number
of filters used in each layer is 512, 512, 512, 512, 256,
128, 64, and 3, respectively. In addition, the rectified lin-
ear unit (ReLU) function is used as activation function for
up-convolution layers in the expansion path.

B. STRUCTURE OF THE DISCRIMINATOR
As shown in Fig 5, the patch discriminator [18] is used.
Unlike the pixel discriminator in [19], which compares every
corresponding pixel from the generated image and the ground
truth image, the patch discriminator determines the authentic-
ity of a generated image in a specific size of patch unit from

the entire image. By using a patch discriminator, determining
whether an image is real or fake with fewer parameters is
possible.

When training is performed by calculating the difference of
each pixel, such as L1 loss, low frequency components in the
image are well generated, while high frequency components
are not. To accurately generate high frequency components in
the image, it is necessary to focus on a local part of the image
rather than focusing on the entire image. Therefore, the L1
loss and the patch discriminator are used to restore the low
and high frequency components in the image, respectively.

A 256 × 256 × 3 image generated through the U-net is
combined with an exact same-sized ground truth image to
create 256×256×6 size image. The created 256×256×6 size
image is used as input to the patch discriminator. After the
input layer, it passes through three convolution layers. In each
convolution layer, the number of filters increases in the order
of 64, 128, and 256. In addition, the kernel size and the
number of strides are 4 and 2, and the Leaky ReLU function
is used as the activation function, respectively. Finally, a con-
volution layer and a zero padding layer with kernel size and
number of strides of 4 and 1 are used twice as a pair. As a
result, we get a feature map of size 30× 30× 1.

C. LOSS FUNCTIONS IN THE GENERATOR AND THE
DISCRIMINATOR
Let Im, n

LR be the input for the proposed U-net-based gen-
erator and Gm, n

unet be the generated output. Additionally, let
GTm, n be the ground truth image of corresponding LR image
(i.e., Im, n

LR ), where m and n represent the width and height of
image. In the generator, two loss functions are defined, which
can be expressed as

LG1 = −
1
mn

∑
m∈M

∑
n∈N

(Om, n log(D(Gm, n
unet))) (8)
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TABLE 1. Parameters of the radar system.

and

Ll1 =
∑
m∈M

∑
n∈N

∥∥GTm, n
− Gm, n

unet

∥∥
1 , (9)

where D(·) and Om, n denote the output of the discriminator
and a matrix of size m × n in which all elements are 1,
respectively. In other words, the first loss function in (8) is
the binary cross-entropy (BCE) loss between D(·) and Om, n.
The second loss function in (9) is the L1 loss function. The
loss of the entire generator is obtained through the weighted
sum of the two loss functions. The total loss function of the
generator is defined as

LG = λ1LG1 + λ2Ll1, (10)

where λ1 and λ2 the weights for each loss function. To deter-
mine the values of the two weights, the value of λ1 was fixed
at 1 and the value of λ2 was gradually increased. Finally,
λ1 and λ2 were set to 1 and 40, respectively.

For the loss function of discriminator, the sum of the two
BCE losses is used. The two BCE loss functions can be
expressed as

LD1 = −
1
MN

∑
m∈M

∑
n∈N

Om, n log(D(GTm, n)) (11)

and

LD2 = −
1
MN

∑
m∈M

∑
n∈N

(
1− Zm, n)

×
(
1− log

(
D(Gm, n

unet)
))

, (12)

where Zm, n denotes and a matrix of size m × n in which all
elements are 0. Finally, the total loss function consisting of
the two BCE loss functions is expressed as

LD = LD1 + LD2. (13)

These two loss functions, the BCE of the ground truth image
and the BCE of the generated image, are added with each
other without multiplying weights.

IV. PERFORMANCE EVALUATION
A. SR RD MAP GENERATION RESULTS
FROM SIMULATIONS
1) SIMULATION CONDITIONS
First, we verify the performance of the proposed network
through the simulations. The simulation dataset was gener-
ated using the radar parameters in Table 1 and the signal
model in (1). To increase the similarity with the radar sensor

FIGURE 6. Generated SR RD map with the LR RD map (Nc = 4) and the HR
RD map (Nc = 64).

data obtained in real-world measurements, the radar cross
section (RCS) of the target and signal attenuation according
to the distance between the target and the radar was con-
sidered in (1). The RCS value of the target was set based
on the shape of a trihedral with a side length of 20 cm,
which is used in the real-world measurement. In addition,
white Gaussian noise is added to (1) in consideration of the
noise component generated in the experimental environment.
Because the simulations were designed based on actual radar
system parameters [20], the results obtained in the simulation
and the actual environment show a high degree of similarity
except for slight differences due to noise components. There-
fore, the weights obtained through simulation can be saved
(i.e., pre-trained weights) and used in the training process
with the actual dataset. Using the pre-trained weights, large
amounts of training data are not required, and the training
time is also reduced.

In addition, the number of targets appearing in the RD
map is set from 1 to 3 in the simulation. 250 RD maps were
generated for each case, resulting in a total of 750 different
RDmaps.When generating the RDmap, each target’s relative
distance and velocity information is set randomly between
0 ∼ 25 m and −10 ∼ 10 m/s. By applying the data augmen-
tation technique that flips the image horizontally, vertically,
and diagonally based on the image’s origin, a total of 3000RD
maps were defined as the training dataset. For the test dataset,
30 RD maps were generated for each case.

2) SIMULATION RESULTS
In general, the frame time determines the resolution of the
Doppler axis (i.e., the velocity axis). As mentioned in I,
the chirp duration in the FMCW radar system is constant.
Therefore, we varied the number of chirps to adjust the frame
time. In the simulation, we verified the performance of the
proposed network by changing the number of chirps for the
LR and the HR RD maps. First, when the LR and the HR RD
maps are generated using 4 chirps and 64 chirps, respectively,
the SR RD map generated by the proposed network is shown
in Fig. 6. As shown in the figure, even if the resolution of
the RD map was increased through the proposed method,
the target’s location in the SR RD map cannot be accurately
found. In addition, the target located farthest from the radar
and detected with weak signal strength, disappears from the
generated SR RD map.
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FIGURE 7. Generated RD maps with the different numbers of chirps used.

FIGURE 8. Comparison between the generated SR RD maps and the HR
RD maps.

In addition, in generating the HR RD map, we performed
simulations by changing the number of chirps to 32, 64, and
128 as shown in Fig. 7. As the number of chirps increases
from 32 to 64, the increase in resolution is noticeable. How-
ever, there is no significant improvement in resolution when
the number of chirps is increased from 64 to 128. Therefore,
when generating the ground truth HR RD maps, it is appro-
priate to use 64 or 128 chirps instead of 32 chirps.

Moreover, we compared the outputs (i.e., generated SR
RD maps) of the network trained using the HR RD maps of
64 chirps and the network trained using the HR RD maps
of 128 chirps, where the LR RD map was generated from
8 chirps. As shown in Fig. 8, if the resolution of the HR RD
map for training the proposed network is too high, a target
with relatively weak signal strength disappears from the SR
RD map generated by the proposed network. In summary,
the upper and lower bounds of the number of chirps used for
generating the LR and the ground truthHRRDmaps are 8 and
64, respectively. Finally, Figs. 9 (a) and (b) show examples of
the LR RD maps and ground truth HR RD maps when the
number of targets is 1, 2, and 3, respectively.

As mentioned in the previous section, we generated a train-
ing dataset consisting of 3000 LR RD maps and ground truth
HR RD maps. In addition, we also generated a test dataset
consisting of 90 RD maps to validate the performance of the
proposed network. When the LR RD map shown in Fig. 9
(a) is used as input and the ground truth HR RD map shown
in Fig. 9 (b) is used as the ground truth image, the newly
generated RD map through the proposed method is shown
in Fig. 10. As shown in Fig. 10, when the LR map is used as
an input, the new RD map obtained through the GAN-based
network is very similar to the ground truth HR RD map.

FIGURE 9. Generated RD map with simulation: (a) LR (Nc = 8) RD map.
(b) Ground truth (Nc = 64) HR RD map.

FIGURE 10. Generated RD map images with proposed network.

FIGURE 11. Generated RD map with proposed network: (a) When the
targets are closely located. (b) When targets are in noisy environment
(i.e., low SNR).

In addition to a simple simulation scenario where the tar-
gets are all separated, we have also obtained data for simu-
lations that more closely resemble real-world measurements.
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FIGURE 12. The results after applying the CFAR algorithm: (a) When the
targets are closely located. (b) When targets are closely located in the low
SNR scenario.

FIGURE 13. Comparison between the ground truth and the generated SR
RD map.

These include the cases where targets are closely located in
the RDmap, making it difficult to distinguish their individual
areas, as well as the cases where the SNR is low. Fig. 11 (a)
shows the result via the proposed method when there is
partially overlapping region in the RD map due to closely
located targets. Also, Fig. 11 (b) shows the result of applying
the proposed method to the RD map obtained with a lower
SNR value than ideal simulation scenarios.

Moreover, we verified whether the targets can be suc-
cessfully detected in the RD maps generated through the
proposed method in Fig. 11 by applying the constant false
alarm rate (CFAR) algorithm. Figs. 12 (a) and (b) show the
results of applying the CFAR to the ground truth RD maps
and generated RD maps in Figs. 11 (a) and (b), respectively.
In the case where the targets are partially overlapped, the
CFAR algorithm can detect both targets in both the ground
truth RD map and the generated RD map. On the other hand,
in a noisy environment with partially overlapping targets,
only one target was detected in the ground truth RD map,
while both targets were detected in the generated RD map.

FIGURE 14. Distribution of average pixel values in the test dataset:
(a) For all pixel values. (b) Pixel values between 20 to 60.

FIGURE 15. AWR1642BOOST and DCA1000EVM manufactured by Texas
Instruments.

Therefore, the proposed method can enhance the resolution
of closely located targets in the RDmap and effectively detect
targets even when low SNR. However, when the targets are
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FIGURE 16. Experimental environment for radar signal measurement.

perfectly overlapped in the RD map and cannot be distin-
guished, the resolution of the targets could not be enhanced
even if the proposed method was used.

We quantitatively evaluate how similar the newly gener-
ated RD map is to the ground truth HR RD map. Because
the GAN is not a deep neural network for classification or
prediction tasks, the accuracy score cannot be used as an
evaluation measure. Therefore, several image quality assess-
ment (IQA) methods have been proposed to evaluate the sim-
ilarity between images quantitatively. For example, a pixel-
wise mean squared error (PMSE), peak SNR (PSNR) [21],
structural similarity index measure (SSIM) [22], and visual
information fidelity (VIF) [23] can be used for the IQA.
Among these IQA methods, the PMSE and PSNR were used
to calculate the similarity between the generated RDmap and
the ground truth RD map. Those two measures are defined as

PMSE =
∑

i∈R,G,B

[
1
MN

∑
m∈M

∑
n∈N

(Gm, n
unet − GT

m, n)2
]
i

(14)

and

PSNR = 10 log10

(
(255.0)2

PMSE

)
. (15)

In addition, we evaluated the similarity through the distribu-
tion of the pixels in various RD maps. In particular, we used
average and standard deviation of the pixel values.

The overall network training process can be seen through
Alg. 1 below. Before training, the dataset generated by sim-
ulations and those obtained through the actual experiments
are required. The network is then trained based on the dataset
generated through simulations. When the two conditions are
satisfied simultaneously in the process of training, training is
set to be stopped and the weight vectors are saved. The two

Algorithm 1 Training Process of the Proposed Network
Require: simulation, actual dataset S(x, ŷ, y), A(x, ŷ, y)
Require: L(s)G , L(s)D , LG, LD, Om, n, Zm, n

Require: Epoch = n
With S(x, ŷ, y) :

for epoch ∈ n :
if (PSNR and PMSE) > E1% :

Obtain generated image D(Gm, n
unet)

Calculate loss functions L(s)G ,L(s)D

θ
(s)
G ← θ

(s)
G + ω

dL(s)G

d θ
(s)
G

θ
(s)
D ← θ

(s)
D + ω

dL(s)D

d θ
(s)
D

apply gradients

else:
Save θp; θp = (θ (s)G , θ

(s)
D )

end
end
With A(x, ŷ, y) :

for epoch ∈ Epochs :
if epoch = 1 :

θG, θD← θp apply pretrained gradients
Obtain generated image D(Gm, n

unet)
Calculate loss functions LG,LD

else:
if (PSNR and PMSE) > E2% :

Obtain generated image D(Gm, n
unet)

Calculate loss functions LG,LD
θG← θG + ω

dLG
d θG

θD← θD + ω dLD
d θD

apply gradients
else:

Save (PSNR and PMSE)
end

end

conditions can be expressed as follows:

ρ[Im, n
LR ,Gm, n

unet]− ρ[Im, n
LR ,GTm, n]

ρ[Im, n
LR ,GTm, n]

<
E1
100

(16)

and

ς (GTm, n)− ς (Gm, n
unet)

ς (Gm, n
unet)

<
E1
100

. (17)

ρ[· , ·] represents the PMSE value between two variables in
ρ[· , ·], and ς (·) represents the PSNR value, respectively.
After the network is trained with simulation dataset, the

network is retrained with actual dataset. When training the
network with the actual dataset, the saved weight vectors
are used in the first epoch. From the second epoch, the
weight vectors that are updated during the training process
are used. Finally, when the two conditions mentioned above
are satisfied again, the training is set to be stopped. However,
there is one thing that has changed. Because the network
is retrained based on the pre-trained weights, E1 value is
substituted with smaller value, E2. In this paper, we set E1
and E2 as 10 and 5. After the network was trained with
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FIGURE 17. 9 experimental scenarios for the performance evaluation.

FIGURE 18. Comparison between generated RD map from the conventional HR imaging algorithms and the proposed deep
learning-based method.

the training dataset generated through simulations, the net-
work was verified with test dataset generated through sim-
ulations. As a measure of the verification, the PMSE value
between the LR RD map and ground truth HR RD map

(i.e., ρ[Im, n
LR ,GTm, n]) and the PMSE value of the LRRDmap

and the deep learning-based SR RDmap (i.e., ρ[Im, n
LR ,Gm, n

unet])
were used. In addition as another measure of the verification,
the PSNR value of ground truth HR RDmap (i.e., ς (GTm, n))
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and the PSNR of the deep learning-based SR RD map
(i.e., ς (Gm, n

unet)) were used. As shown in Fig. 13, when com-
paring the deep learning-based SR RD map with the ground
truth, the PMSE value increased by 7.819% and the PSNR
decreased by 2.481%.

Figs. 14 (a) and (b) shows the distribution of average pixel
values in the test dataset. The x and y-axis represent the
range of pixel value in the RD map image and the number
of each pixel value, respectively. For pixel values below 50,
the distribution of the LR RD map is more dispersed than
that of the ground truth RD map. Also, the pixel distribution
of the generated RD map follows the distribution of the
ground truth RDmap. The average pixel values of the LR RD
map, ground truth RD map, and the generated RD map are
42.386, 37.849, and 38.402, respectively. Also, the standard
deviations are 13.972, 3.287, and 5.98. Therefore, we verified
that the generated RD maps are highly similar to the ground
truth RD maps.

B. SR RD MAP GENERATION RESULTS FROM ACTUAL
MEASUREMENTS
1) EXPERIMENTAL ENVIRONMENTS
To show the effectiveness of our proposed deep neu-
ral network, we conducted actual measurements using the
AWR1642BOOST board, which was produced by Texas
Instrument (TI) [20]. We used the AWR1642BOOST board
connected with a DCA1000EVM, as shown in Fig. 15. The
AWR-1642 radar module has two transmit antenna elements
and four receiving antenna elements. The physical size of the
antenna mounted on the board is 30× 19 mm. Also, the spac-
ing between the transmitting antenna elements, the spacing
between the transmitting and receiving antenna elements, and
the spacing between the receiving antenna elements are d ,
4d , and 4.5d , respectively. Moreover, the 3dB beam width
in the azimuth direction is 70 degrees, and the 3dB beam
width in the elevation direction is 30 degrees. Because our
goal is to enhance the resolution for target detection in the RD
map, it can be sufficient to acquire sensor data using only one
transmit antenna and one receiving antenna. In summary, one
transmit and one receiving antenna element were used among
the multiple-input and multiple-output antenna system [24].
The data acquired through the AWR-1642 radar module
can be saved as a binary file through the DCA1000EVM
board [25]. Then, the data stored as binary files can be read
through TI-provided code implemented in Matlab or Python.

Fig. 16 shows the experimental environment for the radar
signal measurements. In the experiment environment, radar
sensor data were obtained through the 9 different scenarios as
shown in Fig. 17. As mentioned in Section IV-A, the trihedral
corner reflectors with a side length of 20 cm were used as
targets in the measurement. Various RD maps were obtained
because the moving direction and velocity of the targets are
different in each scenario. For each scenario, we obtained
128 frames of radar data and of which the first 110 frames
were used as the training dataset, and the remaining 18 frames
were used as the test dataset.

FIGURE 19. Comparison between the proposed and the conventional HR
imaging methods: (a) PMSE and (b) PSNR values.

2) EXPERIMENTAL RESULTS
By changing the number of chirps used as mentioned in Sec-
tion IV-A, a total of 990 pairs of LR and ground truth HR RD
maps were used as the training dataset. Also, 162 pairs of LR
and ground truth HR RD maps were used as the test dataset.
Fig. 18 shows the LR RD map from the leftmost, the ground
truth HR RDmap, the generated SR RDmap by the proposed
deep learning network and HR RD maps generated by apply-
ing the Bartlett and MUSIC algorithms to the Doppler axis.
When qualitatively evaluating the results, the RD maps gen-
erated through the MUSIC algorithm and the proposed deep
neural network show the most similarity to the ground truth
image. Applying Bartlett reduces sidelobes but increases the
resolution very slightly. In addition, although the RD map
from the MUSIC algorithm exhibits a high resolution com-
parable to the ground truth HR RD map, a target is often not
detected in the RD map as shown in Fig. 18 (c). The target
disappears because the MUSIC algorithm’s performance is
highly sensitive to the target’s SNR. In addition, the signifi-
cant disadvantage of the MUSIC algorithm is that the number
of targets must be less than the number of chirps used in one
frame [26]. Therefore, there is a limit to applying the MUSIC
algorithm under the condition when the number of targets
exceeds the number of radar resources.

Fig. 19 quantitatively compares the similarity between the
RD maps generated by the existing methods and the RD
maps generated based on the proposed deep neural network.
In addition, Gm, n

Bart and G
m, n
MUSIC represent the HR image out-

put with Bartlett and MUSIC algorithm. To compare the
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FIGURE 20. An example of efficient radar resource management.

proposed deep neural network-based method with the exist-
ing SR imaging method, the PMSE value between the LR
RD map and the ground truth HR RD map and the PSNR
value of the ground truth HR RD map was set as refer-
ence values. In terms of the PMSE, the deep learning-based
method, the Bartlett-based method, and the MUSIC-based
method increased by 5.24%, 18.8%, and 28.9% compared to
the reference value, respectively. In terms of the PSNR, the
deep learning-based method, the Bartlett-based method, and
the MUSIC-based method decreased by 0.477%, 1.619%,
and 2.387% compared to the reference value, respectively.
Furthermore, the average pixel values of the LR RD map,
Ground turth RD map, and generated RD map were 45.384,
38.912, and 39.715, respectively. The standard deviation of
pixel values were 15.857, 4.291, and 6.118. Consequently,
the proposed deep learning-based method enhanced the res-
olution closer to the ground truth image than the existing HR
imaging algorithms.

C. EFFICIENT MANAGEMENT OF RADAR RESOURCES
The following experiments were conducted to emphasize
the resource-efficient aspect of our proposed method. The
number of chirps required to generate the range-Doppler map
was reduced to 12.5%, and the period of each frame was also
decreased to 25%, as shown above in Fig. 20. Because the
period of one frame is shortened to 25%, 4 frames can be
measured within the same time when 8 chirps are used.

In other words, because the measurement period for the target
is reduced to 25%, it is possible to know the trajectory of the
moving target more precisely. As shown in Fig. 20, when
the detection result for a moving target is obtained using
64 chirps, the transition from the first frame to the second
frame follows the green dotted line. At the same time, if we
use 8 chirps to acquire detection results, 3 more frames can be
obtained along the orange dotted line. If the reduced velocity
resolution using only 8 chirps is regenerated into the SR RD
map using the proposed deep neural network, the same effect
as obtaining 4 frames with 64 chirps can be achieved. Finally,
the red lines in the figure show the result of converting the LR
RD map into the SR RD map.

V. CONCLUSION
In this paper, we proposed a deep learning-based network
for enhancing the resolution of the LR RD maps in the
FMCW radar system. The proposed network consists of the
U-net-based generator and the discriminator. When the U-net
receives an image as input, it divides the image into fea-
ture maps. Then it increases the resolution of the image in
the process of reconstructing the image back to its origi-
nal size. In addition, the discriminator evaluates the perfor-
mance of the generator by comparing the resolution enhanced
image with the ground truth image. The performance of the
proposed network was verified through simulations and
actual measurements. To evaluate the similarity between the
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RD map generated by the proposed network and the ground
truth HR RD map, the PMSE, and PSNR were calculated.
Compared with the conventional HR imaging algorithms
(i.e., Bartlett and MUSIC algorithms), the PMSE value
decreased by 12.9% and 22.5%, respectively, and the PSNR
value increased by 1.1% and 1.9%, respectively, in our pro-
posed method. Based on these measures, we confirmed that
the RD map generated by the proposed method showed a
higher resemblance with the ground truth HR RD map than
the RD maps generated from the conventional HR imaging
algorithms. In addition, additional experiments were con-
ducted to verify the performance of the proposed method
in terms of radar resource operation, and the target track-
ing performance could be improved through the proposed
method. Although the proposed deep neural network-based
technique was trained with the data obtained through the
automotive radar system, this does not represent that the
proposed technique is limited to the automotive radar system.
The proposed method can be applied to all radar systems
capable of obtaining RD map data to enhance the resolution
of targets.
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