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Abstract
The number of antennas in automotive frequency‐modulated continuous wave (FMCW)
multiple‐input multiple‐output (MIMO) radar systems is increasing. Existing greedy or
subspace‐based methods cannot quickly and accurately estimate the direction of arrival
(DoA) of the target. Therefore, we propose a fast and accurate DoA estimation algorithm
for the automotive FMCWMIMO radar. To achieve both fastness and accuracy, we exploit
the group sparsity in DoA estimation by defining the problem as a multiple measurement
vector (MMV) compressive sensing and extend the step‐learnt iterative soft‐thresholding
algorithm (SLISTA) to the MMV problem. To apply the extended SLISTA, we train the
network in an unsupervised manner and normalise the input. We conduct experiments to
evaluate the performance of the proposed method. Compared to the algorithms such as
ISTA/FISTA/MFOCUSS that solve the same optimisation problem, the extended SLISTA
exhibits themost accurateDoA estimation results for actual targets, with less execution time
than a subspace‐based method. Moreover, the results show that the extended SLISTA
prevents false detections, whereas greedy and subspace‐based methods do not.

1 | INTRODUCTION

Radar has emerged as a critical technology for autonomous
driving. Unlike other automotive sensors, such as cameras and
lidars, radars have a unique advantage that their performance
does not deteriorate despite the changes in weather and light
conditions [1]. Fast‐chirp frequency modulated continuous
wave (FMCW) radar using the 77–81 GHz frequency band is
widely used for automotive due to its high range resolution and
low cost [2]. One crucial challenge of the fast‐chirp FMCW
radar is achieving a high angular resolution [3]. To this end, the
number of antennas must be increased. Many researchers have
used multiple‐input multiple‐output (MIMO) radar [4] to
maximise the number of antennas, even with a limited radar
form factor. The number of antennas (i.e., the number of
virtual array elements) of the MIMO radar is obtained by
multiplying the number of transmit and receive antennas [5]. In
the past, the fast‐chirp FMCW MIMO radars used about 10
antennas at most [6–10]; however, MIMO radars with more
than a hundred antennas [11] are being released.

MIMO radar with many antennas requires a much heavier
computational burden for direction‐of‐arrival (DoA) estima-
tion. This computational burden can prevent cars equipped
with FMCW MIMO radars from making real‐time decisions
on the road. The angle fast Fourier transform (angle‐FFT),
defined as a single matrix product, has the lowest computa-
tional complexity among the DoA estimation algorithms. In
FMCW MIMO radars with few antennas, the angle‐FFT has
been mainly used as a preprocessing algorithm for high‐level
signal processing such as target classification through artifi-
cial neural networks [12–14]. However, because the angle‐FFT
shows low performance among DoA estimation algorithms
due to the low angular resolution and high sidelobe level [15],
many studies use more accurate DoA estimation algorithms
with higher computational complexity. Subspace‐based
methods, such as the multiple signal classification (MUSIC)
[16] and the estimation of signal parameters via rotational
invariant techniques (ESPRIT) [17–20], have been widely used
in conventional MIMO radars because they can obtain higher
angular resolution than the angle‐FFT. However, in the latest
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MIMO radar with a large number of antennas, we cannot
obtain both estimation accuracy and computational speed
simultaneously with existing subspace‐based DoA estimation
algorithms. Because subspace‐based methods require floating‐
point operations proportional to the third power of antennas
[21], an excessive computational burden can be incurred when
the number of antennas becomes large. Therefore, we aim to
find DoA estimation algorithms that are more accurate than
the angle‐FFT and faster than subspace‐based methods.

Compressive sensing (CS) is an appropriate approach for
fast and accurate DoA estimation. CS is a technique for
recovering sparse vectors. Because FMCW MIMO radar's
DoA estimation has sparsity (i.e., reflected signals come from
only a few directions in the field of view (FoV)), many studies
have achieved good performance using CS [22–24]. The CS
problem is divided into a single measurement vector (SMV)
problem and a multiple measurement vector (MMV) problem.
The SMV problem reconstructs one vector, whereas the MMV
problem reconstructs multiple vectors simultaneously. For the
CS problem to be defined as the MMV problem, the vectors to
be reconstructed must have joint sparsity. The joint sparsity
refers to the property that sparse vectors have similar nonzero
indices. Due to the high range resolution, FMCW MIMO radar
signals with similar ranges and velocities have similar DoAs,
meaning they have joint sparsity. Therefore, the DoA estima-
tion problem in the FMCW MIMO radar should be formulated
as an MMV problem to exploit the joint sparsity. Some studies
[22, 25–27] formulated the DoA estimation problem of the
MIMO radar as an MMV problem.

However, the studies defining the DoA estimation in
FMCW MIMO radar as an MMV problem have not success-
fully answered the following question: Are proposed methods
faster than subspace‐based methods and more accurate than
the angle‐FFT for actual data? In particular, many studies have
used iterative algorithms, which have made it challenging to
satisfy fastness. Recently, many studies have realised fast im-
aging in magnetic resonance imaging (MRI) and vision image
reconstruction by treating CS algorithms as a learnable recur-
rent neural network. This technique is referred to as algorithm
unrolling [28]. The step‐learnt iterative soft‐thresholding al-
gorithm (SLISTA) [29] is an application of algorithm unrolling
for the iterative soft‐thresholding algorithm (ISTA) [30]. Un-
like other unrolled ISTAs, unsupervised learning is possible in
SLISTA. That is, it is possible to learn the network for actual
radar data whose ground truth is unknown. However, SLISTA
solves the lasso, a type of SMV problem. Therefore, we extend
SLISTA to the MMV problem and train it in an unsupervised
manner. To this end, we set the group lasso [31], the MMV
version of the lasso, as the objective function, and train the
network (i.e., SLISTA) in an unsupervised manner. We also
normalise the input before applying the algorithm for the
robust DoA estimation.

To evaluate the performance of DoA estimation algo-
rithms, we conduct measurement experiments using a fast‐
chirp FMCW MIMO radar in the test field. Through the ex-
periments, we measure the execution time of the algorithms

and compare the estimation results. In addition, we compare
how sharp the imaged target (i.e., corner reflector) appears. We
verify that the proposed method satisfies both fastness and
accuracy via the measurements.

In summary, the major contributions of this study are as
follows:

� We extend SLISTA to the MMV problem for the DoA
estimation in the fast‐chirp FMCW MIMO radar.

� We train the network and propose a normalisation process
to apply the extended SLISTA.

� We experimentally verify that the proposed method exhibits
better imaging results than the other algorithms in a shorter
computation time than MUSIC.

The remainder of this study is organised as follows. The
distance, velocity, and DoA estimation methods in the FMCW
MIMO radar system are introduced in Section 2. In Section 3,
we explain the interpretation of the DoA estimation problem
as a CS problem. A fast CS‐based DoA estimation method is
proposed in Section 4. The performance of the proposed
method is verified through actual experiments in Section 5.
Finally, we present our conclusion in Section 6.

The following symbols will be used throughout the
study:

� x, x, X represent a scalar, vector, and matrix, respectively.
� For p ∈ ½0;∞�; k⋅kp is the lp norm.
� The Frobenius matrix norm is k⋅kF .
� The identity matrix of size m is Im�m.
� The pseudoinverse of a matrix X is X†.
� Subscript xk denotes the kth element of x.
� Superscript x(p) represents x at iteration p.
� The kth row of X is X[k,:].
� kth column of X is X[:,k].
� Superscript (⋅)H denotes the Hermitian operator.
� The support of X, supp(X) denotes the index set corre-

sponding to nonzero rows.
� The notation ⊗ denotes the Kronecker product.

2 | FUNDAMENTALS OF FMCW MIMO
RADAR SYSTEMS

2.1 | Range and velocity estimation

We begin by explaining how the range and velocity are esti-
mated in a fast‐chirp FMCW radar. The mth chirp of the
transmitted signal can be expressed as

Tðm; tÞ ¼AT exp
�

j2π
��

fc −
B
2

�

t þ
S
2
t2
��

rect
�
t − mΔTc

ΔTsw
−

1
2

�

;

ð1Þ
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where B is the sweep bandwidth, ΔTc is the transmission
period of each chirp, and ΔTsw is the sweep duration, as shown
in Figure 1. In addition, AT, S ¼ B

ΔTsw
, fc represents the

amplitude of the transmitted signal, sweep slope, and carrier
frequency, respectively. The notation rect(⋅) denotes the rect-
angular pulse function, which is defined as follows:

rectðuÞ ¼

(
1; if −1=2 < u < 1=2
0; otherwise: ð2Þ

When the signal in Figure 1 is radiated through the
transmit antenna, the FMCW radar receives the reflected signal
from the target. Suppose the target has a distance r and a
relative radial velocity v from the radar system. Then the
received signal will have a time delay of td ¼

2ðr þ mvΔTcÞ

c and a
Doppler shift of fD ¼

2vfc
c . The received signal is expressed as

Rðm; tÞ ¼ ARexp
�

j2π
��

fc −
B
2
þ fD

�

ðt − tdÞ

þ
S
2
ðt − tdÞ2

��

rect
�
t − mΔTc

ΔTsw
−

1
2

�

;

ð3Þ

where AR is the amplitude of the received signal.
We obtain the baseband signal after mixing the transmitted

and received signals. The baseband signal is expressed as

bðm; tÞ ¼ LPFðT∗ðm; tÞRðm; tÞÞ

¼
1
2
ATARexp

�

j2π
�
2fcðr þmvΔTswÞ

c

þ
2BR
cΔTsw

t
��

rect
�
t − mΔTc

ΔTsw
−

1
2

�

;

ð4Þ

where LPF(⋅) denotes a low‐pass filter. Note that b(m, t) has
the same frequency as the beat frequency (i.e., frequency dif-
ference) between T(m, t) and R(m, t). In (4), b(m, t) has a
frequency of 2Br

cΔTsw
, and a phase of 2π 2fcðr þ mvΔTswÞ

c . The fre-
quency is proportional to r, and the phase is proportional to v
when r is fixed. Thus, to extract the range and velocity in-
formation of the target from b(m, t), we apply the Fourier
transforms with respect to t and m, respectively. First, b(m, t)
is converted to a discrete‐time signal b[m, n] = b(m, nΔTs) by
an analogue‐to‐digital converter (ADC), where ΔTs represents
the sampling period. Then, the FFT is applied to b[m, n] to
extract the range and velocity of the target.

As shown in Figure 1, two FFTs are applied sequentially to
the ADC data. We first obtain the range spectrum by applying
FFT with respect to n. Subsequently, we obtain the velocity
spectrum by applying FFT with respect to the chirp index m.
These FFTs are called range‐FFT and velocity‐FFT, respectively.
Through these FFTs, we can obtain the range‐velocity map
containing the range and velocity information of the targets [32].
On the range‐velocity map, the range and velocity bin sizes are
calculated as Δr = c/2SΔTsNADC and Δv = c/2fcΔTcMTNc,
respectively, where c is the speed of light,NADC is the number of
ADCdata in one chirp,NC is the number of chirps, andMT is the
number of transmit antennas.

2.2 | DoA estimation

This section describes the DoA estimation performed on this
range‐velocity map. The higher the number of antennas, the
better the DoA estimation performance. However, having a
large number of antennas requires a large radar aperture.
MIMO radars using multiple transmit/receive antennas exhibit
good DoA estimation performance, even with a small aperture.
In our study, we consider a fast‐chirp FMCW MIMO radar
with MT transmit and MR receive antennas co‐located in a two‐
dimensional plane.

Assuming that the target lies in the far field (here, far‐field
refers to a region where the distance from the antennas is
much greater than the antenna aperture) of the radar system, the
reflected waves received at each antenna element are almost
parallel. The phase values of the signals from the ith receiving
antenna element, whose horizontal and vertical positions are xR,i
and zR,i, respectively, become 2π

λ

�
zR;isinθk þ xR;icosθksinϕk

�
,

where θk ∈ [ −π/2,π/2] and ϕk ∈ [ −π/2,π/2] are the elevation
and azimuth angles between the radar and the kth target,
respectively. In addition, λ is the wavelength corresponding to
the centre frequency of the FMCW radar signal. For example,
(θk, ϕk) = (0, 0) means that the kth target is exactly in the normal
direction of the antenna array plane. The phase of each receive
antenna of signals from the kth target is proportional to the
receive‐array steering vector aRðθk;ϕkÞ ∈ CMR expressed as
follows:

aRðθk;ϕkÞ½i� ¼
1
ffiffiffiffiffiffi
MR
p e j2πλ ðzR;isin θkþxR;icosθksinϕkÞ: ð5ÞF I GURE 1 Target information (i.e., range and velocity) estimation in

the fast‐chirp frequency‐modulated continuous wave (FMCW) radar system
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Using MT transmit antennas with time‐division multi-
plexing in transmission can generate a maximum of MTMR
virtual antennas using the MIMO antenna principle [33].
The steering vectors of the MIMO virtual array can be
expressed as aðθk;ϕkÞ ¼ aT ðθk;ϕkÞ⊗ aRðθk;ϕkÞ ∈ CMTMR ,
where aT ðθk;ϕkÞ ∈ CMT is the transmit‐array steering vector.
We define the array response using the steering vector of the
MIMO virtual array. As shown in Figure 2a, the array
response consisting of signals of the same bin on the range‐
velocity map can be written as follows:

y¼
XK

k¼1

aðθk;ϕkÞsk þ w; ð6Þ

where sk denotes the target reflection coefficient for the kth
target and the additive noise w ∈ CM is assumed to be white
Gaussian noise. Because obtaining a(θk, ϕk) and sk directly
from Equation (6) is difficult, the following section formulates
the problem differently from Equation (6).

3 | INTERPRETATION OF DoA
ESTIMATION AS COMPRESSIVE
SENSING

3.1 | CS‐based DoA estimation in FMCW
MIMO radar

This section redefines Equation (6) as a CS problem to obtain
the target information from the array response. To this end,
the entire DoA FoV is discretised into a fine grid. It is assumed
that the possible target azimuth angles comply with a grid of
GA points ϕ1:GA

, and the elevation angles comply with a grid of
GE points θ1:GE. Since each azimuth and elevation pair
parameterises one steering vector aðθp;ϕqÞ ∈ CM , we can
define the sensing matrix as A ¼

�
aðθ1;ϕ1Þ; aðθ1;ϕ2Þ;…;

a
�
θGE;ϕGA

��
∈ CM�GEGA . The array response in Equation (6)

can be represented as

y¼ Axþ w: ð7Þ

FMCW MIMO radars can achieve a high range resolution
because they offer a wide bandwidth. As a result, only a few
targets fall in the same range‐velocity bin; the targets are sparse
in the DoA estimation x [34]. Mathematically, x is K‐sparse
when it has at most K nonzero elements, that is, kxk0 ≤ K [35].
The nonzero elements of x lie only on indices corresponding
to the DoA at which the target exists. This sparsity can be
exploited by CS algorithms for target DoA estimation.

A classic way to recover the K‐sparse vector x in Equation
(7) is expressed as

x̂¼ arg min
x:kxk0≤K

kAx − yk22; ð8Þ

F I GURE 2 Process of generating a vector y ∈ CM (a) and process of
generating a matrix Y ∈ CM�L (b) from range‐velocity maps, which are outputs
of 2D FFT. (a) Process of generating y from the range‐velocity maps.
(b) Process of generating Y from the range‐velocity maps
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and is called subset selection [36–38]. Alternative formulations
are

x̂¼ arg min
x
kxk0 s:t: kAx − yk22 < ϵ ð9Þ

or

x̂¼ arg min
x

1
2
kAx − yk22 þ λkxk0: ð10Þ

In the field of CS, to ensure the recovery of K‐sparse
signals with high probability from the above Equations (8–10),
the sensing matrix A is generally assumed to be incoherent
[39]. We define the coherence of matrix A as the largest ab-
solute inner product between any two columns [40, 41], and it
is expressed as follows:

μðAÞ ¼max
i≠j

�
�
�AH
½:;i�A½:;j�

�
�
�

�
�A½:;i�

�
�
2

�
�A½:;j�

�
�
2

: ð11Þ

Here, A is incoherent if μ(A) is small.
To reduce the discretisation error and achieve super‐

resolution, the FoV should be discretised into a dense grid,
that is, GA and GE should be large enough. This means that
the steering vectors corresponding to the adjacent DoAs have
a high correlation, and the sensing matrix A is coherent. Thus,
defining DoA estimation as an SMV CS problem has apparent
limitations in achieving super‐resolution.

3.2 | Formulation of MMV problem and
conventional approaches

As in the previous section, if we try to recover each sparse
vector x, in a similar range‐velocity bin, x will exhibit similar
indices for their nonzero elements. To exploit this joint sparsity
among neighbouring range‐velocity bins, we stack these all L
vectors into the columns of a matrix Y ∈ CM�L. In addition,
because the signals are correlated while the noise components
are uncorrelated, higher signal‐to‐noise ratio can be achieved if
L range‐velocity bins are used together. Figure 2b shows the
process of generating Y where L = 4. The goal is to recover
X ∈ CGEGA�L, which has at most K nonzero rows, that is,
jsuppðXÞj < K. This problem is referred to as the MMV
problem. The array response in MMV form is expressed as

Y ¼ AXþW; ð12Þ

where the additive noise W ∈ CM�L is assumed to be the white
Gaussian noise.

Subspace‐based methods such as MUSIC [16] and ESPRIT
[17–20] can achieve super‐resolution in this MMV problem.
Subspace‐based methods assume that X has K nonzero rows.
They use the property that the dominant K‐dimensional
eigenspace of the covariance matrix (i.e., RY ¼

1
LYY

H ) consists

of steering vectors corresponding to the target. However,
subspace‐based methods have practical limitations to be used
in DoA estimation in FMCW MIMO radars. They commonly
require the assumption that jsuppðXÞj ¼ K. Subspace‐based
methods provide guaranteed recovery where the assumption
jsuppðXÞj ¼ K is correct; otherwise, they suffer from perfor-
mance degradation. Unfortunately, the number of targets in
specific range‐velocity bins, that is, jsuppðXÞj, is hardly known
to FMCW MIMO radars. Another disadvantage of subspace‐
based methods is their high computational complexity. These
methods need to perform eigenvalue decomposition of YHY,
which requires the computational complexity of O

�
M3�

floating‐point operations [21]. Therefore, algorithms that are
faster than subspace‐based methods and do not require in-
formation on the number of targets are needed.

Greedy methods are another primary approach for solving
MMV problems. Most of them, including simultaneous
orthogonal matching pursuit (SOMP) [42], are natural exten-
sions of the SMV problem [43–47], but some are designed
solely for the MMV setting [48]. SOMP, one of the most
representative and intuitive greedy methods, is outlined in
Algorithm 1.

Greedy methods aim to solve the analogues of (8), (9), or
(10) in the MMV case, expressed as follows:

X̂¼ arg min
X:jsuppðXÞj≤K

kAX − Yk2F ; ð13Þ

X̂¼ arg min
X
jsuppðXÞj s:t: kAX − Yk2F < ϵ; ð14Þ

or

X̂¼ arg min
X

1
2
kAX − Yk2F þ λjsuppðXÞj; ð15Þ

respectively. However, because function jsuppðXÞj is non‐
convex, Equations (13)–(15) are NP‐hard problems [49]. This
fact suggests that greedy methods cannot guarantee fast
computation and good accuracy simultaneously.

Algorithm 1 SOMP

6 - HONG ET AL.
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To obtain accurate solutions with numerical optimality
guarantees, we use the convex relaxation approach. In the
MMV case, convex relaxation replaces jsuppð⋅Þj with its
convex approximation k⋅kp;1, where the mixed lp,q norms for
matrices are defined as

kXkp;q ¼

 
X

i

�
�X½i;:�

�
�q

p

!1=q

ð16Þ

for some q > 1. In Equation (16), the typical value of q is 2
[50–55], and this optimisation model has been applied in dy-
namic MRI [56], gene finding [57–59], and many other fields
[31, 60]. Specifically, the convex relaxation form of Equation
(10) is called the group lasso [31], which is expressed as

X̂¼ arg min
X

1
2
kAX − Yk2F þ λkXk2;1: ð17Þ

Multi‐vectors focal undetermined system solver (MFO-
CUSS) [51] is the first algorithm to address the group lasso
problem. MFOCUSS can be understood as an iterative
reweighted least squares algorithm. As in the least squares al-
gorithm, MFOCUSS computes the inverse of size M � M
matrix at every iteration; hence is computationally expensive
for this problem. In the next section, we propose a more
efficient algorithm for the group lasso and apply it to the DoA
estimation problem in the FMCW MIMO radar.

4 | PROPOSED CS‐BASED DoA
ESTIMATION IN FMCW MIMO RADAR

4.1 | Basic concept of ISTA

One popular approach that can reduce the computational time
required to solve the group lasso (17) is to apply the proximal‐
gradient method. Specifically, ISTA involves finding proximal
mapping associated with the regulariser λkXk2;1. The proximal
mapping associated with λk⋅k2;1 can be computed analytically
as follows:

proxλk⋅k2;1 ðXÞ ¼ arg min
U

�
1
2
kU − Xk2F þ λkUk2;1

�

¼ T λðXÞ; ð18Þ

where operator Tαð⋅Þ is the soft‐thresholding operator, which
is defined as

TαðXÞ½i;:� ¼max

 

0; 1 −
α

�
�X½i;:�

�
�
2

!

X½i;:�: ð19Þ

In each iteration, the proximal mapping (18) is applied to the
gradient of the first term of (17), which can be expressed as

gðXÞ ¼
d
dX

1
2
kAX − Yk2F ¼ AHðAX − YÞ: ð20Þ

Thus, the iterative step of ISTA applied to the group lasso (17)
is given by

Xðtþ1Þ¼ proxλk⋅k2;1

 

XðtÞ −
1
Lf

g
�
XðtÞ
�
!

¼ T λ=Lf

  

IM�M −
1
Lf
AHA

!

XðtÞ þ
1
Lf
AHY

!

;

ð21Þ

where Lf is the greatest eigenvalue of AHA. The ISTA for
solving (17) is summarised in Algorithm 2.

As in Equation (21), ISTA performs matrix multiplication
and soft‐thresholding in each iteration. Operations in ISTA
have lower computational complexity than the eigenvalue
decomposition in MUSIC or the inverse operation in MFO-
CUSS. Thus, it is likely that ISTA has less computational time
than algorithms such as MUSIC and MFOCUSS. However,
because ISTA is iterative, computational time increases pro-
portionally to the number of iterations. In the worst possible
case, ISTA converges at a rate of Oð1=tÞ (i.e., the difference of
the objective function values between the tth iteration and an
optimal solution point is inversely proportional to t) [30],
which is quite slow and requires many iterations.

One method to achieve faster convergence and fewer it-
erations is to use algorithms that have momentum. A study
[30] proposed an acceleration scheme to reduce the number of
iterations, which improved the convergence rate of gradient
descent from Oð1=tÞ to Oð1=t2Þ. The application of Ref. [30]
to ISTA is referred to as FISTA [61]. One standard mo-
mentum parameter for FISTA is βðtÞ ¼ t − 1

t þ 2 [62]. The FISTA
for solving (17) is summarised in Algorithm 3.

Algorithm 2 ISTA for solving (17)

Algorithm 3 FISTA for solving (17)

HONG ET AL. - 7
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However, ISTA and FISTA only consider the case in which
the group lasso is solved for one input. To solve the lasso
problem for many inputs, a seminal work [63], named LISTA,
proposed training a neural network whose input is Y and
output is X̂ in Equation (17). LISTA considers iterative algo-
rithms as a recurrent neural network, where the tth iteration is
regarded as the tth layer in a network. LISTA shows better
performance than ISTA/FISTA on new inputs for the same
number of iterations (i.e., layers). Many studies over the few
years have used LISTA's concepts to solve the (group) lasso
[29, 64–70]. We extend SLISTA [29], the study for solving the
lasso, to the group lasso and use it for DoA estimation.

Extended SLISTA has two advantages when applied to
DoA estimation in the FMCW MIMO radar. The first
advantage of SLISTA is that the network learns parameters in
an unsupervised manner. Supervised learning is not feasible
because we only know the measurement Y, not the ground
truth X. The second advantage of SLISTA is that the network
has extremely few learnable parameters. For DoA estimation in
FMCW MIMO radar problems, the sensing matrix A has a
large size. LISTA and other works have many learnable pa-
rameters above the size of A (i.e., MGEGA), making network
learning difficult. SLISTA, on the other hand, learns only step
sizes

�
αðtÞ
�T

t¼1, so the number of learnable parameters is equal
to that of iterations (i.e., layers) T. SLISTA for solving (17) is
summarised in Algorithm 4.

4.2 | Proposed SLISTA‐based fast DoA
estimation

In this section, we explain how to extend SLISTA to the group
lasso to solve the DoA estimation problem in FMCW MIMO
radar. In our application, the recovered matrix X represents
four‐dimensional (range‐velocity‐azimuth‐elevation) data.
Each column in X represents a sparse vector in CGAGE con-
taining azimuth‐elevation information of targets corresponding
to one range‐velocity bin. To make the network input Y, we
crop the 2D‐FFT output of size NADC � Nc � M into WR �

WD � M, where WR and WD are window sizes along the range
and velocity axes, respectively. Then Y is reshaped into
CM�WRWD ; hence X ∈ CGAGE�WRWD .

Before optimising Equation (17), the objective function of
ISTA/FISTA/SLISTA, we must normalise input Y. Consider

the problem of optimising only the first term of Equation (17)
as follows:

X̂¼ arg min
X

1
2
kAX − Yk2F : ð22Þ

If we take γY instead of Y as input of Equation (22) for an
arbitrary nonzero constant γ ∈ C, the output will be γX̂. In
this case, we can always recover X through normalisation,
hence normalising Y before optimisation is unnecessary.
However, in Equation (17), the first and second terms differ
in the exponent; the first is quadratic, but the second is
linear. Because of the difference in exponent between the
two terms, the output will not be γX̂ when we take γY as
the input of Equation (17). This fact suggests that X can be
recovered entirely differently depending on the magnitude of
Y, which varies exponentially depending on the measure-
ment environment. Therefore, for robust DoA estimation,
the input scale of ISTA/FISTA/SLISTA must all be similar,
that is, Y should be normalised before applying DoA esti-
mation algorithms.

We normalise Y so that kYkmax ¼ 1, where the maximum
norm is defined as kYkmax ¼maxi;j

�
�Y½i;j�

�
�. Let the notation ~Y

denote the matrix before normalisation and Y denote the
matrix after normalisation. The relation between ~Y and Y is
expressed as follows:

Y ¼
1

~kYkmax

~Y: ð23Þ

If X is recovered from the normalised matrix Y, X has no
information about the original signal magnitude. To recon-
struct the signal magnitude, the recovered matrix must have a
scale of ~Y. Thus, the recovered matrix which has signal
strength information ~X is obtained as ~X¼ ~kYkmaxX.

We train SLISTA using back‐propagation in an unsuper-
vised manner. The network learns to solve the group lasso
from the experimental dataset fYig

Ntrain
i¼1 , where Ntrain repre-

sents the number of training samples. The loss function is the
sum of the objective function in Equation (17), which is
expressed as

LðΘÞ ¼
XNtrain

i¼1

�
1
2
kAf ðYi;ΘÞ − Yik

2
F þ λkf ðYi;ΘÞk2;1

�

; ð24Þ

where f(Y; Θ) is the sparse output of the SLISTA network with
learnable parameters Θ = {α(1), …, α(T)}.

Figure 3 shows the process using SLISTA as the DoA
estimation algorithm. Because other algorithms, such as ISTA/
FISTA/MFOCUSS, do not have learnable parameters, f(Yi; Θ)
should be changed to f(Yi) for those cases. Where MUSIC is
employed as the DoA estimation algorithm, normalisation is
not required; hence the normalisation process in Figure 3
should be eliminated.

Algorithm 4 SLISTA for solving (17)

8 - HONG ET AL.
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5 | EXPERIMENTAL RESULTS

5.1 | Measurement environment

In our experiments, we used the fast‐chirp FMCW MIMO
radar system, AWR2243 cascade [11], developed by Texas In-
struments. This radar uses 78.3 GHz as the centre frequency
and 2.53 GHz as the bandwidth. The number of transmit
antennas and receive antennas is 12 and 16, respectively,
forming a total of 192 (i.e., MTMR = 192) virtual antennas
according to the MIMO principle. Because some MIMO vir-
tual array elements are duplicated in the same location, we only
used 134 virtual antennas (i.e., M = 134), excluding overlapped
58 cases. The positions of the MIMO virtual array elements are
shown in Figure 4. In addition, a total of 64 chirps were used,
and 256 ADC samples were obtained from each chirp. Table 1
summarises the specifications of the radar system we used.

We define grid points in the azimuth and elevation di-
rections as explained in Section 3. As shown in the MIMO
virtual array in Figure 4, the horizontal (i.e., in x‐axis) and
vertical (i.e., in z‐axis) apertures are 85 and 6 times the half
wavelength, respectively. Suppose the angle‐FFT is applied in a
uniform linear array, whose aperture is 85 times the half‐
wavelength. In that case, the grid size GA is 86, and sine
values sin ϕ1:86 are equidistant, that is, ϕp = arcsin(−1 + 2p/86).
Similarly, we obtain θq = arcsin(−1 + 2q/7). To achieve super‐
resolution, we made the grids finer than in this case. Consid-
ering that the beam pattern of the antenna does not cover all
DoAs, we took sin ϕp ∈ [−0.8, 0.8] and sin θq ∈ [−0.5, 0.5].
Moreover, we set GA and GE to 128 and 8, which are greater
than 86 and 7, respectively. The grid points for achieving super‐
resolution are defined as

ϕp ¼ arcsin
�

− 0:8þ
1:6
128

p
�

; ðp ≤ 128; p ∈ NÞ; ð25Þ

and

θq ¼ arcsin
�

− 0:5þ
1:0
8

q
�

; ðq ≤ 8; q ∈ NÞ: ð26Þ

Our purpose is to train the network to optimise the loss
function (24), but only a few range‐velocity bins correspond to

the actual target (i.e., most of the range‐velocity bins corre-
spond to the empty space); hence, a small number of Ŷs are
appropriate for training. Therefore, we created a training set
with only Ŷs where the radar target existed. As this approach
reduces the amount of data, we use data augmentation to avoid
overfitting.

First, we normalised and applied FISTA to Ŷs obtained by

the experiment. Among the output X̂s
�
X̂ ∈ CGAGE�L

�
, the

signals corresponding to the actual target are nonzero rows.
Because the l2‐norm of nonzero rows represents the signal
strength from corresponding DoAs, we collected 100 nonzero
rows with the largest l2‐norm of X̂s. Then, we created virtual
ground truths (i.e., X̂s) by rearranging those nonzero rows. In
other words, we randomly selected one to five of the 100 rows
and placed them in random rows of a zero matrix. Finally, Y
for unsupervised learning was obtained by multiplying the
virtual X and A. By repeating this process 100 times for each
number of targets, we got Ntrain = 500. SLISTA was trained
using the RMSprop optimiser [71] with a learning rate of 10−4

for five epochs, until the loss function (24) converged.

F I GURE 3 Block diagram of the proposed DoA estimation process
with normalisation. The input is the ADC output (i.e., b[m, n]), and the
output is the DoA estimation result (i.e., bX). The network f(Yi; Θ) is trained
with examples from the experimental dataset F I GURE 4 Positions of M = 134 virtual array elements in the

multiple‐input multiple‐output (MIMO) antenna system

TABLE 1 Specifications of the multiple‐input multiple‐output
(MIMO) radar

Parameters Values

Centre frequency, fc 78.3 GHz

Bandwidth, B 2.53 GHz

Sweep slope, S 79.0 MHz/μs

Chirp period, ΔTc 46 μs

Sampling period, ΔTs 0.125 μs

The number of transmit antennas, MT 12

The number of receive antennas, MR 16

The number of non‐duplicated antennas, M 134

The number of chirps, NC 64

The number of ADC samples, NADC 256

Size of range bin, Δr 5.93 cm

Size of velocity bin, Δv 5.42 cm/s

HONG ET AL. - 9
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We implemented all our algorithms in Python 3.7.6, using
the PyTorch 1.9.0 package. These algorithmswere performed on
a graphic processing unit, NVIDIA RTX 2070 SUPER. When
executing MUSIC with jsuppðXÞj ¼ 3 in this environment, the

average execution time for each inputY ∈ C134�16 was 11.31ms.
We found that ISTA/FISTA/SLISTA took a shorter execution
time than MUSIC when the iteration number T was less than 6,
so we set T = 4. We also set λ = 5.

F I GURE 5 Experimental scenarios in the parking lot when the direction of movement and the boresight of the radar are parallel (a), perpendicular (b), and
the point cloud generation results (c). The left half of (c) is the result in environment (a), and the right half of (c) is the result in environment (b)

10 - HONG ET AL.
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Using this radar system, radar signal measurements were
conducted in two different environments. In the first envi-
ronment, we measured radar signals in a parking lot with cars,
as shown in Figure 5a,b. The data were collected with the radar
changing its position 16 times by 0.5 m increments along a
straight line. Figure 5a shows a scenario in which the direction
of the radar movement is parallel to the radar's boresight, and
Figure 5b shows a scenario in which they are perpendicular. In
the second environment, we measured signals of three corner
reflectors at a similar range, as shown in Figure 6. In the
following section, we compare the performance of the algo-
rithms by synthesising images generated from the data
measured at each location.

5.2 | DoA estimation results

5.2.1 | Experiment in the parking lot

To evaluate the performance of the proposed method, we
visualised the detected point clouds for the parking lot, as
shown in Figure 5c. As shown in the figure, ISTA and FISTA
have poorer elevation estimation accuracy than SLISTA or
MFOCUSS. From the top view, we can observe that SLISTA
and MFOCUSS are more precise than ISTA or FISTA at the
edges of parked cars. Therefore, SLISTA also exhibits good
imaging performance for actual targets on the road. To
compare with the proposed method, we implemented MUSIC
and SOMP on the data for the parking lot scenario, as shown
in Figure 5c. MUSIC does not recover X, as in SOMP, but only
the nonzero indices of X. We assume that all nonzero values of
X recovered to MUSIC have the same value. As shown in
Figure 5c, MUSIC and SOMP detected more targets than
actually existed. Thus, we set the support of X, the input
required for MUSIC and SOMP, to 1 (i.e., supp(X) = 1 in

MUSIC and T = 1 in SOMP). Note that each point in SOMP is
imaged in the same size scale as in ISTA/FISTA/SLISTA/
MFOCUSS.

In Figure 5c, MUSIC and SOMP both imaged targets that
did not exist. According to the photographs and imaging re-
sults of ISTA/FISTA/SLISTA/MFOCUSS, parking lots
should have no targets other than cars and walls. However,
MUSIC and SOMP have formed points in many places where
there are no targets, including just in front of the radar's
boresight. These false detections can be a severe problem
when generating radar point clouds for autonomous driving.
This problem occurs because both MUSIC and SOMP assume
that supp(X) = 1. Even if the target does not exist (i.e., X = 0),
MUSIC and SOMP generated false detections due to inter-
ference and noise. On the other hand, because the methods of
solving the group lasso (i.e., ISTA/FISTA/SLISTA/MFO-
CUSS) do not require information about support and their
objective functions have regularisation terms, they form points
only where actual targets exist.

5.2.2 | Experiment with corner reflectors

In this section, we analyse the performance of the algorithms
in the following aspects. First, we measured the execution
time of the algorithms, from obtaining ~Y to generating ~X.
The average execution time for ISTA/FISTA/SLISTA/
MFOCUSS is shown in the bottom line of Table 2. Second,
in a corner reflector measurement experiment, we evaluated
how sharply the corner reflector is imaged. Radar‐imaged
corner reflector should theoretically have only one range
and DoA [72], which implies that most nonzero values are
concentrated in considerably few indices of ~X. To evaluate
the sharpness, we calculated the ratio of the Frobenius norm
to the l1,1‐norm of ~X, that is, ~kXkF= ~kXk1;1. A high ratio
implies that the corner reflectors are sharply imaged. Because
corner reflectors were imaged in range bins 141–144 (i.e.,
8.36–8.54 m), and 145–148 (i.e., 8.60–8.78 m), we calculated

~kXkF= ~kXk1;1 in both ranges. These ratios are shown in Ta-
ble 2. The execution time section of Table 2 shows that
ISTA, FISTA, and SLISTA have less than 11.32 ms of
MUSIC. By comparison, we can observe that MFOCUSS has
a quite large execution time compared to MUSIC. In terms of
sharpness (i.e., ~kXkF= ~kXk1;1), SLISTA shows better accuracy
than ISTA or FISTA, and worse accuracy than MFOCUSS.
Thus, the proposed algorithm, which applies SLISTA to the
group lasso, yields the best imaging results among algorithms
that are faster than MUSIC.

TABLE 2 Direction of arrival (DoA) estimation performance

Range bins (ranges) ISTA FISTA SLISTA MFOCUSS (T = 1) MFOCUSS (T = 4) MUSIC

~kXkF
~kXk1;1

141–144 (8.36–8.54 m) 0.190 0.195 0.288 0.080 0.430 N/A

145–148 (8.60–8.78 m) 0.271 0.261 0.360 0.132 0.503 N/A

Execution time (ms) 7.20 8.08 8.57 11.813 45.5 11.32

F I GURE 6 Measurement environment with the fast‐chirp frequency‐
modulated continuous wave (FMCW) multiple‐input multiple‐output
(MIMO) radar

HONG ET AL. - 11
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To further analyse the performance of algorithms, we
visualised the point clouds for corner reflectors in Figure 7.
The actual location of the corner reflectors are indicated by red
circles. The size of each point is proportional to the log of the
absolute value of each entry of X. Ideally, there should be only
three points in the middle, where the actual targets (i.e., three
corner reflectors) exist. If the number of iterations is small,
many points are imaged where the actual target does not exist.
As the number of iterations increased, the point clouds pro-
gressively converged into the positions of each corner re-
flectors. Comparing the number of imaged points at T = 4,
SLISTA and MFOCUSS showed better DoA estimation per-
formance than ISTA and FISTA. Note that ISTA and FISTA
formed many points with an incorrect elevation because of the

poor elevation resolution. SLISTA showed better results
because the step size was determined considering T = 4 and
the probabilistic distribution of the target information, whereas
ISTA and FISTA did not consider these factors and decided
the step size based only on A.

In this section, the performance of the DoA estimation
was evaluated using experimental data for each algorithm. We
explained that MUSIC and SOMP have the disadvantage of
generating false detections compared to the convex relaxation‐
based methods by comparing the results in Figure 5c. More-
over, Table 2 and Figure 7 show that SLISTA generates the
best image with less execution time than MUSIC among
methods solving the group lasso (i.e., convex relaxation‐based
approaches).

F I GURE 7 Point cloud generation results for three corner reflectors. The actual location of the corner reflectors is indicated by red circles

12 - HONG ET AL.
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6 | CONCLUSION

The main findings of this study can be summarised in two
points. First, the DoA estimation for point cloud generation in
the FMCW MIMO radar was defined as the group lasso
problem. Second, the extended SLISTA for the MMV problem
had excellent imaging performance for less computational time
than the widely used algorithm, MUSIC. To validate our
findings, we collected actual radar data and applied six different
DoA estimation algorithms to compare their performances.
Experimental results showed that greedy and subspace
methods suffered from false detection problems, whereas al-
gorithms solving the group lasso did not. The experimental
results also numerically demonstrated that the imaging accu-
racy of the extended SLISTA outperformed ISTA/FISTA/
MFOCUSS. We expect the proposed method to effectively
reduce the time consumed for DoA estimation in the FMCW
MIMO radar system.

ACKNOWLEDGEMENTS
This work was supported by the Technology Innovation
Program (or Industrial Strategic Technology Development
Program, No. 20014098, Development of 4D Imaging Radar
Sensor Module for Autonomous Driving) funded By the
Ministry of Trade, Industry & Energy (MOTIE, Korea).

CONFLICT OF INTEREST
There is no conflict of interest.

DATA AVAILABILITY STATEMENT
Research data are not shared.

ORCID
Seongwook Lee https://orcid.org/0000-0001-9115-4897

REFERENCES
1. Zang, S., et al.: The impact of adverse weather conditions on autono-

mous vehicles: how rain, snow, fog, and hail affect the performance of a
self‐driving car. IEEE Veh. Technol. Mag. 14(2), 103–111 (2019).
https://doi.org/10.1109/mvt.2019.2892497

2. Chang, K., et al.: A w‐band single‐chip transceiver for FMCW radar. In:
IEEE 1993 Microwave and Millimeter‐Wave Monolithic Circuits Sym-
posium Digest of Papers, pp. 41–44. IEEE, Washington (1993)

3. Sun, S., Petropulu, A.P., Poor, H.V.: MIMO radar for advanced driver‐
assistance systems and autonomous driving: advantages and challenges.
IEEE Signal Process. Mag. 37(4), 98–117 (2020). https://doi.org/10.
1109/msp.2020.2978507

4. Li, J., Stoica, P.: MIMO radar with colocated antennas. IEEE Signal
Process. Mag. 24(5), 106–114 (2007). https://doi.org/10.1109/msp.2007.
904812

5. Rao, S.: MIMO radar. Texas Instruments Application Report, pp. 1–12
(2017)

6. Awr1642 single‐chip 77‐ and 79‐GHz FMCW radar sensor datasheet
(rev. b) (2019)

7. Iwr1642 single‐chip 77‐ and 79‐GHz FMCW radar sensor datasheet
(rev. b) (2018)

8. 24 GHz radar kit (2tx + 4rx) dk‐sr‐2400e and sr‐2400e: FMCW‐radar
with ethernet interface (2019)

9. 24 GHz FMCW‐radar kit development kit dk‐sr‐1800e with PC software
sentool. (2017)

10. 24 GHz radar kit (1tx + 4rx) dk‐sr‐14mpc and sr‐14mpc: FMCW‐radar
with can‐bus interface (2019)

11. Texas Instruments: AWR2243 Single‐Chip 76‐ to 81‐GHz FMCW
Transceiver datasheet (Rev. A) (2020)

12. Palffy, A., et al.: CNN based road user detection using the 3D radar cube.
IEEE Rob. Autom. Lett. 5(2), 1263–1270 (2020). https://doi.org/10.
1109/lra.2020.2967272

13. Gao, X., et al.: Ramp‐CNN: a novel neural network for enhanced
automotive radar object recognition. IEEE Sensor. J. 21(4), 5119–5132
(2020). https://doi.org/10.1109/jsen.2020.3036047

14. Pérez, R., et al.: Single‐frame vulnerable road users classification with a
77 GHz FMCW radar sensor and a convolutional neural network. In:
2018 19th International Radar Symposium (IRS), pp. 1–10. IEEE,
Washington (2018)

15. Hong, S., et al.: Radar signal decomposition in steering vector space for
multi‐target classification. IEEE Sensor. J. 21(22), 25843–25852 (2021).
https://doi.org/10.1109/jsen.2021.3116712

16. Schmidt, R.: Multiple emitter location and signal parameter estimation.
IEEE Trans. Antenn. Propag. 34(3), 276–280 (1986). https://doi.org/10.
1109/tap.1986.1143830

17. Roy, R., Kailath, T.: Esprit‐estimation of signal parameters via rotational
invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7),
984–995 (1989). https://doi.org/10.1109/29.32276

18. Xu, G., et al.: Beamspace esprit. IEEE Trans. Signal Process. 42(2),
349–356 (1994). https://doi.org/10.1109/78.275607

19. Haardt, M., Nossek, J.A.: Unitary esprit: how to obtain increased esti-
mation accuracy with a reduced computational burden. IEEE Trans.
Signal Process. 43(5), 1232–1242 (1995). https://doi.org/10.1109/78.
382406

20. Zoltowski, M.D., Haardt, M., Mathews, C.P.: Closed‐form 2‐d angle
estimation with rectangular arrays in element space or beamspace via
unitary esprit. IEEE Trans. Signal Process. 44(2), 316–328 (1996).
https://doi.org/10.1109/78.485927

21. Jing, X., Du, Z.C.: An improved fast root‐music algorithm for DoA
estimation. In: 2012 International Conference on Image Analysis and
Signal Processing, pp. 1–3. IEEE, Washington (2012)

22. Chen, T., Wu, H., Liu, L.: A joint Doppler frequency shift and DoA
estimation algorithm based on sparse representations for colocated
TDM‐MIMO radar. J. Appl. Math. 1–9 (2014). https://doi.org/10.1155/
2014/421391

23. Zheng, C., Chen, H., Wang, A.: High angular resolution for 77 GHz
FMCW radar via a sparse weighted quadratic minimization. IEEE
Sensor. J. 21(9), 10637–10646 (2021). https://doi.org/10.1109/jsen.2021.
3060428

24. Belfiori, F., et al.: Digital beam forming and compressive sensing based
DoA estimation in mimo arrays. In: 2011 8th European Radar Confer-
ence, pp. 285–288. IEEE, Washington (2011)

25. Chen, L., Bi, D., Pan, J.: Two‐dimensional angle estimation of two‐parallel
nested arrays based on sparse Bayesian estimation. Sensors. 18(10), 3553
(2018). https://doi.org/10.3390/s18103553

26. Ni, Z., Huang, B., Cao, M.: Angular positions estimation of spatially
extended targets for MIMO radar using complex spatiotemporal sparse
Bayesian learning. IEEE Access. 7, 94473–94480 (2019). https://doi.
org/10.1109/access.2019.2926442

27. Chen, J., et al.: Iterative reweighted proximal projection based DoA
estimation algorithm for monostatic mimo radar. Signal Process. 172,
107537 (2020). https://doi.org/10.1016/j.sigpro.2020.107537

28. Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: interpretable, efficient
deep learning for signal and image processing. IEEE Signal Process. Mag.
38(2), 18–44 (2021). https://doi.org/10.1109/msp.2020.3016905

29. Ablin, P., et al.: Learning step sizes for unfolded sparse coding. Adv.
Neural Inf. Process. Syst. 32, 13100–13110 (2019)

30. Bredies, K., Lorenz, D.: Iterative Soft‐Thresholding Converges Linearly.
Citeseer, Princeton (2007)

31. Yuan, M., Lin, Y.: Model selection and estimation in regression with
grouped variables. J. Roy. Stat. Soc. B Stat. Methodol. 68(1), 49–67 (2006).
https://doi.org/10.1111/j.1467‐9868.2005.00532.x

HONG ET AL. - 13

 17518792, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rsn2.12319 by C

hung-A
ng U

niversity, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-9115-4897
https://orcid.org/0000-0001-9115-4897
https://doi.org/10.1109/mvt.2019.2892497
https://doi.org/10.1109/msp.2020.2978507
https://doi.org/10.1109/msp.2020.2978507
https://doi.org/10.1109/msp.2007.904812
https://doi.org/10.1109/msp.2007.904812
https://doi.org/10.1109/lra.2020.2967272
https://doi.org/10.1109/lra.2020.2967272
https://doi.org/10.1109/jsen.2020.3036047
https://doi.org/10.1109/jsen.2021.3116712
https://doi.org/10.1109/tap.1986.1143830
https://doi.org/10.1109/tap.1986.1143830
https://doi.org/10.1109/29.32276
https://doi.org/10.1109/78.275607
https://doi.org/10.1109/78.382406
https://doi.org/10.1109/78.382406
https://doi.org/10.1109/78.485927
https://doi.org/10.1155/2014/421391
https://doi.org/10.1155/2014/421391
https://doi.org/10.1109/jsen.2021.3060428
https://doi.org/10.1109/jsen.2021.3060428
https://doi.org/10.3390/s18103553
https://doi.org/10.1109/access.2019.2926442
https://doi.org/10.1109/access.2019.2926442
https://doi.org/10.1016/j.sigpro.2020.107537
https://doi.org/10.1109/msp.2020.3016905
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://orcid.org/0000-0001-9115-4897


32. Winkler, V.: Range Doppler detection for automotive FMCW radars. In:
2007 European Radar Conference, pp. 166–169. IEEE, Washington
(2007)

33. Friedlander, B.: On the relationship between MIMO and SIMO radars.
IEEE Trans. Signal Process. 57(1), 394–398 (2008). https://doi.org/10.
1109/tsp.2008.2007106

34. Wang, X., et al.: A sparse representation scheme for angle estimation in
monostatic mimo radar. Signal Process. 104, 258–263 (2014). https://
doi.org/10.1016/j.sigpro.2014.04.007

35. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applica-
tions. Cambridge University Press, Cambridge (2012)

36. Breiman, L.: Better subset regression using the nonnegative garrote.
Technometrics. 37(4), 373–384 (1995). https://doi.org/10.1080/
00401706.1995.10484371

37. Couvreur, C., Bresler, Y.: On the optimality of the backward greedy al-
gorithm for the subset selection problem. SIAM J. Matrix Anal. Appl.
21(3), 797–808 (2000). https://doi.org/10.1137/s0895479898332928

38. Mallows, C.L.: Some comments on cp. Technometrics. 42(1), 87–94
(2000). https://doi.org/10.1080/00401706.2000.10485984

39. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation.
IEEE Trans. Inf. Theor. 50(10), 2231–2242 (2004). https://doi.org/10.
1109/tit.2004.834793

40. Donoho, D.L., Elad, M.: Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization. Proc. Natl. Acad. Sci.
USA. 100(5), 2197–2202 (2003). https://doi.org/10.1073/pnas.
0437847100

41. Tropp, J., et al.: Signal recovery from partial information via orthogonal
matching pursuit. IEEE Trans. Inf. Theor. 53(12), 4655–4666 (2007).
https://doi.org/10.1109/tit.2007.909108

42. Chen, J., Huo, X.: Sparse representations for multiple measurement
vectors (MMV) in an over‐complete dictionary. In: Proceedings
(ICASSP’05). IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2005, vol. 4, pp. iv–257. IEEE, Washington
(2005)

43. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive
sensing. SIAM J. Numer. Anal. 49(6), 2543–2563 (2011). https://doi.org/
10.1137/100806278

44. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed
sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009). https://
doi.org/10.1016/j.acha.2009.04.002

45. Blumensath, T., Davies, M.E.: Normalized iterative hard thresholding:
guaranteed stability and performance. IEEE J. Sel. Topics Signal
Process. 4(2), 298–309 (2010). https://doi.org/10.1109/jstsp.2010.
2042411

46. Needell, D., Tropp, J.A.: Cosamp: iterative signal recovery from incom-
plete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3),
301–321 (2009). https://doi.org/10.1016/j.acha.2008.07.002

47. Blanchard, J.D., et al.: Greedy algorithms for joint sparse recovery. IEEE
Trans. Signal Process. 62(7), 1694–1704 (2014). https://doi.org/10.1109/
tsp.2014.2301980

48. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous
sparse approximation. Part I: greedy pursuit. Signal Process. 86(3),
572–588 (2006). https://doi.org/10.1016/j.sigpro.2005.05.030

49. Muthukrishnan, S.: Data streams: Algorithms and Applications. Now
Publishers Inc, Delft (2005)

50. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis
pursuit. SIAM Rev. 43(1), 129–159 (2001). https://doi.org/10.1137/
s003614450037906x

51. Cotter, S.F., et al.: Sparse solutions to linear inverse problems with
multiple measurement vectors. IEEE Trans. Signal Process. 53(7),
2477–2488 (2005). https://doi.org/10.1109/tsp.2005.849172

52. Tropp, J.A.: Algorithms for simultaneous sparse approximation. Part II:
convex relaxation. Signal Process. 86(3), 589–602 (2006). https://doi.
org/10.1016/j.sigpro.2005.05.031

53. Zdunek, R., Cichocki, A.: Improved m‐focuss algorithm with over-
lapping blocks for locally smooth sparse signals. IEEE Trans. Signal
Process. 56(10), 4752–4761 (2008). https://doi.org/10.1109/tsp.2008.
928160

54. Hyder, M.M., Mahata, K.: A robust algorithm for joint‐sparse recovery.
IEEE Signal Process. Lett. 16(12), 1091–1094 (2009). https://doi.org/
10.1109/lsp.2009.2028107

55. Hu, Y., et al.: Group sparse optimization via lp, q regularization. J. Mach.
Learn. Res. 18(1), 960–1011 (2017)

56. Usman, M., et al.: k‐t group sparse: a method for accelerating dynamic
MRI. Magn. Reson. Med. 66(4), 1163–1176 (2011). https://doi.org/10.
1002/mrm.22883

57. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic
regression. J. Roy. Stat. Soc. B. 70(1), 53–71 (2008). https://doi.org/10.
1111/j.1467‐9868.2007.00627.x

58. Yang, H., et al.: Online learning for group lasso. In: ICML (2010)
59. Wang, Y., Li, X., Ruiz, R.: Weighted general group lasso for gene selection

in cancer classification. IEEE Trans. Cybern. 49(8), 2860–2873 (2018).
https://doi.org/10.1109/tcyb.2018.2829811

60. Bach, F.R.: Consistency of the group lasso and multiple kernel learning. J.
Mach. Learn. Res. 9(6), 1179–1225 (2008)

61. Beck, A., Teboulle, M.: A fast iterative shrinkage‐thresholding algorithm
for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009).
https://doi.org/10.1137/080716542

62. Taylor, A.B., Hendrickx, J.M., Glineur, F.: Exact worst‐case performance
of first‐order methods for composite convex optimization. SIAM J.
Optim. 27(3), 1283–1313 (2017). https://doi.org/10.1137/16m108104x

63. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding.
In: Proceedings of the 27th International Conference on International
Conference on Machine Learning, pp. 399–406 (2010)

64. Sprechmann, P., et al.: Supervised sparse analysis and synthesis operators.
Adv. Neural Inf. Process. Syst. 26, 908–916 (2013)

65. Giryes, R., et al.: Tradeoffs between convergence speed and recon-
struction accuracy in inverse problems. IEEE Trans. Signal Process.
66(7), 1676–1690 (2018). https://doi.org/10.1109/tsp.2018.2791945

66. Yang, Y., et al.: ADMM‐net: a deep learning approach for compressive
sensing MRI. arXiv preprint arXiv:170506869 (2017)

67. Moreau, T., Bruna, J.: Understanding trainable sparse coding via matrix
factorization. arXiv preprint arXiv:160900285 (2016)

68. Chen, X., et al.: Theoretical linear convergence of unfolded ISTA and
its practical weights and thresholds. arXiv preprint arXiv:180810038
(2018)

69. Ito, D., Takabe, S., Wadayama, T.: Trainable ISTA for sparse signal re-
covery. IEEE Trans. Signal Process. 67(12), 3113–3125 (2019). https://
doi.org/10.1109/tsp.2019.2912879

70. Liu, J., Chen, X.: ALISTA: Analytic weights are as good as learned
weights in LISTA. In: International Conference on Learning Represen-
tations (ICLR) (2019)

71. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine
learning lecture 6A overview of mini‐batch gradient descent. Cited on
14(8), 2 (2012)

72. Latmira, G., Sposito, A.: Radar corner reflector for linear or circular
polarization. J. Res. NBS D 66, 23–29 (1962)

How to cite this article: Hong, S., Kim, S.‐C., Lee, S.:
Advanced direction of arrival estimation using step‐
learnt iterative soft‐thresholding for frequency‐
modulated continuous wave multiple‐input multiple‐
output radar. IET Radar Sonar Navig. 17(1), 2–14
(2023). https://doi.org/10.1049/rsn2.12319

14 - HONG ET AL.

 17518792, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rsn2.12319 by C

hung-A
ng U

niversity, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/tsp.2008.2007106
https://doi.org/10.1109/tsp.2008.2007106
https://doi.org/10.1016/j.sigpro.2014.04.007
https://doi.org/10.1016/j.sigpro.2014.04.007
https://doi.org/10.1080/00401706.1995.10484371
https://doi.org/10.1080/00401706.1995.10484371
https://doi.org/10.1137/s0895479898332928
https://doi.org/10.1080/00401706.2000.10485984
https://doi.org/10.1109/tit.2004.834793
https://doi.org/10.1109/tit.2004.834793
https://doi.org/10.1073/pnas.0437847100
https://doi.org/10.1073/pnas.0437847100
https://doi.org/10.1109/tit.2007.909108
https://doi.org/10.1137/100806278
https://doi.org/10.1137/100806278
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1016/j.acha.2009.04.002
https://doi.org/10.1109/jstsp.2010.2042411
https://doi.org/10.1109/jstsp.2010.2042411
https://doi.org/10.1016/j.acha.2008.07.002
https://doi.org/10.1109/tsp.2014.2301980
https://doi.org/10.1109/tsp.2014.2301980
https://doi.org/10.1016/j.sigpro.2005.05.030
https://doi.org/10.1137/s003614450037906x
https://doi.org/10.1137/s003614450037906x
https://doi.org/10.1109/tsp.2005.849172
https://doi.org/10.1016/j.sigpro.2005.05.031
https://doi.org/10.1016/j.sigpro.2005.05.031
https://doi.org/10.1109/tsp.2008.928160
https://doi.org/10.1109/tsp.2008.928160
https://doi.org/10.1109/lsp.2009.2028107
https://doi.org/10.1109/lsp.2009.2028107
https://doi.org/10.1002/mrm.22883
https://doi.org/10.1002/mrm.22883
https://doi.org/10.1111/j.1467-9868.2007.00627.x
https://doi.org/10.1111/j.1467-9868.2007.00627.x
https://doi.org/10.1109/tcyb.2018.2829811
https://doi.org/10.1137/080716542
https://doi.org/10.1137/16m108104x
https://doi.org/10.1109/tsp.2018.2791945
https://doi.org/10.1109/tsp.2019.2912879
https://doi.org/10.1109/tsp.2019.2912879
https://doi.org/10.1049/rsn2.12319

	Advanced direction of arrival estimation using step‐learnt iterative soft‐thresholding for frequency‐modulated continuous w ...
	1 | INTRODUCTION
	2 | FUNDAMENTALS OF FMCW MIMO RADAR SYSTEMS
	2.1 | Range and velocity estimation
	2.2 | DoA estimation

	3 | INTERPRETATION OF DoA ESTIMATION AS COMPRESSIVE SENSING
	3.1 | CS‐based DoA estimation in FMCW MIMO radar
	3.2 | Formulation of MMV problem and conventional approaches

	4 | PROPOSED CS‐BASED DoA ESTIMATION IN FMCW MIMO RADAR
	4.1 | Basic concept of ISTA
	4.2 | Proposed SLISTA‐based fast DoA estimation

	5 | EXPERIMENTAL RESULTS
	5.1 | Measurement environment
	5.2 | DoA estimation results
	5.2.1 | Experiment in the parking lot
	5.2.2 | Experiment with corner reflectors


	6 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT


