
Citation: Lee, J.; Jeong, D.; Lee, S.;

Lee, M.; Lee, W.; Jung, Y. FPGA

Implementation of the Chirp-Scaling

Algorithm for Real-Time Synthetic

Aperture Radar Imaging. Sensors

2023, 23, 959. https://doi.org/

10.3390/s23020959

Academic Editor: Mateusz

Malanowski

Received: 4 December 2022

Revised: 10 January 2023

Accepted: 12 January 2023

Published: 14 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

FPGA Implementation of the Chirp-Scaling Algorithm for
Real-Time Synthetic Aperture Radar Imaging
Jaehyeon Lee 1 , Dongmin Jeong 2 , Seongwook Lee 1 , Myeongjin Lee 1,2 and Wookyung Lee 1

and Yunho Jung 1,2,*

1 School of Electronics and Information Engineering, Korea Aerospace University,
Goyang-si 10540, Republic of Korea

2 Department of Smart Air Mobility, Korea Aerospace University, Goyang-si 10540, Republic of Korea
* Correspondence: yjung@kau.ac.kr; Tel.: +82-2-300-0133

Abstract: Synthetic aperture radar (SAR), which can generate images of regions or objects, is an
important research area of radar. The chirp scaling algorithm (CSA) is a representative SAR imaging
algorithm. The CSA has a simple structure comprising phase compensation and fast Fourier transform
(FFT) operations by replacing interpolation for range cell migration correction (RCMC) with phase
compensation. However, real-time processing still requires many computations and a long execution
time. Therefore, it is necessary to develop a hardware accelerator to improve the speed of algorithm
processing. In addition, the demand for a small SAR system that can be mounted on a small aircraft
or drone and that satisfies the constraints of area and power consumption is increasing. In this study,
we proposed a CSA-based SAR processor that supports FFT and phase compensation operations and
presents field-programmable gate array (FPGA)-based implementation results. We also proposed a
modified CSA flow that simplifies the traditional CSA flow by changing the order in which the transpose
operation occurs. Therefore, the proposed CSA-based SAR processor was designed to be suitable for
modified CSA flow. We designed the multiplier for FFT to be shared for phase compensation, thereby
achieving area efficiency and simplifying the data flow. The proposed CSA-based SAR processor was
implemented on a Xilinx UltraScale+ MPSoC FPGA device and designed using Verilog-HDL. After
comparing the execution times of the proposed SAR processor and the ARM cortex-A53 microprocessor,
we observed a 136.2-fold increase in speed for the 4096 × 4096-pixel image.

Keywords: synthetic aperture radar (SAR); chirp-scaling algorithm (CSA); real-time processing;
systolic array processor; field programmable gate array (FPGA)

1. Introduction

The synthetic aperture radar (SAR) is an active sensor system that can acquire high-
resolution radar images, regardless of day or night, flight altitude, and weather, using a
microwave band [1–3]. Figure 1 shows the working principle of the SAR. In the SAR system,
a small antenna is mounted on a platform that moves along a flight path. The direction
of flight is also called the azimuth direction, and the range direction is perpendicular to
the azimuth direction. The direction of the antenna is a range direction, and it moves by
illuminating an area called a swath. Two-dimensional data on the azimuth and the range
are collected by transmitting and receiving pulses. The central idea of the SAR is based
upon matching filtering for both the azimuth and distance directions, which results in
high-resolution radar images. In addition, the SAR has the advantage of remote sensing, so
it plays a vital role in various fields, such as disaster emergency response, environmental
protection, and military applications [3–6]. Because the traditional SAR system requires
considerable computing resources and high power consumption, it has been mounted on
large platforms such as aircraft and satellites. However, recent advances in digital signal
processing and complementary metal oxide semiconductor (CMOS) technologies have

Sensors 2023, 23, 959. https://doi.org/10.3390/s23020959 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020959
https://doi.org/10.3390/s23020959
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6802-9115
https://orcid.org/0000-0003-1830-1840
https://orcid.org/0000-0001-9115-4897
https://orcid.org/0000-0002-3136-2819
https://orcid.org/0000-0003-2092-2048
https://orcid.org/0000-0003-2092-2048
https://doi.org/10.3390/s23020959
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020959?type=check_update&version=2

Sensors 2023, 23, 959 2 of 17

made it possible to develop small and lightweight SAR systems. Accordingly, research on
SAR systems with low power consumption and real-time processing is increasing [7–9].

Figure 1. Illustration of the working principle of SAR.

Operations for SAR imaging mainly include the fast Fourier transform (FFT), inverse
fast Fourier transform (IFFT), phase compensation, interpolation, etc., and the compu-
tational complexity of these operations is very high. Therefore, real-time SAR imaging
necessitates accelerating these operations on various computing platforms, such as the
central processing unit (CPU), the graphic processing unit (GPU), the field-programmable
gate array (FPGA), and application-specific integrated circuits (ASICs) [9–18]. CPU and
GPU provide high flexibility for software through various instructions and show high
performance in single and parallel processing, respectively. However, high power con-
sumption is still a severe challenge. On the other hand, FPGA has latency, throughput, and
power consumption advantages compared with CPU or GPU. In addition, it has gained
attention as a computing platform that can be used in various fields owing to its high
flexibility [19,20].

Several studies have been conducted on the implementation of SAR systems using
FPGAs. In 2004, Le et al. proposed an FPGA-based hardware architecture for a spaceborne
system to process the range-Doppler and space–time adaptive processing (STAP) algo-
rithms [9]. Greco et al. proposed an HW/SW interface framework to use FPGA resources
efficiently through an abstraction layer and verified it in SAR applications and confirmed
its performance [10]. Pfitzner et al. proposed an FPGA-based hardware architecture for
airborne, real-time SAR imaging with integrated first-order motion compensation (Mo-
Com) [11]. Lou et al. proposed a UAVSAR onboard processor for real-time and autonomous
operations. They demonstrated the use of UAVSAR data to determine the flood extent, for-
est fire extent, lava flow, and landslide [12]. Choi et al. proposed a range-Doppler algorithm
(RDA)-based SAR processor for real-time SAR imaging. In the case of RDA, interpolation
is performed for range cell migration correction (RCMC). Therefore, all operations of RDA
are accelerated by implementing an RCMC unit in addition to the FFT unit. However, the
FFT unit adopts a pipelined structure, so there is room for speed improvement [13].

The most commonly used SAR Imaging algorithms include range-Doppler, chirp
scaling, omega-K, polar format, and back projection. The RDA performs efficient imaging

Sensors 2023, 23, 959 3 of 17

through block processing in the range and azimuth frequency domains; however, the
complexity of interpolation for RCMC is very high. Therefore, the chirp-scaling algorithm
(CSA) was developed by replacing the interpolation of RDA with phase compensation.
CSA has a simple algorithm structure comprising FFT and phase compensation opera-
tions. In addition, CSA has an advantage of real-time imaging because it has the smallest
computational load compared with the RDA and omega-K algorithms [21].

Several studies have been conducted to implement CSA on various platforms. Zhang et al.
proposed a collaborative SAR imaging method that performs efficient task partitioning
and scheduling. The entire image can be generated using deep collaborative multiple
CPU–GPU computing. It acquired a 32,728 × 32,728-pixel image in 2.8 s [14]. Tang et al.
proposed a simulator for spaceborne SAR onboard imaging on mobile GPUs. It acquired a
4096 × 4096-pixel image in 14.97 s [15]. Wang et al. proposed a heterogeneous processor
consisting of fixed-point PE units and floating-point PE units. It acquired a 32,768 × 32,768-
pixel image in 32.9 s at a speed of 200 MHz [16]. Li et al. proposed a method that employs
single-instruction, multiple-data (SIMD) instructions and open multiprocessing (OpenMP)
technology on multicore SIMD CPU to realize parallel optimization on CSA [17]. Di et al.
proposed a schedulable and scalable multicore parallel architecture based on FPGA and
mapped the fundamental CSA to the system. It acquired a 1024 × 4096-pixel image in
12 s [18].

Among the CSA operations, FFT/IFFT operations account for the highest proportion.
Therefore, it is necessary to implement an FFT/IFFT processor for real-time imaging. The
hardware structure of the FFT processor is divided into the butterfly, pipeline, and systolic
array structures [22–24]. Butterfly and pipeline structures can be implemented with fewer
hardware resources but are unsuitable for high-speed operations. Therefore, a systolic
array-based FFT processor is suitable for real-time imaging [25,26]. Among the various
systolic array structures, the base-4 systolic array structure is arithmetically efficient and
has a good trade-off between area and speed [27,28]. Therefore, We adopted the base-4
systolic array structure.

In this paper, we propose a CSA-based SAR processor and present the results of accel-
erating the modified CSA flow, in which the order of transpose operation is changed in the
traditional CSA flow. The proposed CSA-based SAR processor was implemented based on a
base-4 systolic array architecture and can only perform FFT or FFT and phase compensation
operations simultaneously. Twiddle factor multiplication and phase compensation were
designed to share the same multiplier owing to their commonality of element-by-element
multiplication, which made it possible to simplify the data flow and achieve area efficiency.

The remainder of this paper is organized as follows: Section 2 reviews the CSA and
base-b FFT algorithm. Section 3 describes the modified CSA algorithm and the hardware
architecture of the proposed CSA-based SAR processor. Section 4 presents the proposed
processor’s implementation and the accelerated CSA results and compares the speed
performance with previous studies. Finally, Section 5 concludes the paper.

2. Background
2.1. Chirp Scaling Algorithm

The CSA is one of the most popular algorithms for SAR imaging. It is instrumental
because it can support strip-map, scan SAR, spotlight, sliding spotlight, tops, and mosaic
modes, along with other pre- and post-processing steps [29,30]. The CSA operation has
a simple algorithm structure comprising only FFT and phase compensation operations.
Because signal processing is possible in the two-dimensional frequency domain, it is
possible to solve the problem of secondary range compression (SRC), which depends
on azimuth frequency. The computational complexity was reduced by replacing the
interpolation operation for RCMC with phase compensation, which was performed in two
steps: differential RCMC and bulk RCMC.

The traditional CSA flow is shown in Figure 2. SAR images can be obtained using
four times FFT/IFFT and three times phase compensation operations. Differential RCMC

Sensors 2023, 23, 959 4 of 17

to achieve chirp scaling is performed with the first-phase function, and bulk RCMC and
range compression are performed using the second-phase function. Finally, the SAR image
can be obtained through the third-phase function by performing azimuth compression and
compensating for the residual phase.

Figure 2. Traditional CSA flow.

The transmission signal of a pulse-Doppler radar is assumed to be a linear frequency
modulation (FM) chirp signal. The signal converted into the range-Doppler domain through
the azimuth FFT is shown in Equation (1). Thus, all the targets in the same range of the
closest approach collapse into one trajectory in the azimuth frequency domain [31].

srd
(
τ, fη

)
= Awr

[
τ − 2R0

cD
(

fη , Vr
)]Wa

(
fη − fηc

)
× exp

[
−j

4π f0R0D
(

fη , Vr
)

c

]
× exp

jπKm

(
τ − 2R0

cD
(

fη , Vr
))2

 (1)

where τ is the range time, fη is the azimuth frequency, A is the complex constant, c is
the speed of light, D(.) is the migration factor in the range-Doppler domain, Vr is the
effective radar velocity, R0 is the slant range of closest approach, fηc is the azimuth FM rate
of the point target signal, f0 is the carrier frequency, and Km is the range FM of the point
target signal in the range-Doppler domain. To adjust the range movement of the trajectory

Sensors 2023, 23, 959 5 of 17

through the differential RCMC, phase compensation is performed using the first-phase
function expressed by Equation (2), and the result can be expressed as Equation (3).

ssc
(
τ′, fη

)
= exp

jπKm

D
(

fηre f , Vrre f

)
D
(

fη , Vrre f

)
(τ′)2

 (2)

where fηre f is the reference azimuth frequency, and Vrre f is the effective radar velocity in the
reference range.

s1
(
τ, fη

)
= ssc

(
τ′, fη

)
Srd
(
τ, fη

)
(3)

Equation (3) is transformed into a two-dimensional frequency domain with a range
FFT, resulting in the signal given by Equation (4). There are five exponential terms, and
compensation for these terms is performed through subsequent processing processes.

s2
(

fτ , fη

)
=A1Wr(fτ)Wa

(
fη − fηc

)
× exp

[
−j

4π f0R0D
(

fη , Vr
)

c

]

× exp

−j
πD
(

fη , Vr
)

KmD
(

fηre f , Vr

) f 2
τ

× exp

−j
4πR0

cD
(

fηre f , Vrre f

) fτ

× exp

−j
4π

c

 1

D
(

fη , Vrre f

) − 1

D
(

fηre f , VVre f

)
Rre f fτ

× exp

j
4πKm

c2

1−
D
(

fη , Vrre f

)
D
(

fηre f , Vrre f

)
×(R0

D
(

fη , Vr
) − Rre f

D
(

fη , Vr
))2

(4)

where A1 is the complex constant, and fτ is the range frequency. The second exponential
term represents the range modulation after the scaling and includes the range–azimuth
coupling corrected by the SRC. The fourth exponential term represents bulk range cell
migration. The second-phase function performs range compression, SRC, and bulk RCMC
by compensating for these two terms. The result is given by Equation (5).

s3
(

fτ , fη

)
= A1Wτ(fτ)Wa

(
fη − fηc

)
× exp

[
−j

4π f0R0D
(

fη , Vr
)

c

]
× exp

−j
4πR0

cD
(

fηre f , Vrre f

) fτ

× exp

j
4πKm

c2

1−
D
(

fη , Vrre f

)
D
(

fηre f , Vrre f

)
 ×(R0

D
(

fη , Vr
) − Rre f

D
(

fη , Vr
))2

(5)

Next, range IFFT is performed to transform the signal into the range-Doppler domain,
and the result is given by Equation (6).

s4
(
τ, fη

)
= A2 pr

τ − 2R0

cD
(

fηre f , Vrre f

)
Wa

(
fη , fηc

)
× exp

[
−j

4πR0 f0D
(

fη , Vr
)

c

]

× exp

j
4πKm

c2

1−
D
(

fη , Vrre f

)
D
(

fηre f , Vrre f

)
×(R0

D
(

fη , Vr
) − Rre f

D
(

fη , Vr
))2

 (6)

where A2 is the complex constant, and Pr(τ) is the range envelope. By multiplying
Equation (6) by the third-phase function, the first exponential term representing the az-
imuth modulation and the second exponential term representing the residual phases can

Sensors 2023, 23, 959 6 of 17

be compensated. Finally, azimuth IFFT is performed to transform the signal into the time
domain. The signal of the point target is given by Equation (7).

s5(τ, η) = A4 pr

τ − 2R0

cD
(

fηre f , Vrre f

)
Pa(η − ηc)× exp[jθ(τ, η)] (7)

where A4 is the complex constant, Pa(η) is the IFFT of the window Wa
(

fη

)
, and θ(τ, η) is

the target phase.

2.2. Base-b FFT Algorithm

We adopted a base-b FFT algorithm based on two levels of transform factorization to
compute the discrete Fourier transform (DFT) [28]. A DFT of length N is given by Equation (8).

Z(k) =
N−1

∑
n=0

Wnk
N X(n), n, k = 0, 1, · · · , N − 1 (8)

where X(n) are the time-domain input values, Z(k) are the frequency-domain outputs, and
Wnk

N is the twiddle factor, e−j 2π
N nk. The matrix form of Equation (8) is given by Equation (9).

Z = CX (9)

where C is the coefficient matrix containing the twiddle factor.
If the one-dimensional input data of length N can be decomposed into rows and columns,

N = N1N2, n, and k can be represented by Equation (10). By substituting Equation (10),
Equation (8) can be expressed as Equation (11).

n = n1 + N1n2, (0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2 − 1)

k = k1 + N1k2, (0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1)
(10)

Z(k1 + N1k2) =
N1−1

∑
n1=0

(
Wn1k1

N

N2−1

∑
n2=0

Wn2k1
N2

Wn2k2 N1
N2

X(n1 + N1n2)

)
Wn1k2

N2
(11)

Equation (11) can be simplified to Equation (12) by constraining N1/N2 as an integer

value such that Wn2k2 N1
N2

= e−j 2πn2k2 N1
N2 = 1.

Z(k1 + N1k2) =
N1−1

∑
n1=0

(
Wn1k1

N

N2−1

∑
n2=0

Wn2k1
N2

X(n1 + N1n2)

)
Wn1k2

N2
(12)

For any particular value of n and k, the inner parenthesis value of Equation (12) can
be evaluated in the dot product, as in Equation (13).

Y(k1, n1) = Wn1k1
N

[
W0

N2
Wk1

N2
W2k1

N2
. . . W(N2−1)k1

N2

]
×

X(n1)

X(n1 + N1)
X(n1 + 2N1)

...
X(n1 + (N2 − 1)N1)

 (13)

With Equation (13), Equation (12) becomes Equation (14):

Z(k1 + N1k2) =
N1−1

∑
n1=0

Y(k1, n1)W
n1k2
N2

(14)

Sensors 2023, 23, 959 7 of 17

The matrix form of Y is given by Equation (15). Y(k1, n1) values for all n1, k1 can
be expressed as a matrix of size N1 × N1. WM is a matrix of size N1 × N1 and represents
Wn1k1

N , and · means element-by-element multiplication. CM1 is a matrix of size N1 × N2

and represents Wn2k1
N2

. Because X representing X(n1 + N1n2) is a matrix of size N2 × N1, Y
becomes a matrix of size N1 × N1.

Y = WM · CM1X (15)

Similarly to Y, the Z can be calculated from the dot product, as shown in Equation (16).
Consequently, the matrix form for calculating Z is given by Equation (17).

Z(k1 + N1k2) =
[

W0
N2

Wk2
N2

W2k2
N2

. . . W(N2−1)k2
N2

]
×

Y(k1, 0)
Y(k1, 1)
Y(k1, 2)

...
Y(k1, (N1 − 1))

 (16)

Z = CM2Yt (17)

where CM2 is a coefficient matrix of size N2 × N1 and represents Wn1k2
N2

, which is equivalent
to the transpose of CM1. Z is a matrix of size N2 × N1 and represents the result of the DFT.

In the base-b FFT algorithm, b is the value of N2, which can be used as a different value
depending on the application. The base-b FFT algorithm is performed using two levels
of transform factorization for one-dimensional data of length N. The first factorization
is performed such that N = Nr Nc using the traditional row/column approach to lower
the computational complexity. The second factorization is performed to Nr = N1r N2 and
Nc = N1cN2. FFT is performed through Equations (15) and (17) using the factorized result
as an input.

FFT is performed in three steps. Column FFT is performed Nr times in the row
direction using column data with a length of Nc. Next, the result of column FFT is multiplied
by WN . Finally, row FFT is performed Nc times in the column direction for row data with
a length of Nr. In summary, after transforming the one-dimensional data into a two-
dimensional matrix of size Nr × Nc, column FFT, WN multiplication, and row FFT are
performed to obtain the FFT results.

3. Proposed HW Architecture

The CSA includes an FFT operation, which is a vector operation, and a phase compen-
sation operation, which is a scalar operation (element-by-element multiplication). Therefore,
for phase compensation, the desired result can be obtained by matching the axes of the
SAR data and the phase function. Figure 3 shows the phase compensation operation with
transposed data. The first row shows the operation results on the range axis, and the second
row shows the operation results on the azimuth axis. The transpose of the result in the
second row is the same as that in the first row.

By performing transpose for the phase function, we changed the order in which data
is transposed in the traditional CSA flow. Figure 4 shows the proposed modified CSA
flow. We transposed the third-phase function and changed the transpose operation of the
data from after range IFFT to after the third-phase compensation. The difference is that
the third-phase compensation was performed on the range axis. FFT/IFFT and phase
compensation operations were repeated three times as a new operation block, and then
azimuth IFFT was performed to obtain SAR images. In the modified CSA flow 2, because
the second and third blocks were both processed on the range axis, there was no need to
store the data in the external memory to transpose the data. Accordingly, modified flow 2,
which integrated the second and third blocks, was determined as the CSA processing flow.

Sensors 2023, 23, 959 8 of 17

Figure 3. Phase compensation operation with transposed data.

(a) (b)

Figure 4. Modified CSA flows: (a) modified 1; (b) modified 2.

Figure 5 shows the FFT and phase compensation procedure, which is a repeated opera-
tion block in the modified CSA flow. The block operation proceeded in the order of column
FFT, WN multiplication, row FFT, and phase compensation. Both the WN multiplication
and phase compensation operations were element-by-element multiplications. Therefore,
by repeating the row or column FFT and element-by-element multiplication twice, FFT and
phase compensation could be performed. Thus, the operation block was accelerated by

Sensors 2023, 23, 959 9 of 17

subdividing the FFT and the phase compensation operations into a row/column FFT and
element-by-element multiplications.

Figure 5. Procedure of FFT and phase compensation.

Figure 6 shows the hardware architecture of the proposed CSA-based SAR proces-
sor. We adopted a base-4 systolic array that best satisfies the trade-off between area and
execution time [27,28]. On the left, there is a bundle of processing element (PE) cells of
size (Nr/4)× 4 called left-hand side (LHS), and it is connected to a complex multiplier
of size (Nr/4)× 1 that multiplies WM. On the right, there is a bundle of PE cells of size
(Nr/4)× 4 called right-hand side, (RHS) and it is connected to four shared multipliers that
perform WN multiplication or phase compensation operations depending on their input.
At the bottom, there are four N/4-sized memories to store the resulting values. Because
both WM multiplication and phase compensation operations were element-by-element
multiplication, multipliers could be shared. In addition, both operations were performed
after the FFT, and the data flow was not disturbed. Therefore, we can achieve area efficiency
without using an additional multiplier for the phase compensation operation. Because the
proposed hardware supports a maximum of 4096-point operations, the LHS and RHS were
PE cells of 16× 4 size, and the complex multipliers for WM had a size of 16× 1.

Figure 6. Hardware architecture of the proposed CSA-based SAR processor.

Sensors 2023, 23, 959 10 of 17

The block operation proceeded in the following order: column FFT, WM multiplication,
row FFT, and phase compensation. First, the SAR data were transferred to the LHS
for column FFT, and matrix multiplication was performed with CM1 in the PE cell. By
transmitting this result to the WM multiplier, the result of Equation (15) was obtained.
Subsequently, the result was transferred to the RHS, and the result of Equation (17) was
obtained by performing matrix multiplication with CM2 input under the RHS. This result
was the same as that for column FFT. The result was transferred to the shared multiplier,
and multiplication with the WN was performed. Then, the result was stored in the memory.
The data stored in the memory were input to the LHS again in the row direction, and the
operation was similarly performed up to the RHS. The result of the RHS was the same as
that of FFT and transferred to the shared multiplier. However, unlike before, the phase
function was input to the shared multiplier to perform phase compensation. Finally, the
result for the FFT and phase compensation operation was stored in the memory.

If the phase factor is 1, it is possible to perform only FFT without phase compensation.
In a systolic array, PE cells are locally connected; each PE cell operates simultaneously,

and data are delivered to the connected PE cell. It is suitable for algorithms that require a
lot of computation because it has a local data flow, and multiple PE cells simultaneously
process the computations [25]. A representative operation that can be accelerated using a
systolic array is matrix multiplication. Figure 7 shows the two types of PE cells used in the
proposed CSA-based SAR processor. For LHS, the data were derived from the lower PE
cell, and multiplication and addition operations were performed in each PE cell. It passed
through all PE cells by passing the input and the resulting values to each connected PE
cell. If matrix A is sequentially input from the bottom, and the B matrix value exists inside
the PE cell, B× A can be obtained. For RHS, data were input from the bottom and left
cells simultaneously. Similarly, multiplication and addition operations were performed,
and the input and the resulting values were transferred to the connected PE cell. After
passing through all PE cells, A× B can be obtained. Using the PE array of these structures,
the FFT operation expressed by Equations (15) and (17) in a matrix form was performed.
Because matrix operations can be performed quickly through systolic arrays, FFT and
phase compensation were processed at high speed.

(a) (b)

Figure 7. Systolic Array Structure (a) LHS (Left Hand Side); (b) RHS (Right Hand Side).

Sensors 2023, 23, 959 11 of 17

4. Implementation and Acceleration Results

The proposed CSA-based SAR processor was configured on an FPGA platform using
an advanced extensible interface (AXI) bus interface for verification. Figure 8 shows the
FPGA platform, which includes a CSA-based SAR processor for FFT and phase compen-
sation operations. The system structure comprised a CSA-based SAR processor, master
interface to communicate with double data rate (DDR) memory, slave interface to communi-
cate with a microprocessor, and cache RAM to store input/output data and phase functions.
In addition, there was a register to change the operation mode because it supported the FFT
and IFFT modes and variable lengths from 64 to 4096. The master interface was connected
to the DDR memory controller via a 128-bit AXI bus, allowing the transfer of four 32-bit
data points per clock cycle. Therefore, it operated efficiently in the base-4 systolic structure,
in which four points of data were input in parallel.

Figure 8. FPGA platform for the verification of the proposed CSA-based SAR processor.

The proposed CSA-based SAR processor was implemented using a Verilog HDL on a
Xilinx Zynq UltraScale+ FPGA device. The CSA-based SAR processor was implemented
with 17,326 CLB registers, 31,025 CLB LUTs, 4 block RAMs, and 78 DSPs, as listed in
Table 1. The CSA-based SAR processor could process at a maximum operating frequency
of 235 MHz, and its power consumption was measured to be 1.31 W. Figure 9 shows the
verification environment of the FPGA platform.

When SAR data were loaded into the DDR memory to verify the CSA-based SAR
processor, the microprocessor sent a starting signal to the CSA-based SAR processor. The
DDR data were then transferred to the cache RAM through the master interface. The CSA-
based SAR processor performed azimuth FFT and first-phase compensation operations
and stored the result in the cache RAM; the result was transferred back to the DDR via the
master interface for the transpose operation. After the transpose operation, the range FFT
and second-phase compensation operations were similarly performed. According to the
modified CSA flow 2, transposing the result was unnecessary. Therefore, the result was
not transmitted to the DDR, and the CSA-based SAR processor performed range IFFT and
third-phase compensation operations on the data in the cache RAM and then transmitted
the result to the DDR. After performing the transpose operation again, the SAR image was
obtained by performing the same operation for the azimuth IFFT. Therefore, SAR images
can be obtained by performing four times CSA-based SAR processor operations.

Sensors 2023, 23, 959 12 of 17

Table 1. Implementation results based on the Xilinx Zynq UltraScale+ FPGA device.

Unit CLB Register CLB LUT Block RAM DSP Max. Operating
Clock Freq.

Systolic Array Unit 17,326 31,025 4 78 235 MHz

LHS 3972 3717 - 0 -
Wb Multiplier 2374 3160 - 62 -

RHS 9952 21,335 - 0 -
Shared Multiplier 950 2287 - 16 -

Figure 9. Verification environment for the proposed FPGA implementation.

Figures 10 and 11 show the imaging results for the four-point targets. Figure 10 shows
the results of imaging using the traditional CSA flow, and Figure 11 shows the results
using the modified CSA flow. The third-phase compensation of the modified CSA flow
was performed on the range axis, and the result of completing the range axis operation
is shown in Figure 11c. Therefore, as shown in Figure 11d, the imaging result can be
obtained through only the azimuth IFFT. However, for traditional CSA flow, a third-phase
compensation operation was performed on the azimuth axis. Figure 10c shows the result
of completing the range-axis operation, and Figure 10d shows the data of Figure 10c in the
time domain. The operation of the range axis was completed, but the azimuth compression
had not yet been performed, which was a distinct difference from the modified CSA flow.
We analyzed the peak signal-to-noise ratio (PSNR) [32] based on the numerical error and
structural similarity index map (SSIM) [33] based on the structural similarity of images as
metrics to evaluate the SAR image quality. The PSNR was measured at 35.44 dB, which is
higher than 30 dB, and the SSIM was measured at 0.9544.

Sensors 2023, 23, 959 13 of 17

(a) (b)

(c) (d) (e)

Figure 10. Point target simulation results with traditional CSA flow: (a) raw data in time domain;
(b) differential RCMC result in R/D domain; (c) range compression and bulk RCMC result in R/D
domain; (d) range compression and bulk RCMC result in time domain; (e) azimuth compression
result in time domain.

(a) (b)

(c) (d)

Figure 11. Point target simulation results with modified CSA flow: (a) raw data in time domain; (b) first
block result in R/D domain; (c) second block result in R/D domain; (d) third block result in time domain.

Sensors 2023, 23, 959 14 of 17

For validation using actual SAR data, we used the RADARSAR-1 dataset, an image
of Vancouver, Canada, from RADARSAT-1’s Fine Beam 2 [31]. The software processing
results using ARM Cortex-A53 were used as references to evaluate the image quality of the
proposed hardware results. Figure 12 shows the SAR images obtained after processing the
actual SAR data. The PSNR and SSIM were measured at 33.43 dB and 0.9466, respectively.
Compared with the results for point targets, PSNR and SSIM were slightly degraded
because actual SAR data contained clutter and interference. However, the image quality
was still good, as shown in Figure 12.

(a) (b)

Figure 12. SAR images derived using (a) ARM Cortex-A53-based SW and (b) the proposed
FPGA-based HW.

Table 2 presents the evaluation results of the CSA execution time. The acceleration
results obtained using the CSA-based SAR processor and ARM Cortex-A53 are presented
for various image sizes. According to the modified CSA flow, all CSA operations were
accelerated by the CSA-based SAR processor. The experimental results indicate that the
execution time decreased from about 267.56 s to 1.96 s for 4096 × 4096-pixel image, resulting
in a 136.2-fold acceleration.

Table 3 compares the execution times of the proposed CSA-based SAR processor
with previous studies performed on various computing platforms. Because the sizes
of the images presented by each study were different, the execution time per pixel is
additionally presented for comparison, and the unit is nanoseconds (ns). The authors
of [14] achieved the fastest speed using a combination of a CPU and GPU. However, the
power consumption was 345 W, which is unsuitable for small platforms. In [16], the authors
proposed an array-based heterogeneous processor. Each PE cell performed a four-point

Sensors 2023, 23, 959 15 of 17

butterfly operation, and 512 PE cells were used. Furthermore, additional multipliers were
used to perform the phase compensation operation. However, the proposed design did not
use other resources for phase compensation operations and used 128 PE cells. Assuming
that the 4-point butterfly unit used in [16] used 4 adders and 3 multipliers, 2048 adders
and 1536 multipliers were used. In contrast, each PE cell of the proposed design used 1
adder and 1 multiplier; thus, 128 adders and 128 multipliers were used. The difference
in the number of calculators used in the PE cell was 16 times for the adder and 12 times
the multiplier, which led to a significant difference in execution time (approximately 3.19
times). Therefore, the proposed design could achieve a faster speed per unit area than
that in [16]. A comparison of the results is presented in Table 4. Compared with [12,15,17],
the proposed architecture achieved a higher speed and consumed less power, making it
suitable for small SAR platforms.

Table 2. CSA execution time.

Image Size SW (s) HW (s) Speedup Ratio

256 × 256 0.74 0.0073 101.37
512 × 512 3.16 0.0297 106.40

1024 × 1024 13.92 0.1191 116.88
2048 × 2048 61.33 0.4796 127.88
4096 × 4096 267.56 1.9645 136.20

Table 3. Comparison with previous implementation.

Work Platform Operating Freq. Image Size Exec. Times (s) Power Exec. Time/Pixel (ns)

Proposed FPGA 235 MHz

4096 × 4096 1.9645

1.31 W

117.09
2048 × 2048 0.4796 114.35
1024 × 1024 0.1191 113.58
512 × 512 0.0297 113.30
256 × 256 0.0073 111.39

[12] Microprocessor +
FPGA - 6472 × 3328 8 68 W 371.42

[14] CPU+GPU - 32,768 × 32,768 2.8 345 W 2.61

[15] Mobile-GPU 2.3 GHz 2048 × 2048 3.19 5 W 760.56

[16] ASIC 200 MHZ 2048 × 2048 0.15 463 mV 35.76
1024 × 1024 0.04 38.15

[17] CPU 2.6 GHz 8192 × 8192 13.56 - 202.06

Table 4. Comparison of PE unit with [16].

Work PE Cell Type The Number
of PE Cell

Adders
per PE

Multipliers
per PE

Total Number of
Adders

Total Number of
Multipliers

Proposed Proposed 128 1 1 128 128(RHS & LHS)

[16] 4-Point Butterfly Unit 512 4 3 2048 1536

5. Conclusions

In this study, we proposed a CSA-based SAR processor based on a systolic array.
The CSA-based SAR processor supports FFT and phase compensation operations. The
multiplier used for the FFT operation was designed to be shared for phase compensation.
Therefore, an additional multiplier for phase compensation was not required, and the
area efficiency could be achieved. The proposed architecture is suitable for a modified
CSA flow, which changes the order of transpose operation from the traditional CSA flow.
We confirmed the imaging result using actual SAR data. The proposed processor was
implemented using 17,326 CLB registers, 31,025 CLB LUTs, 4 block RAMs, and 78 DSPs
on a Xilinx Zynq UltraScale+ FPGA device. Compared with the execution time of the

Sensors 2023, 23, 959 16 of 17

ARM Cortex-A53-based software for an image of 4096 × 4096 pixels, we achieved an
approximately 136.2-fold acceleration. We computed the execution time normalized by the
number of pixels and compared the results with those of previous studies. Compared with
previous studies conducted on various platforms, the CSA-based SAR processor achieved
the fastest speed per the number of calculators or power.

Future research will involve the implementation of ASIC usable in small SAR platforms
based on the proposed design verified through FPGA. In addition, we expect to implement
this model in more power-efficient platforms.

Author Contributions: J.L. designed the CSA-based SAR processor, performed the experiment
and evaluation, and wrote the paper. D.J., S.L., M.L. and W.L. implemented the processor and
performed the revision of this manuscript. Y.J. conceived of and led the research, analyzed the
experimental results, and wrote the paper. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors gratefully acknowledge the support from the Next-Generation SAR Research
Laboratory at Korea Aerospace University, originally funded by the Defense Acquisition Program
Administration (DAPA) and Agency for Defense Development (ADD).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chan, Y.K.; Koo, V. An introduction to synthetic aperture radar (SAR). Prog. Electromagn. Res. B 2008, 2, 27–60. [CrossRef]
2. Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; Wiley: New York, NY, USA, 1991; Volume 11.
3. Soumekh, M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms; Wiley: New York, NY, USA, 1999; Volume 7.
4. Percivall, G.S.; Alameh, N.S.; Caumont, H.; Moe, K.L.; Evans, J.D. Improving disaster management using earth observa-

tions—GEOSS and CEOS activities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1368–1375. [CrossRef]
5. Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A review of the status of satellite remote sensing and image

processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. 2009, 33, 183–207. [CrossRef]
6. Gierull, C.H.; Vachon, P.W. Foreword to the special issue on multichannel space-based SAR. IEEE J. Sel. Top. Appl. Earth Obs.

Remote Sens. 2015, 8, 4995–4997. [CrossRef]
7. Svedin, J.; Bernland, A.; Gustafsson, A.; Claar, E.; Luong, J. Small UAV-based SAR system using low-cost radar, position, and

attitude sensors with onboard imaging capability. Int. J. Microw. Wirel. Technol. 2021, 13, 602–613. [CrossRef]
8. Saif, A.; Dimyati, K.; Noordin, K.A.; Alsamhi, S.H.; Hawbani, A. Multi-UAV and SAR collaboration model for disaster

management in B5G networks. Internet Technol. Lett. 2021 , 4, e310. [CrossRef]
9. Le, C.; Chan, S.; Cheng, F.; Fang, W.; Fischman, M.; Hensley, S.; Johnson, R.; Jourdan, M.; Marina, M.; Parham, B.; et al. Onboard

FPGA-based SAR processing for future spaceborne systems. In Proceedings of the IEEE 2004 Radar Conference, Philadelphia, PA,
USA, 29 April 2004; pp. 15–20.

10. Greco, J.; Cieslewski, G.; Jacobs, A.; Troxel, I.A.; George, A.D. Hardware/software interface for high-performance space
computing with FPGA coprocessors. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006;
pp. 1–10.

11. Pfitzner, M.; Cholewa, F.; Pirsch, P.; Blume, H. FPGA based architecture for real-time SAR processing with integrated motion
compensation. In Proceedings of the Synthetic Aperture Radar, Tsukuba, Japan, 23–27 September 2013; pp. 521–524.

12. Lou, Y.; Clark, D.; Marks, P.; Muellerschoen, R.J.; Wang, C.C. Onboard radar processor development for rapid response to natural
hazards. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2770–2776. [CrossRef]

13. Choi, Y.; Jeong, D.; Lee, M.; Lee, W.; Jung, Y. Fpga implementation of the range-doppler algorithm for real-time synthetic aperture
radar imaging. Electronics 2021, 10, 2133. [CrossRef]

14. Zhang, F.; Li, G.; Li, W.; Hu, W.; Hu, Y. Accelerating spaceborne SAR imaging using multiple CPU/GPU deep collaborative
computing. Sensors 2016, 16, 494. [CrossRef]

15. Tang, H.; Li, G.; Zhang, F.; Hu, W.; Li, W. A spaceborne SAR on-board processing simulator using mobile GPU. In Proceedings of
the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1198–1201.

16. Wang, S.; Zhang, S.; Huang, X.; An, J.; Chang, L. A highly efficient heterogeneous processor for SAR imaging. Sensors 2019,
19, 3409. [CrossRef]

http://doi.org/10.2528/PIERB07110101
http://dx.doi.org/10.1109/JSTARS.2013.2253447
http://dx.doi.org/10.1177/0309133309339563
http://dx.doi.org/10.1109/JSTARS.2015.2507878
http://dx.doi.org/10.1017/S1759078721000416
http://dx.doi.org/10.1002/itl2.310
http://dx.doi.org/10.1109/JSTARS.2016.2558505
http://dx.doi.org/10.3390/electronics10172133
http://dx.doi.org/10.3390/s16040494
http://dx.doi.org/10.3390/s19153409

Sensors 2023, 23, 959 17 of 17

17. Li, G.; Zhang, F.; Ma, L.; Hu, W.; Li, W. Accelerating SAR imaging using vector extension on multi-core SIMD CPU. In
Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26 June–1 July
2015; pp. 537–540.

18. Di, W.; Chen, C.; Liu, Y. FPGA-Based Multi-core Reconfigurable System for SAR Imaging. In Proceedings of the IGARSS
2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8921–8924.

19. Seng, K.P.; Lee, P.J.; Ang, L.M. Embedded intelligence on FPGA: Survey, applications and challenges. Electronics 2021, 10, 895.
[CrossRef]

20. Babu, P.; Parthasarathy, E. Reconfigurable FPGA architectures: A survey and applications. J. Inst. Eng. Ser. B 2021, 102, 143–156.
[CrossRef]

21. Cruz, H.; Véstias, M.; Monteiro, J.; Neto, H.; Duarte, R.P. A Review of Synthetic-Aperture Radar Image Formation Algorithms
and Implementations: A Computational Perspective. Remote Sens. 2022, 14, 1258. [CrossRef]

22. Baas, B. A 9.5 mW 330/spl mu/sec 1024-point FFT processor. In Proceedings of the IEEE 1998 Custom Integrated Circuits
Conference, Santa Clara, CA, USA, 14 May 1998; pp. 127–130.

23. He, S.; Torkelson, M. Design and implementation of a 1024-point pipeline FFT processor. In Proceedings of the 1998 Custom
Integrated Circuits Conference, Santa Clara, CA, USA, 14 May 1998; pp. 131–134.

24. Lee, M.K.; Shin, K.W.; Lee, J.K. A VLSI array processor for 16-point FFT. IEEE J. Solid-State Circuits 1991, 26, 1286–1292. [CrossRef]
25. Kung, H.T. Why systolic architectures? Computer 1982, 15, 37–46. [CrossRef]
26. Kung, S.Y. VLSI array processors. IEEE ASSP Mag. 1985, 2, 4–22. [CrossRef]
27. Lim, H.; Swartzlander, E.E. Multidimensional systolic arrays for the implementation of discrete Fourier transforms. IEEE Trans.

Signal Process. 1999, 47, 1359–1370.
28. Nash, J.G. Computationally efficient systolic architecture for computing the discrete Fourier transform. IEEE Trans. Signal Process.

2005, 53, 4640–4651. [CrossRef]
29. Chen, Q.; Yu, A.; Sun, Z.; Huang, H. A multi-mode space-borne SAR simulator based on SBRAS. In Proceedings of the 2012 IEEE

International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4567–4570.
30. Stangl, M.; Werninghaus, R.; Schweizer, B.; Fischer, C.; Brandfass, M.; Mittermayer, J.; Breit, H. TerraSAR-X technologies and first

results. IEE Proc. Radar Sonar Navig. 2006, 153, 86–95. [CrossRef]
31. Cumming, I.G.; Wong, F.H. Digital processing of synthetic aperture radar data. Artech House 2005, 1, 108–110.
32. Hu, A.; Zhang, R.; Yin, D.; Chen, Y.; Zhan, X. Perceptual quality assessment of SAR image compression. Int. J. Remote Sens. 2013,

34, 8764–8788. [CrossRef]
33. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics10080895
http://dx.doi.org/10.1007/s40031-020-00508-y
http://dx.doi.org/10.3390/rs14051258
http://dx.doi.org/10.1109/4.84946
http://dx.doi.org/10.1109/MC.1982.1653825
http://dx.doi.org/10.1109/MASSP.1985.1163741
http://dx.doi.org/10.1109/TSP.2005.859216
http://dx.doi.org/10.1049/ip-rsn:20045119
http://dx.doi.org/10.1080/01431161.2013.846488
http://dx.doi.org/10.1109/TIP.2003.819861

	Introduction
	Background
	Chirp Scaling Algorithm
	Base-b FFT Algorithm

	Proposed HW Architecture
	Implementation and Acceleration Results
	Conclusions
	References

