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Abstract: In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically
detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system.
However, if the number of guard cells, the number of training cells, and the probability of false alarm
are set improperly in the conventional CFAR algorithm, the target detection performance is severely
degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder
(AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system.
In the AE, the entire detection result is compressed at the encoder side, and only significant signal
components are recovered on the decoder side. In this work, by changing the number of hidden layers
and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio
in the target detection result is determined. To evaluate the performance of the proposed method,
the AE-based target detection result is compared with the target detection results of conventional
CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the
actual target position, the proposed AE-based target detection shows the highest similarity with a
correlation of 0.73 or higher.

Keywords: autoencoder; constant false alarm rate; frequency-modulated continuous wave radar;
multiple-input and multiple-output; target detection

1. Introduction

Along with the rapid development of autonomous driving technology, the devel-
opment of sensors for vehicles, such as cameras, lidars, and radars, has also accelerated.
Among these sensors, the radar sensor has an advantage in that there is little deterioration
in detection performance due to climate change. In addition, in recent automotive radar
systems, it is possible to achieve high range resolution by using a wider bandwidth in a
frequency-modulated continuous wave (FMCW) radar system [1]. Moreover, high angular
resolution can be achieved by using a multiple-input and multiple-output (MIMO) antenna
system [2].

In general, a constant false alarm rate (CFAR) algorithm [3] is the most widely used for
automatic target detection in the automotive FMCW radar systems. The factors determining
the detection performance of the CFAR algorithm include the number of guard cells,
the number of training cells, and the probability of false alarm. If these factors are not
set properly in the CFAR algorithm, the probabilities of missing the target increase. In
addition, it is difficult to efficiently detect targets with fixed factor values because the
pattern of the received signal varies depending on the driving environment [4]. Therefore,
an improved automatic target detection method is required compared to the conventional
CFAR-based method.

To overcome the problems of the conventional CFAR algorithm, studies applying
deep learning techniques to the target detection were introduced in [5,6]. In [5], deep
learning was applied to the process of estimating the noise level in the conventional CFAR
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algorithm. In addition, the authors in [6] proposed an artificial neural network to replace
the conventional cell averaging (CA)-CFAR algorithm. Moreover, convolutional neural
networks (CNNs) [7,8] or U-shaped neural networks (i.e., U-nets) [9,10] were used to detect
targets on the range–velocity plane. Recently, deep learning techniques to replace the CFAR
algorithm in the automotive MIMO FMCW radar system were also introduced in [11,12]. A
U-net-based target detector was proposed in [11] for detecting a vulnerable road user on the
range-angle (RA) map. In addition, the authors in [12] compensated for the disadvantages
of the conventional CFAR algorithm by replacing the peak detection step of the CFAR
algorithm with the deep neural network.

In this paper, we propose a method for detecting targets using an autoencoder
(AE) [13], which is one of the deep learning techniques. Recently, the AEs have been ac-
tively applied to automotive radar sensor data for various purposes. For example, the AEs
were used for suppressing mutual interference between automotive radar systems [14–16].
In addition, the authors in [17,18] used the AEs to suppress noise components on the
range–velocity plane. However, few studies have been conducted to detect targets on the
RA map using AEs. Therefore, we apply the AEs to the target detection result on the RA
map to find the significant signal components, which enables efficient target detection.
In other words, the entire detection result is compressed on the encoder side, and only
significant signal components are restored on the decoder side. To this end, we propose
a method for generating an appropriate data set for training AE and determining the
structure of the autoencoder.

First, we obtain radar sensor data in the parking lot environment using the automotive
MIMO FMCW radar. From the acquired radar sensor data, RA maps indicating the position
information of the target are generated. Then, we design the AE consisting of an encoder
and a decoder that take the RA maps as input. By changing the number of convolutional
layers in the encoder, the number of upsampling layers in the decoder, and the number of
filters used in each layer, we determine the AE structure that exhibits a high signal-to-noise
ratio (SNR) in the RA map. Finally, the performance of the proposed AE-based target
detection method is compared with the detection performances of several types of two-
dimensional (2D) CFAR algorithms (e.g., CA-CFAR [19], the order-statistics (OS)-CFAR [19],
the greatest of cell averaging (GOCA)-CFAR [20], and the smallest of cell averaging (SOCA)-
CFAR [20]). As a performance evaluation measure, the correlation coefficient with the RA
map labeled with the actual target position is calculated in each target detection method.

In summary, the main contributions of this study can be summarized as follows:

• Through the proposed AE-based target detection method, meaningful targets can
be immediately extracted in the RA map, which can replace the conventional CFAR
algorithms.

• The process of setting parameters in the CFAR algorithms (e.g., the number of guard
cells, the number of training cells, or the false alarm probability) is not required in the
proposed method. Instead, in the AE-based target detection, only retraining needs to
be performed based on the determined structure.

• To detect only meaningful targets in a noisy environment, the proposed AE-based
detectors require only a small amount of training data sets. If the size of the training
data set is large, even the noise component may be reconstructed by the decoder.

The remainder of the paper is organized as follows. In Section 2, we introduce the basic
principles for estimating target information in the MIMO FMCW radar system. Then, we
describe the radar signal measurement environment and present the target detection result
in the environment in Section 3. Next, the AE-based target detection in the MIMO FMCW
radar system is proposed in Section 4, and its detection performance is also evaluated in
this section. Finally, we conclude this paper in Section 5.
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2. Target Detection in MIMO FMCW Radar System
2.1. Radar Data Cube Generation in MIMO FMCW Radar System

As shown in Figure 1, M chirps whose frequency increase linearly with time are
sequentially transmitted in the FMCW radar system. In the figure, fo, B, and T denote the
center frequency, the bandwidth, and the sweep time of each chirp, respectively. Let us
assume that the transmitted FMCW radar signal is reflected from the k-th target moving at
a velocity of vk at a distance of dk. Then, the received signal includes a time delay due to dk
between the radar and the k-th target and the Doppler frequency due to vk between the
radar and the k-th target. The received signal is down-converted to a baseband signal by
passing through a frequency mixer and a low-pass filter (LPF), as shown in Figure 2.

Figure 1. Waveform transmitted from the FMCW radar system.

Figure 2. Block diagram of the MIMO FMCW radar system.

Finally, the signal sampled at the analog-to-digital converter (ADC) can be expressed as

x[n, m] =
K

∑
k=1

αk exp
(

j2π

(
2dkB

cT
Tsn +

2vk foT
c

m +
2dk fo

c

))
, (1)

where αk denotes the amplitude of the baseband signal and K denotes the total number of
targets. In addition, c indicates the speed of light. In (1), n (n = 1, 2, . . . , N) indicates the
index for time samples in each chirp and m (m = 1, 2, . . . , M) indicates the index for each
chirp. In addition, Ts represents the time interval between two time samples.
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Moreover, to estimate the angle information of targets, we use the uniform linear array
antenna system consisting of multiple antenna elements. Assuming that the angle between
the k-th target and the center of the array antenna is expressed θk, (1) can be expanded as

x[n, m, l] =
K

∑
k=1

αk exp
(

j2π

(
2dkB

cT
Tsn +

2vk foT
c

m +
fod sin θk

c
(l − 1) +

2dk fo

c

))
, (2)

where l (l = 1, 2, . . . , L) is the index for the receiving antenna elements and d is the spacing
between two antenna elements.

In the MIMO antenna system in which the number of transmit antenna elements is
NT and the number of receiving antenna elements is NR, the total number of receiving
channels L can be virtually increased to a maximum of NT × NR [2]. In addition, the
phase difference between the virtually generated channels is determined by the distance dT
between the transmit antenna elements and the distance dR between the receive antenna
elements. In relation to (2), the finally generated N × M × L three-dimensional (3D) radar
data is expressed in Figure 3.

Figure 3. Generated radar data cube in the MIMO FMCW radar system.

2.2. Target Information Estimation Using Radar Data Cube

In general, the distance and angle of the target are the most important in expressing
the location information of the target. The method of estimating the distance and angle
information of the target in a given radar data cube is as follows. For a fixed m∗-th chirp,
the time-sampled baseband signal of (2) can be represented as a 2D signal matrix, which is
shown in Figure 4a. For this matrix, the distance to the target can be obtained by applying
the Fourier transform in the direction of the sampling axis (i.e., n-axis), and the angle
of the target can be extracted by applying the Fourier transform in the direction of the
antenna axis (i.e., l-axis) [21], as shown in Figure 4b. In other words, the 2D data matrix of
Figure 4b is obtained by applying a 2D Fourier transform to the time-sampled signals from
all antenna elements for fixed m∗, which can be expressed as



Sensors 2022, 22, 5552 5 of 18

X[p, r] =
1

NL

N

∑
n=1

L

∑
l=1

x[n, m∗, l]× exp
(
−j2π

( p
N

n +
r
L

l
))

(p = 1, 2, . . . , P, r = 1, 2, . . . , R). (3)

In (3), p and r represent indices for the range and the angle in the Fourier transform
domain, respectively.

(a)

(b)

Figure 4. (a) Time-sampled baseband signals from all antenna elements and (b) the result of applying
the 2D Fourier transform to the 2D data matrix.
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In summary, by applying the 2D Fourier transform to the time-sampled signals from
all receiving antenna elements, the distance and angle information of the target can be
estimated at the same time. Similarly, if the 2D Fourier transform is applied in the n-
axis and the m-axis directions for fixed l∗ in the radar data cube, the range and velocity
information of the target can be estimated at the same time. In addition, it is possible to
simultaneously estimate the velocity and angle information of the target by applying the
2D Fourier transform in the m-axis and l-axis directions for the fixed n∗.

3. Radar Signal Measurement and Target Detection Result

In the experiment, we used the MIMO FMCW radar sensor (i.e., AWR2243 [22])
manufactured by Texas Instruments. The radar sensor uses 78.3 GHz and 2.53 GHz as the
center frequency and the bandwidth, respectively. In addition, 64 chirps were used and
256 time samples were obtained from each chirp. Moreover, the number of transmit antenna
elements and the number of receiving antenna elements were 12 and 16, respectively.
According to the MIMO antenna principle, a total of 192 (i.e., Nt × NR = 192) virtual
receiving channels can be generated, but in the case of the AWR2243, only 86 channels exist
in the azimuth direction. Thus, we use all the signals received on those 86 channels (i.e.,
L = 86). The specifications of the radar system we used are summarized in Table 1.

Table 1. Specifications of the MIMO FMCW radar system.

Parameter Value

Center frequency, fo 78.3 GHz
Operating bandwidth, B 2.53 GHz

Sweep time, T 46 µs
Sampling frequency, fs 8 MHz
Sampling interval, Ts 125 ns

The number of chirps, M 64
The number of time samples in each chirp, N 256
The number of transmit antenna elements, Nt 12
The number of receiving antenna elements, Nr 16

The number of virtual receiving channels, L 86

Using this radar system, signal measurements were conducted in the parking lot with
cars, as shown in Figure 5a. In this environment, we acquired radar sensor data while
moving the cart on which the radar was installed, as shown in Figure 5b. Figure 6 shows
the target detection result in the environment of Figure 5. The absolute value of the signal
of (3) for the first chirp is shown in Figure 6a. In addition, Figure 6b presents the result
of converting the target detection result on the RA map to the distance axes in the x-axis
and y-axis directions. In the figure, the positions that strongly reflect the radar signal are
expressed in bright colors (e.g., points marked in yellow). As shown in the figure, the radar
signal is strongly reflected from the vehicles parked on the right.

To extract information about significant targets from the target detection result in
Figure 6, a peak detection algorithm must be applied. Conventionally, the CFAR algorithms
are widely used to extract points that corresponds to the significant targets in a noisy
environment. However, if the number of guard cells, the number of training cells, and
the probability of false alarm are set improperly in the 2D CFAR algorithm, the target
detection performance is severely degraded. Regarding the 2D CFAR algorithm, the
regions corresponding to the guard band size and the training band size are shown in
Figure 7. For example, Figure 8 shows the results when the CA-CFAR algorithm with
different parameter values are applied to the target detection result in Figure 6. As shown
in the figure, the target detection performance depends on factors, such as the probability
of false alarm (Pf a), the guard band size, and the training band size. Thus, there is a need
for a target detection method that does not greatly depend on these parameter values.
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(a)

(b)

Figure 5. (a) Parking lot where the radar signal measurements were conducted and (b) the placement
of the radar.

(a)

Figure 6. Cont.
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(b)

Figure 6. Target detection results: (a) on the RA map and (b) on the xy plane.

Figure 7. Parameters in the 2D CFAR algorithms.

(a) (b)

Figure 8. Cont.
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(c) (d)

Figure 8. Target detection results when the CA-CFAR algorithm with different parameter values are
applied: (a) Pf a = 0.343, guard band size: [3 × 3], training band size: [15 × 15], (b) Pf a = 0.356, guard
band size: [2 × 2], training band size: [5 × 5], (c) Pf a = 0.347, guard band size: [3 × 3], training band
size: [10 × 10], and (d) Pf a = 0.358, guard band size: [5 × 5], training band size: [20 × 20].

4. Proposed AE-Based Target Detection in RA Map
4.1. Structure of AE-Based Target Detector

In this section, we propose to apply the CNN-based AE to extract targets on the RA
map. The AE is one of the representative unsupervised learning-based machine learning
techniques, and it has the characteristics of manifold learning and a generative model [23].
In general, the AE consists of an encoder that compresses input data and a decoder that
reconstructs the data. If we appropriately design the encoder and decoder, only the main
signal components can be compressed through the encoder, and they can be reconstructed
through the decoder.

As shown in Figure 6, dominant stationary targets exist along the left and right
parabolas on the RA map. In general, stationary targets appear in the form of parabolas
in the automotive MIMO FMCW radar system [24]. Therefore, we decided to design
the AE that extracts targets located along two parabolas. First, the input data used for
training were generated based on the detection results from the actual radar sensor. For
example, one of the training data we generated is shown in Figure 9. Figure 9a,b show
the generated target detection result on the RA map and its signal strength, respectively.
Because the curvature of the curves is determined by the width of the road on the RA map,
we generated parabolas with various curvatures. In addition, the received signal strength
varies according to the distance between the targets and the radar. Thus, the received signal
strength of each point was established based on the radar equation [25], and it was also
readjusted according to the actual signal strength value acquired from the radar system
we used. Moreover, because the curve does not form a perfect shape in the actual target
detection result, the training data were forcibly distorted to generate inputs such as broken
curves. Using this training data set, only strong signal components reflected by the targets
are trained. In other words, the encoder is trained to compress only information about
signals with high signal strength.



Sensors 2022, 22, 5552 10 of 18

(a)

(b)

Figure 9. Example of training data: (a) a target detection result on the RA map and (b) its signal
strength.
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Finally, a total of 200 input data were generated, of which 50% had the form of a
perfect parabola, and the remaining 50% had the form of an incomplete parabola. After
that, the white Gaussian noise was added to each input data, and the SNR values were
set variously in consideration of the actual measurement environment. If the number of
training data is large, the encoder and the decoder can overfit to the given data. Thus, it is
important to set the number of input data appropriately [26]. If the size of the training data
set is large, even the noise component can be reconstructed by the decoder. For the entire
data set, 90%, 5%, and 5% were used as a training, validation, and test sets, respectively.

With this data set, we determine the CNN-based AE structure suitable for target
detection. In this process, the structures of the encoder and the decoder are designed to
be symmetrical to each other to obtain reconstructed results having the same size as the
input data size. In addition, one hidden layer on the encoder side consists of a convolution
layer and a rectified linear unit (ReLU) layer. On the other hand, one hidden layer on the
decoder side includes an upsampling layer and a ReLU layer.

Then, by adjusting the number of hidden layers and filters used in the encoder and
the decoder, respectively, we evaluated the root mean square error (RMSE) and SNR values
to determine the structure of the AE suitable for our data set. The RMSE is calculated as

RMSE =

√
∑P

p=1 ∑R
r=1(Tin[p, r]− Tout[p, r])2

PR
, (4)

where Tin and Tout indicate the input and the corresponding output of the designed AE
in the validation set, respectively. In addition, P and R represent the total number of p
and r in the Fourier tranform domain, respectively. By calculating the RMSE value for
the validation data set not used for training, it is possible to determine how well the AE
structure is trained [27]. In addition, the SNR value was calculated as

γ =

(
∑P

p=1 ∑R
r=1
(

Itarget
⊙

Tout
)

pr

)2

(
∑P

p=1 ∑R
r=1 (Inoise

⊙
Tout)pr

)2 , (5)

where Itarget is the data labeled 1 at the actual target position, and Inoise is the data labeled
1 at locations other than the target position. In addition,

⊙
stands for the element-wise

multiplication (i.e., Hadamard product). A large value of γ in (5) means that the desired
signal component is preserved and many other noise components are suppressed. Figure 10
shows the RMSE and the SNR values according to the number of hidden layers and the
number of filters used in each layer. The smaller the RMSE and the higher the SNR, the
more suitable the structure is for the target detection.

Moreover, we also calculated the 2D correlation coefficient [28], which is defined as

ρ =
∑P

p=1 ∑R
r=1

(
Itarget[p, r]− ∑P

p=1 ∑R
r=1(Itarget [p, r])

PR

)
√

∑P
p=1 ∑R

r=1

(
Itarget[p, r]− ∑P

p=1 ∑R
r=1(Itarget [p, r])

PR

)2

×
∑P

p=1 ∑R
r=1

(
Tout[p, r]− ∑P

p=1 ∑R
r=1(Tout [p, r])

PR

)
√

∑P
p=1 ∑R

r=1

(
Tout[p, r]− ∑P

p=1 ∑R
r=1(Tout [p, r])

PR

)2
.

(6)

In other words, the position of the actual target is compared with the position of the
target in the output of the proposed AE. A high correlation coefficient means that the final
target detection result extracted through the proposed AE is highly similar to the RA map
containing the actual target location. Figure 11 shows the correlation coefficient values
according to the number of hidden layers and the number of filters used in each layer.
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From the RMSE, SNR, and correlation coefficient values, using two hidden layers each for
the encoder and the decoder shows the best performance. In addition, the AE structure
using eight and 16 filters in the first and the second hidden layers, respectively, gives the
best performance.

Figure 10. RMSE and SNR values according to the number of hidden layers and the number of filters
used in each layer.

Figure 11. Correlation coefficient values according to the number of hidden layers and the number of
filters used in each layer.
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Finally, Figure 12 shows the structure of the determined CNN-based AE. To extract
the features from the RA map, a total of two executions are performed with a set of the
convolutional layer, the ReLU layer, and the max pooling layer on the encoder part. In
addition, the decoder restores the data using the upsampling layer, the ReLU layer, and the
clipped ReLU layer. The clipped ReLU layer forces the output value to be between 0 and 1
to prevent the output value from becoming too large.

Figure 12. Structure of the proposed AE-based target detector.

4.2. Performance Evaluation

To evaluate the performance of the AE-based target detector, the detection results
of applying the CA-CFAR, OS-CFAR, GOCA-CFAR, and SOCA-CFAR algorithms were
compared with that of the proposed method. As already mentioned, the performance of the
CFAR algorithm depends on the values of parameters, such as the false alarm probability,
the guard band size, and the training band size. In the performance evaluation, those
parameters in each CFAR algorithm were empirically determined to provide appropriate
detection performance, and their values are summarized in Table 2. The corresponding
detection results including the proposed method are shown in Figure 13. If the detection
result of Figure 6 is passed through the structure of Figure 12, Figure 13a is immediately
generated. One of the advantages of the AE-based target detector is that the signal strength
information is preserved when compared with the detection results in the CFAR algorithm.

Table 2 also shows the correlation coefficient values in (6) for the proposed AE-based
target detector and the conventional CFAR algorithms. To evaluate the statistical per-
formance of the proposed method, dozens of measurements were performed, and the
correlation coefficient values were averaged. First, the predicted output of the AE was
compared to the data labeled with the location of the actual target. Then, similar to the
results of the CFAR algoruthms, the predicted output was also binarized to calculate the
correlation coefficient value. As shown in the table, the AE output has a high degree of
similarity to the data labeled with the actual target location.

Table 2. Correlation coefficient values for the proposed AE-based target detector and the conventional
CFAR algorithms.

Method Pf a Training Band Size Guard Band Size ρ

AE-based target detector N/A N/A N/A 0.7396
AE-based target detector (binarized) N/A N/A N/A 0.7020

CA-CFAR algorithm 0.347 [10 × 10] [3 × 3] 0.6994
OS-CFAR algorithm 0.237 [10 × 10] [2 × 2] 0.6012

GOCA-CFAR algorithm 0.336 [10 × 10] [3 × 3] 0.6547
SOCA-CFAR algorithm 0.356 [10 × 10] [3 × 3] 0.7256
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Final target detection results: (a) the proposed AE-based target detector, (b) the proposed
AE-based target detector (binarized), (c) the CA-CFAR, (d) the OS-CFAR, (e) the GOCA-CFAR, and
(f) the SOCA-CFAR algorithms.

Moreover, we verify how the performance of AE changes according to the number
of training data. Figure 14 shows the outputs when the AE is trained with 100, 200, and
300 training data. If the number of training data is 100, the strong signal component is not
well trained (i.e., Figure 14b), and if the number is 300, the noise component is also trained
(i.e., Figure 14d). Therefore, it is important to set the number of training data appropriately
for the performance of the AE.

Finally, we conducted additional experiments to evaluate the performance of the
proposed AE-based target detector. The experiments were conducted in other outdoor
environments, which are shown in Figure 15. As shown in Figure 16, even if the AE
trained from the radar sensor data acquired in the environment of Figure 5 is applied to the
sensor data acquired in the environment of Figure 15, the target detection performance is
guaranteed to some extent.
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(a) (b) (c) (d)

Figure 14. AE outputs according to the number of training data: (a) the RA map before passing
the AE, (b) the AE output when the number of the training data is 100, (c) the AE output when the
number of the training data is 200, (d) and the AE output when the number of the training data is 300.

(a)

(b)

Figure 15. Environments in which radar signal measurements were performed: (a) the road in front
of the building and (b) a parking lot with several vehicles.
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(a)

(b)

Figure 16. Target detection results in different environments: (a) the road in front of the building and
(b) a parking lot with several vehicles.

5. Conclusions

In the MIMO FMCW radar system, the position information of the target can be
immediately estimated from the RA map. To extract significant signal components corre-
sponding to targets from the RA map, we proposed the AE-based target detection method.
We designed a CNN-based AE with the RA maps as input by changing the number of
hidden layers and the number of filters used in each layer. After completing the training
process, the trained AE immediately locates the target on the RA map, ensuring high SNR
values. Finally, to verify the effectiveness of the proposed method, the correlation between
the target detection result and the data labeled with the actual target location was measured.
The proposed AE-based target detector had a correlation coefficient value of 0.7396 on
average, which is high compared to the conventional CFAR-based target detection methods.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
ADC Analog-to-digital converter
AE Autoencoder
CA Cell averaging
CFAR Constant false alarm rate
CNN Convolutional neural network
FMCW Frequency-modulated continuous wave
GOCA Greatest of cell averaging
LPF Low-pass filter
MIMO Multiple-input and multiple-output
RA Range angle
RMSE Root mean square error
SNR Signal-to-noise ratio
SOCA Smallest of cell averaging
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