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Abstract
Concentration of drivers on traffic is a vital safety issue; thus, monitoring a driver being
on road becomes an essential requirement. The key purpose of supervision is to detect
abnormal behaviours of the driver and promptly send warnings to him/her for avoiding
incidents related to traffic accidents. In this paper, to meet the requirement, based on
radar sensors applications, the authors first use a small‐sized millimetre‐wave radar
installed at the steering wheel of the vehicle to collect signals from different head
movements of the driver. The received signals consist of the reflection patterns that
change in response to the head movements of the driver. Then, in order to distinguish
these different movements, a classifier based on the measured signal of the radar sensor is
designed. However, since the collected data set is not large, in this paper, the authors
propose One‐shot learning to classify four cases of driver's head movements. The
experimental results indicate that the proposed method can classify the four types of cases
according to the various head movements of the driver with a high accuracy reaching up
to 100%. In addition, the classification performance of the proposed method is signifi-
cantly better than that of the convolutional neural network (CNN) model.

KEYWORD S
convolutional neural nets, driver information systems, learning (artificial intelligence), pattern classification,
radar signal processing

1 | INTRODUCTION

Nowadays, an explosive growth of smart solutions together
with information technology is being witnessed in modern
transportation systems. In particular, the successes of smart
solutions depend critically on the role of advanced sensors. As
a result, car manufacturers are developing sensors to deploy in
vehicles for a variety of applications purposes, for example,
safety, traffic management, and infotainment [1]. One of the
urgent issues not only for individuals but also for car

manufacturers to be solved is safe driving due to the increasing
number of vehicles on roads. Safe driving is heavily dependent
on the driver's behaviours to avoid traffic accidents. For
instance, a timely warning sent to the driver who is considered
sleepy will be able to prevent accidents. The abnormal signs
related to a drowsy state of the driver such as eye closure, blink
frequency, nodding frequency, face position, fixed gaze, heart
rate, or erratic steering was investigated in Ref. [2]. Several
methods such as vehicle‐based measures [3]; behavioural
measures [4] and physiological measures [5] have been
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performed to determine whether a driver is drowsy. In addi-
tion, the movement of the driver's head has been analysed to
infer the driver's state of drowsiness [6, 7]. Human head
movements were monitored using wearable sensors [6, 8, 9],
cameras [10] and radars [11, 12]. The method of using a
wearable sensor has the disadvantage of being cumbersome.
The camera sensor is capable of recording, which is a privacy
issue, and lighting conditions also have a negative impact on
monitoring performance. Radars can monitor human head
movements in light conditions and overcome the driver privacy
issue [11, 12].

Recently, artificial intelligence in general and deep learning,
in particular, have achieved success in a variety of applications
such as intelligent chatbots, self‐driving cars, virtual assistants,
speech and image recognition [13]. Taking advantage of deep
learning and in order to detect the drowsy state of the driver
[11, 12], using the radar to collect data and apply the deep
learning method to design a framework to monitor human
head motion, the authors in Ref. [11] utilised a convolutional
neural network (CNN) to classify four cases of the driver's
head movements. In Ref. [12], a CNN was used to classify the
eight head motions of the driver's head. However, the super-
vised learning‐based approaches require a huge amount of data
to be labelled.

To solve the problems of data scarcity, One‐shot learning
has been emerged as an effective tool applied to various
research fields [14–20]. One‐shot image classification based on
a variational Bayesian framework was proposed with the
premise that the previously learned classes could help predict
future ones when there are very few examples available from a
provided class [14]. In Ref [15], a path planning problem for
robotic actuation was addressed via the One‐shot learning
method. In Ref [16], the One‐shot learning method is used to
classify handwritten characters based on the image dataset
representing those handwritten characters. Interestingly, in Ref
[17], the performances of One‐shot learning‐based prediction
methods in drug discovery applications were evaluated. To
address the issue of limited data, classifier‐enabled few‐shot
learning for rolling bearing fault diagnosis was proposed in
Ref [18]. One‐shot learning aims to find information about
object types from one or just a few training samples in Ref.
[19]. In Ref. [20], the authors successfully used One‐shot
learning to classify partial discharges.

In our study, we focussed on detecting those alerts drivers
when their head movements change; only a normal head po-
sition of the driver should be set for safe driving; the rest are
abnormal positions. We propose One‐shot learning to classify
driver's head movements using the mmWave radar sensor. In
our experiment, first, the radar sensor that was put in the
centre of the steering wheel collected the reflected signals for
four cases corresponding to the driver's head movements as
the driver staring at the front, the driver shaking his/her head
up and down, the driver shaking his/her head side to side, and
the driver lowering her/his head. Then, we design a classifier to
analyse the received radar signals and detect abnormal
behaviour of the driver's head movement. The performance of
our One‐shot learning method is better than that of the CNN

proposed in Ref. [11] because the proposed method is more
optimised and uses more layers including batch normalisation
as well as a dropout layer. The results of the proposed method
have shown good efficiency compared to previous studies. The
main contributions of this study can be summarised as follows:

� To the best of our knowledge, One‐shot learning is
demonstrated for the first time to classify driver's head
movements based on the data collected from the small‐sized
61 GHz frequency‐modulated continuous‐wave (FMCW)
radar sensor.

� The proposed model uses the distance metric to map the
data of radar‐based driver's head movements and becomes
an effective classifier for distinguishing the abnormality of
the driver's head movements. This method employs pairs of
the samples of the same or different classes during the
training phase and classifies the test sample with a single
training sample for each class. The proposed One‐shot
learning for the monitoring of driver obtains better classi-
fication performance than CNN and achieves a classifica-
tion performance of almost 100%.

The remainder of the paper is structured as follows. In
Section 2, we introduce basic radar signal processing and radar
data acquisition methods. In addition, a method for converting
radar signal data into a format for the One‐shot learning is
described. In Section 3, we present the structure of the One‐
shot learning model, which is based on the Siamese network
and applied to radar data sensors. In Section 4, the classifica-
tion results of the proposed method are presented. Finally, we
conclude the paper in Section 5.

2 | MILLIMETRE WAVE FMCW RADAR

2.1 | Signal analysis for the FMCW radar
system

In the FMCW radar system, a sequence of signals is trans-
mitted whose frequency changes linearly with a function of
time [21].

Figure 1 shows the time‐frequency slope of the transmitted
signal. The duration of a frame is set as 50 ms, which is divided
into 12.5 ms for transmission duration and 37.5 ms for signal
processing duration. In addition, the sampling frequency is
2 MHz and 256 samples are obtained from each transmitted
signal. Table 1 presents the radar parameters and their values
used in our measurement.

Each frame consists of a transmission and the corre-
sponding signal processing duration.

The transmitted signal can be expressed as

f ðtÞ ¼ cos 2πfct þ π
ΔB
ΔT
t2

� �

; ð1Þ

where fc is the carrier frequency. In addition, ΔB and ΔT are
the operating bandwidth of the transmitted signal and the
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duration of transmission in one frame, respectively. The
transmitted signal f(t) is received back with a time delay and
amplitude attenuation and it can be expressed as

rðtÞ ¼ αf ðt − ttdÞ

¼ α cos 2πfcðt − ttdÞ þ π
ΔB
ΔT
ðt − ttdÞ

2
� �

;
ð2Þ

where α is the attenuation factor owing to the path loss, and
ttd = 2R

c denotes the time delay. Additionally, R is the distance
to the target, and c is the propagation velocity of the radar
signal. Then, the transmitted and received signals pass
through the frequency mixer, and high and low‐frequency
signals are generated. Finally, the output of the frequency
mixer is passed through the low‐pass filter to extract a
baseband signal (i.e. a low‐frequency signal). The baseband
signal can be expressed as

mðtÞ ≅
α
2
cos 2π

2ΔBR
ΔTc

t þ
2fcR
c

� �

: ð3Þ

The baseband signal is also referred to as a beat signal
because the frequency difference between f(t) and r(t) is con-
tained in this signal. After a sampling process, the beat signalm
(t) becomes

m½n� ≅
α
2
cos 2π

2ΔBR
ΔTc

nTs þ 2π
2fcR
c
þ ϕ

� �

ðn¼ 0; 1; …; Ns − 1Þ;

ð4Þ

where Ts, Ns, and ϕ are the sampling period, the number of
samples, and the phase offset because of the sampling,
respectively. Finally, the fast Fourier transform is used to
extract the beat frequency of the time‐sampled signal in the
FMCW radar system. The resulting frequency‐domain beat
signal is denoted as

M½k� ¼
PNs−1

n¼0
m½n�exp

−j2πkn
Ns

� �

ðk¼ 0; 1; …; Ns − 1Þ:

ð5Þ

In this signal, a peak value appears at the index k corre-
sponding to the target. From that peak value, we can estimate
the distance to the target as

R̂¼
cΔT
2ΔB

fb: ð6Þ

2.2 | Measurement environment

Figure 2a shows the experiment environment for measuring
the radar signals. To obtain data, we used a millimetre wave
FMCW radar sensor made by bitsening Inc. as shown in
Figure 2b , which operates at a carrier frequency of 61 GHz
and a bandwidth of 6 GHz. Here, we can see that the radar is
set up at the centre of the steering wheel and facing the driver's
head. This position provides the radar to catch an expansive
illustration of the driver's range of movement. In addition, the
distance between the driver's head and the steering wheel is
about 40 cm. Hence, we crop the radar image to utilise only the
signals reflected from 20–60 cm.

First of all, the frequency band of the radar system we used
is a 60 GHz band and does not overlap with the frequency
band currently used by 4G/5G communication systems. We
also applied a mean subtraction method [22] to the raw radar
signal to remove clutter reflected from structures fixed inside
the vehicle. Therefore, the adverse effect of multi‐path
reflection was mitigated.

The radar is downsized using the high frequency. The
range resolution is inversely proportional to the bandwidth

F I GURE 1 Time‐frequency slope of the transmitted frequency‐modulated continuous‐wave (FMCW) radar signal

TABLE 1 Parameters used in the radar system

Parameters Value

The duration of transmission 12.5 ms

Wait time 37.5 ms

Analog‐to‐digital converter sampling frequency 2 MHz

Maximum detectable range 2 m

Range resolution 2.5 cm

Velocity resolution 0.7 km/h

Centre frequency 61 GHz
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[23]; therefore, a wide bandwidth allows high detection per-
formance. The radar was installed on the middle of the
steering wheel to face the driver's head. As shown in
Figure 3, we acquired the radar signals for four different types
of head movements: (Case 1) the driver is staring at the front,
(Case 2) the driver is shaking his head up and down, (Case 3)
the driver is shaking his head from side to side, and (Case 4)
the driver is lowering his head. On all types of head move-
ments of three drivers, experiments were conducted and the
radar data were collected based on four cases of driving
scenarios.

3 | PROPOSED METHOD FOR
MONITORING DRIVER’S HEAD
MOVEMENT

In this section, we describe input‐signal design and the pro-
posed method to classify radar‐based driver head movements
based on the One‐shot learning approach.

3.1 | Designing input from the FMCW radar
signal

Figure 4 illustrates the frequency spectrum of the beat signal in
a single frame when the distance between the driver's head and
the radar is 40 cm. The frequency of the real‐valued signal is
symmetric with respect to its direct current component;
therefore, we use the first half of the samples.

M¼ M½0�; M½1�; ⋯; M
Ns

2
− 1

� �� �T

: ð7Þ

Furthermore, the sample with index k is converted to
distance by the below equation,

R¼
cΔT
2ΔB
�
k
Ns
fs: ð8Þ

We use the matrix form signal

X¼

Mð1Þ

Mð2Þ

⋮
MðNf Þ

2

6
6
4

3

7
7
5

T

; ð9Þ

where M(k) is the frequency spectrum in Equation (7) corre-
sponding to the kth frame, and Nf is the number of frames to
be observed. In our measurement, we use 40 points that
correspond to a length of 1 m and also use 30 frames corre-
sponding to the 1.5 s observation time. Thus, we have that
X ∈ RNf�Ns

0

with Nf = 30 and Ns
0¼ 40.

A different signal pattern can be obtained for each driver's
head case. Figure 5 shows the input data in Equation (9) for

(a)

(b)

F I GURE 2 Measurement environment

F I GURE 3 Four types of driver's head movements: (a) Case 1: when
staring at the front; (b) Case 2: when shaking head up and down; (c) Case 3:
when shaking head side to side; and (d) Case 4: when lowering the head
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the proposed model from the radar signal. It can be easily seen
that there are two pairs, that is, Figure 5a,d presenting Case 1
and Case 4, respectively, and Figure 5b,c presenting Case 2 and

Case 3 having relatively similar colour lines. Note that when
the driver's head moves less or is stationary, the
measured signal from the sensor changes less as shown in

F I GURE 4 Frequency spectrum of the beat
signal in a single frame

F I GURE 5 Illustration of four types of driver's head movements based on the radar signal: (a) Case 1: staring at the front; (b) Case 2: shaking head up and
down; (c) Case 3: shaking head side to side; and (d) Case 4: lowering the head

NGUYEN ET AL. - 829
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Figure 5a,d (Case 1 and Case 4). However, the position of the
driver's head also affects the measured signal, which makes a
difference of colour lines between Case 1, that is, the driver is
staring at the front, and Case 4, that is, the driver is lowering
the head. In cases wherein the driver's head moves more as in
Case 2, that is, the head of the driver is shaking up and down,
and Case 3, that is, the driver's head is shaking side to side, the
colour lines become more unsettled as in Figure 5b,c.
Furthermore, the colour lines of Case 2 and Case 3 are slightly
different due to the change in the position of the driver's head.
We collected radar signals for four different head movements.
The first case is the driver's standard and the others corre-
spond to abnormal behaviour. Moreover, the periodic fre-
quency is observed for the motions in Cases 2 and 3. The data
obtained in Cases 2 and 3 is moving data (the driver is shaking
his head up and down and the driver is shaking his head from
side to side) and the data in Cases 1 and 4 is static data (the
driver is staring ahead and the driver is lowering his head).
Therefore, a more similar colour line is observed for the sta-
tionary motion in Cases 1 and 4.

3.2 | One‐shot learning method

The proposed method for classifying driver's head movements
based on the data of the radar sensor is performed by One‐
shot learning. Figure 6 illustrates the architecture of the pro-
posed method based on a One‐shot learning model. As shown
in the figure, the method consists of two phases, that is,
training and test phases. In addition, the dataset is divided into
three parts, namely, training set T , test set N , and the support
set SS. In the training phase, the data input consists of many
sample pairs, each of which is a sample pair with the same or
different classes, and the output of the model is the distance to
evaluate whether the sample pair is the same for different
classes.

In the test phase, a scenario is denoted with a support test
SS containing K labels and N samples. We propose that each
class employed as a support sample is provided by a single‐data
using a radar sensor (N = 1). that is, One‐shot learning clas-
sification for driver's head movements using the radar sensor.

For more details, Figure 7 shows the One‐shot learning
model using a Siamese neural network for classification of
driver's head movement based on a 61 GHz radar sensor.

Our model with the Siamese neural network contains twin
CNN networks that accepts distinct inputs, and it is connected
by an energy function that figures out some metrics between
the highest level feature representations on each side and the
outputs are combined to provide some prediction [24, 25].

As can be seen in Figure 7, working in parallel, each of
these inner networks receives an input vector based on which
an output vector is generated. These output vectors can then
be compared to see how similar they are. Intuitively instead of
trying to classify inputs to one of the four head's positions, a
Siamese network learns to differentiate between inputs,
learning their similarity and denoting the chances that the two
input images belong to the same head's movement. As a result,

when training the Siamese network, we need to have the same
or different pairs, which are randomly sampled in the training
model. The same pair means two images belong to the same
class (e.g. two samples of the same instance of the head's
driver). In contrast, different pairs indicate two images are of
different classes. After the training has been performed, the
Siamese network is capable of telling us if two new images are
similar enough to be the same class or not.

We denote the input of the twin sub‐networks CNN as a
pair with the same or different classes (X1, X2) where (X1, X2),
which are two signals presented in Equation (9). The distance
metric between their output on the twin sub‐networks is
calculated as

d2f ðX1;X2Þ ¼ kf ðX1Þ − fðX2Þk ð10Þ

where f(X1) and f(X2) represent the feature vectors extracted by
the twin sub‐network CNN.

Basically, the two CNN networks have the same param-
eters and weights. Each CNN consists of convolutional layers,
dropout, flatten, and fully connected layers as shown in
Figure 8. The filter number of convolution layers is set in
multiples of 16 to optimise performance, and the output
feature map of each convolution in the first three layers is
applied to the Rectified Linear Unit (ReLU) activation func-
tion, which is currently one of the most common activation
in the networks [26]. The dropout layers, which help prevent
overfitting of the model are added for regularisation [27] and
batch normalisation is used to speed up learning by nor-
malising the input of the convolution layer [28]. Batch nor-
malisation helps the learning process and dramatically
decreases the number of training epochs needed to train deep
networks [29]. Before or after the activation function in the
previous layer, batch normalisation may be applied to the
inputs to the layer. In our experiment, we examined
appending batch normalisation before and after ReLu acti-
vation. The results show that the performance of the model
are better when the batch normalisation layer is added after
the ReLu activation.

It has been mentioned that CNN can learn features on its
own. The most remarkable characteristic of CNN is that the
weights of the filters are retained automatically instead of
manually, while the network gains high accuracy. Using the
convolutional layer, each hidden unit is associated with one
block of the input image and extracts features from that block,
leading to the construction of the feature map. The feature
maps capture the result of applying the filters to an input image
at each layer; the feature map is the output of that layer [30].
The feature map is converted from a 2‐dimensional matrix into
a single vector by using a flatten layer. Finally, the fully con-
nected layer is applied in the network.

The output is the feasibility distance of the feature vector
outputs from sub‐network CNN twins as expressed in the
following expression:

PðX1;X2Þ ¼ σðFCðd2f ðX1;X2ÞÞÞ; ð11Þ
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F I GURE 6 Flowchart of training and testing in One‐shot learning

F I GURE 7 One‐shot learning model using the Siamese network

F I GURE 8 Structure of the convolutional neural network (CNN) used in the proposed method
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where σ(⋅) is the sigmoid function and FC is a fully connected
layer.

3.3 | Network optimization

In the training phase as shown in Figure 6, the output is
compressed into [0, 1] with the sigmoid function to translate it
into probability. The output label is denoted as h, the target
h = 1 is set when the radar sensor data X1 and X2 are in the
same class, whereas h = 0 is set for a difference class.

The cross entropy between prediction and the target is
used as a loss function, which is calculated as

LossðX1;X2; hÞ ¼ h logðPðX1;X2ÞÞ

þ ð1 − hÞ logð1 − PðX1;X2ÞÞ:
ð12Þ

Various optimization algorithms exist, such as AdaGrad,
AdaDelta, Nesterov and Adam Optimiser to minimise loss of
the function [31–33]. We selected the Adam optimiser, which is
a generalisation of the Adagrad algorithm by computing and
updating statistics such as the first and second moments of the
historical slope at each iteration. As shown in Figure 6, in
the test phase, in order to evaluate the proposed networks, the
dataset was expressed as difference classes that have not been
exposed in the training phase. The trained model has no
overfitting problems, which is one of advantages of testing on
a new dataset. It is used as test samples Xn ∈N for classifi-
cation, and the support test SS, which includes K samples
SS = {S1,…, SK} where v = 1, …, K and N share the same
label set with the support set SS. The test samples are classified
into a class as

TestðXn;SSÞ ¼ argmax
v

PðXt; SvÞ: ð13Þ

The performance of the proposed One‐shot learning
method is calculated as

Accuracy

¼
Count of TestðXn; SSÞ is correctly classified

Nj j
; ð14Þ

where |⋅| is the number of elements in a set.

4 | EXPERIMENTS AND RESULTS

In this section, we present performance of the proposed One‐
shot learning for the radar‐based dataset to classify driver's head
movements by using the radar signals we collected. We used
TensorFlow and Keras [34] frameworks to build and develop
our model. The model was trained and tested on an NVIDIA
Titan X GPU with 3584 cores, each running at 1.4 GHz.

As mentioned in Section 3, in order to collect the radar
signals, we used a millimetre‐wave FMCW radar sensor with a
distance between the driver's head and the radar being 40 cm.

In this study, three people involving two men and one woman,
aged between 24 and 42 years old participated in the
experiments.

The case number in the experiments is shown in Table 2
together with the amount of data. The dataset was composed
by a total of 5481 samples that contain the four considered
cases of driver's head movements: (a) Case 1 with 1395
matrices for the driver staring at the front; (b) Case 2 with 1346
matrices for the driver shaking head up and down; (c) Case 3
with 1378 matrices for the driver shaking head side to side; and
(d) Case 4 with 1362 matrices representing the driver lowering
the head as shown in Figure 3. For convenience, numbers from
0 to 3 were assigned to the labels corresponding to each of the
case driver's head movements.

Then, we divided the data into training and testing as
follows: 72% for training and 8% for validation and 20% for
testing. In order to achieve the other optimised hyper-
parameters, such as the number of epochs, batch size, and
learning rate, we conducted extensive experiments with
different parameters to adjust our model. The CNN model
structure of the proposed architecture is detailed in Table 3,
which contains name layers, output shapes, activation func-
tions, kernel number and padding. The optimization step is
performed in small batches of 64 samples and the learning rate
was set to 0.006. Furthermore, after choosing the final pa-
rameters for the proposed model, to deal with the randomness
of the algorithm, we performed the model up to 10 times with
the same last parameters selected. Table 4 shows the perfor-
mance classification and total parameter comparisons for the
CNN model [11] and the proposed CNN and One‐shot
learning schemes, where the proposed CNN method has the
same architecture as the proposed One‐shot model, which was
designed with 15 layers. Comparing both results, it can be
concluded that the accuracy of One‐shot learning is higher
than that of the CNN. In particular, One‐shot learning can
reach an overall accuracy of 100% and a 1.94% higher accuracy
than that of CNN, which has the same weights and parameters
of CNN in the Siamese network used in the proposed method.
This is because the proposed One‐shot learning method
studies distance data using two CNNs to map radar data into
an appropriate embedded space and reduce variation in the
class to avoid false identification. The authors in Ref. [11]
utilised a CNN to classify four cases of the driver's head
movements with performance of about 84.5%, and the accu-
racy of our proposed CNN is higher than approximately 13.5%
compared to that of the CNN in Ref. [11].

This is because the structure of the proposed method
has been added a number of layers and the structure was
changed accordingly to improve its accuracy to more than
that of the CNN in the previous paper [11]. As can be seen
from Figure 8, in the structure of proposed method, the

TABLE 2 Experimental dataset

Type of cases Case 1(0) Case 2(1) Case 3(2) Case 4(3)

Number of samples 1395 1346 1378 1362
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convolution layer is added with the number of filters, which
is a multiple of 16 with kernel sizes of 3 � 3 and 5 � 5,
2 � 2. In order to bring down input size of the sample for
the next convolution layers, we use the convolution layer
with stride S = 2, which helps to reduce complexity and
parameters in the network. In addition, each convolution
layer is followed by batch normalisation [29] and a dropout
layer with a learning rate drop factor of 0.5 has been applied
to improve the performance of the neural network and help
prevent overfitting [27, 35]. Due to the increase in the
number of parameters, the classification accuracy of the
proposed CNN rises significantly to reach 98.06%, while that
of CNN [11] is 84.5%. In addition, comparing both the
proposed techniques using the number of trainable parame-
ters, it is clear that despite having an equal number of layers,
the proposed CNN requires more learnable parameters than
the proposed One‐shot method. This is because while the
SoftMax function of the CNN model has the role of pre-
dicting the probability distribution for the four motions of
the head of the output layer, the One‐shot method shares its
parameters and outputs only 0 or 1 to classify the samples.
The results demonstrated that our proposed method is
effective in classifying driver's head movements using a
radar‐based sensor.

Figure 9a,b illustrate the confusion matrix results from the
test set. In particular, Figure 9a shows that all of the test
samples were correctly predicted. These results confirm that

the performance of the proposed model affects the monitoring
of the driver's head. Comparing the results between the CNN
model and the proposed model, it is clear that the One‐shot
learning approach achieves higher accuracy than the CNN
model in terms of performance classification. The One‐shot
learning‐based classifier can predict driver's head movements
with a surprising degree of accuracy reaching to 100%. Spe-
cifically, the classification accuracies are 99%, 95%, 99%, and
99% for Case 1, Case 2, Case 3, and Case 4, respectively. The
average classification accuracy of CNN is 98%, whereas the
One‐shot learning model achieves a classification performance
of almost 100%.

In order to evaluate the effect of the sample size on the
performance of the proposed model, we conducted experi-
ments with different sizes of training sets. Table 5 shows the
results of classification accuracy of the proposed schemes with
different sizes of the training dataset. To have a fair compari-
son between the proposed One‐shot network architecture and
the CNN, we also present the result of training both the
models with the different volume of the dataset, that is, 10%,
20%, 30%, and 50% of samples of the entire data set, where all
training hyper parameters and loss functions were kept the
same as described before in this section for respective neural
network models. As shown in Table 5, it is observed that
although the CNN and the One‐shot network have a
competitive performance when trained on the large identical
data, at 97.2% and 98.7% each with 50% samples of the whole

TABLE 3 Structure of the convolutional
neural network (CNN) in the proposed
method

No. Layer type Kernel size/stride Kernel number Output size Padding

1 Conv + ReLU 2 � 2/1 16 40 � 30 � 16 Same

2 Batch normalisation ‐ ‐ 40 � 30 � 16 ‐

3 Drop out 0.5 ‐ 40 � 30 � 16 ‐

4 Conv + ReLU 5 � 5/2 32 20 � 15 � 32 Same

5 Batch normalisation ‐ ‐ 20 � 15 � 32 ‐

6 Drop out 0.5 ‐ 20 � 15 � 32 ‐

7 Conv + ReLU 5 � 5/1 64 20 � 15 � 64 Same

8 Batch normalisation ‐ ‐ 20 � 15 � 64 ‐

9 Drop out 0.5 ‐ 20 � 15 � 64 ‐

10 Conv + ReLU 3 � 3/1 128 20 � 15 � 128 Same

11 Batch normalisation ‐ ‐ 20 � 15 � 128 ‐

12 Drop out 0.5 ‐ 20 � 15 � 128 ‐

13 Flatten ‐ ‐ 38,400 ‐

14 Fully connected ‐ ‐ 64 ‐

15 Fully connected ‐ ‐ 32 ‐

TABLE 4 Classification accuracy and
total of parameters comparison

Schemes Accuracy Total number of parameters

CNN [11] 84.5% 1396

CNN in the proposed method 98.06% 2,598,612

One‐shot learning 100% 2,598,161
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data set used, the performance of the One‐shot method is
better than that of CNN at all scales of the training dataset.
The results in this table also suggest that the performance gap
between CNN and the One‐shot method increases as there is a
decrease in the size of the dataset used for its training. It can be
seen that with 20% of the training samples using the driver's
head motion classification accuracy rate of the CNN and the
proposed model are 92.5% and 95.3%, respectively, while
when only using 10% of the data set's samples, these models
provide classification accuracies of 83.3% and 88.3%. There-
fore, the proposed one‐shot learning method has the potential
to be implemented easily and quickly in real‐world scenarios in
the case of limited training data. With ever‐growing safety
demands and the increasing requirements for the driver's
automation concentration in traffic, this can form a suitable
application for situations where data annotation is difficult, or
data availability is limited.

In order to evaluate and better understand the effect of
One‐shot learning in the classification of radar‐based data
related to driver's head movements, we used the t‐distributed
Stochastic Neighbor Embedding (t‐SNE) method, which is a
tool for visualising high‐dimensional data [36]. In principle, the
t‐SNE embeds high‐dimensional vectors to 2‐D spaces while
retaining the pairwise similarity [36]. The t‐SNE algorithm is
only interested in the distance between the points; the algorithm
locates the points on a plane. This paper uses a t‐SNE method
to visualise the data before and after training by the CNNmodel
and proposed One‐Shot learning method. Here, t‐SNE has
helped reduce the data dimension from multi‐dimensional to
only 2‐dimensional space with change and visualise similar
samples transformed into neighbouring points. Note that all

samples of data, each of which has been featured in a 30 by 40
matrix form are as shown in Equation (9). Using the t‐SNE
algorithm, input data will be transformed into new expres-
sions in the form of points and illustrated in Figure 10a. The
points close to each other on the low‐dimensional surface
represent states that are similar in the high‐dimensional space
[36]. As shown in Figure 10a, it is noticed that the radar‐based
input signals for the four cases of driver’s head movements are
overlapped and remarkably close to each other. In the input
data, Case 1 and Case 2 merged amalgamate with Case 3 and
Case 4. Therefore, it is so difficult to classify all cases based on
the radar‐based input signals. Figure 10b,c show feature vector
visualization via t‐SNE for One‐shot learning and for the CNN
model in the last hidden fully‐connected layer visualization,
which is trained with 4384 samples, respectively. As shown in
Figure 10b, which is drawn by the last hidden layer of the One‐
shot learning model, the radar‐based signals have been stratified
into distinct categories; Case 1 and Case 2 were completely
separated, with no samples in Case 3 and Case 4 connecting
them. Figure 10 visualises the feature vectors of the last hidden
fully connected layer in the CNN model. As shown in
Figure 10c, some instances in Case 2 became mixed with Case 1
and Case 2 with Case 4, respectively. It means that the data in
the One‐shot learning‐based classifier are classified better than
in the proposed CNN model.

To verify the proposed model results on more people,
the data with three people studied. We measured the data by
two more people in addition to the two already measured.
After performing additional data measurements, the total
dataset consisted of 16,681 samples which is shown in
Table 6.

F I GURE 9 Confusion matrix: (a) One‐shot learning and (b) Convolutional neural network (CNN)

TABLE 5 Performance evaluation with
different scales of the dataset

Rate of training dataset Accuracy of the proposed CNN Accuracy of the proposed One‐shot

10% 548 samplesð Þ 83.3% 88.3%

20% 1096 samplesð Þ 92.5% 95.3%

30% 1644 samplesð Þ 95.0% 96.8%

40% 2740 samplesð Þ 97.2% 98.7%
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We split the data into training and testing considering
80% for training and 20% for testing. After performing the
model on the training dataset, we achieved high results for
both the proposed CNN and the One‐shot learning model.
The test results obtained from the testing data are shown in
Table 7.

The above results have proved the effectiveness of
the proposed model. Along with the increased amount of data,
the results of the CNN model are also increased compared to
the limited amount of data measured from three people.
However, the proposed one‐shot model still gives a better
result than the proposed CNN model. In the future, to apply
more widely, we will practice testing on a more considerable
amount of data with more people so that the model can be
used more effectively in practice.

5 | CONCLUSION

In this paper, we proposed a One‐shot learning approach
based on Siamese neural networks to classify head movements
of drivers for four cases using 61 GHz FMCW radar sensor
signals. First, the radar signals were collected by performing

various head movements and storing the frequency spectrum
of the beat signal converted into an image. Subsequently, the
proposed method extracts the radar signal features from two
identical CNNs and measures the similarity of driver's head
movements based on the distance metric. Our results indicated
that the proposed method for radar‐based driver's head
movements’ classification is expected to help prevent car ac-
cidents by detecting abnormal behaviours of drivers. In the
future, we hope to conduct experiments with cars in motion
states for practical applications and conduct further verifica-
tions of the proposed method using more datasets from many
people.
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