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Abstract: In this paper, we propose a method for reconstructing synthetic aperture radar (SAR)
images by applying a compressive sensing (CS) technique to sparsely acquired radar sensor data. In
general, SAR image reconstruction algorithms require radar sensor data acquired at regular spatial
intervals. However, when the speed of the radar-equipped platform is not constant, it is difficult
to consistently perform regular data acquisitions. Therefore, we used the CS-based signal recovery
method to efficiently reconstruct SAR images even when regular data acquisition was not performed.
In the proposed method, we used the l1-norm minimization to overcome the non-uniform data
acquisition problem, which replaced the Fourier transform and inverse Fourier transform in the
conventional SAR image reconstruction method. In addition, to reduce the phase distortion of
the recovered signal, the proposed method was applied to each of the in-phase and quadrature
components of the acquired radar sensor data. To evaluate the performance of the proposed method,
we conducted experiments using an automotive frequency-modulated continuous wave radar sensor.
Then, the quality of the SAR image reconstructed with data acquired at regular intervals was
compared with the quality of images reconstructed with data acquired at non-uniform intervals.
Using the proposed method, even if only 70% of the regularly acquired radar sensor data was used, a
SAR image having a correlation of 0.83 could be reconstructed.

Keywords: compressive sensing; frequency-modulated continuous wave; range migration algorithm;
synthetic aperture radar

1. Introduction

In recent years, studies on autonomous driving of vehicles or autonomous flight of
unmanned aerial vehicles have been actively conducted. To realize the autonomous driving
and flight technologies, the use of various sensors such as cameras, lidars, and radars is
essential. Among these sensors, the radar sensor has the advantage of being robust to
environmental changes [1]. In addition, as the radar sensor uses a higher frequency band
and a wider bandwidth, the range resolution is greatly improved [2] and the size of the
sensor is also reduced. With these advantages, radar sensors are considered essential
sensors for autonomous driving and flight.

The main purpose of using the radar sensor is to determine the location information
of an object. In addition to measuring the distance to the object, radar sensors have been
used for various purposes. From radar sensor data, the type of the detected object can
be identified [3], and even biometric information such as a person’s respiration rate or
heart rate can be extracted [4]. Moreover, one of the most solicited functions of the radar
sensor is its ability to image the surrounding environment. The most representative radar
imaging technology is the synthetic aperture radar (SAR) image reconstruction method,
which is widely used in aircrafts [5]. In airborne radar systems, algorithms such as the
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range-Doppler algorithm [6], chirp scaling algorithm [7], and range-migration algorithm
(RMA) [8] have been used to reconstruct SAR images. To obtain high image quality from
these SAR image reconstruction algorithms, the speed of the radar-equipped platform
should be constant and the radar sensor data should be spatially uniformly acquired.

Recently, these SAR imaging technologies have been applied to small platforms such
as automobiles [9] or drones [10,11]. For example, methods for reconstructing SAR images
of cars parked in a parking lot were proposed in [12–14]. However, compared to aircrafts,
it is difficult to meet the conditions of constant speed and regular data acquisition in small
SAR platforms. Therefore, in this study, we propose a compressive sensing (CS)-based
method for reconstructing the SAR image even if the radar sensor data are not acquired
at regular spatial intervals. The feasibility of applying the CS technique to SAR image
reconstruction has been demonstrated in several studies [15,16]. For example, the authors
in [17] used the CS-based technique to determine the presence of targets in the same line of
sight. In addition, methods of improving accuracy and resolution in angle estimation using
CS-based algorithms were also introduced in [18,19]. Recently, in [20,21], CS-based high-
resolution SAR image reconstruction methods in the frequency-modulated continuous
wave (FMCW) radar system were presented. Unlike the mentioned studies, we use a
CS-based signal recovery method to generate sensor data from irregularly acquired data.

In this study, we used the RMA as a basic SAR image reconstruction method, which is
known to be effective in generating near-field SAR images [22]. The potential for improving
the performance of RMA by applying CS-based signal recovery to signals received from
sparsely arranged antenna elements was reported in [23]. In our work, we solved the
non-uniform data acquisition problem by using the l1-norm minimization [24]. Based
on the fact that the time-domain radar sensor data are sparse, the processes of Fourier
transform and inverse Fourier transform of the conventional RMA algorithm were replaced
by the CS-based signal recovery method. In addition, by applying the proposed signal
recovery method to each of the in-phase and quadrature (I/Q) components of the irregularly
acquired radar sensor data, we were able to reduce the phase distortion of the restored
signal. To evaluate the performance of the proposed method, experiments were conducted
with a millimeter-wave band FMCW radar sensor. Then, the quality of the SAR image
reconstructed using the entire data was compared with the quality of the SAR images
reconstructed from randomly acquired data.

The remainder of this paper is organized as follows. We introduce the basic principles
of the FMCW radar system and explain the fundamentals of the conventional SAR image
reconstruction method in Section 2. In Section 3, we propose a method for applying the CS-
based signal recovery algorithm to the SAR image reconstruction. Then, the performance
of the proposed method is verified through actual experimental results in Section 4. Finally,
we conclude this paper in Section 5.

2. SAR Image Reconstruction with FMCW Radar Sensor Data
2.1. Principles of FMCW Radar System

In general, the FMCW radar system consists of a waveform generator (WG), voltage-
controlled oscillator (VCO), transmitting antenna (Tx), receiving antenna (Rx), frequency
mixer (FM), low-pass filter (LPF), analog-to-digital converter (ADC), and digital signal
processor (DSP), as shown in Figure 1. As shown in the figure, the waveform generator
produces a series of chirps whose frequency increases linearly with time. In other words,
a total of NC chirps are generated every cycle TP in the waveform generator. This wave-
form is frequency-modulated with the center frequency fc and then radiated through the
transmitting antenna. The n-th (n = 1, 2, . . . , NC) chirp in the transmitted waveform can
be expressed as follows:

sn(t) = αn exp
(

j
(

2π
(

fc −
2n− 1

2
∆ f
)

t + π
∆ f
∆t

t2 + φn

))
(n− 1)∆t < t < n∆t, (1)
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where αn and φn represent the amplitude and phase offset of the n-th chirp. In addition, ∆t
and ∆ f denote the chirp duration and bandwidth of each chirp.

Figure 1. Block diagram of the FMCW radar system.

The transmitted waveform in (1) is reflected from various objects in the antenna’s field
of view. The received waveform can be expressed as follows:

rn(t) =
K

∑
k=1

βn, k exp
(

j
(

2π
(

fc + fd, k −
2n− 1

2
∆ f
)
(t− td, k)

+π
∆ f
∆t

(t− td, k)
2 + φn

))
, (2)

where βn, k represents the amplitude of the received signal reflected from the k-th
(k = 1, 2, . . . , K) object. In addition, td, k denotes the time delay caused by the distance
between the radar and the k-th object, and fd, k denotes the Doppler shift generated by the
velocity of the k-th object.

Then, rn(t) is multiplied by sn(t) in the frequency mixer, and the output of the fre-
quency mixer is passed through the low-pass filter, as shown in Figure 1. The output of the
low-pass filter can be expressed as follows:

mn(t) = {sn(t)rn(t)}LPF

∼=
1
2

K

∑
k=1

αnβn, k exp
(

j
(

2π
(

td, k
∆ f
∆t
− fd, k

)
t + ψn

))
, (3)

where ψn is the phase offset of the filtered signal. This baseband signal is composed of the
sum of cosine waves, and the frequency of each cosine wave contains the distance and
velocity information of each object [25].

The output of the low-pass filter is sampled while passing through the analog-to-
digital converter, and the time-sampled signal in each chirp can be expressed as follows:

mn = [mn(t = TS), mn(t = 2TS), . . . , mn(T = NSTS)]

= [mn[1], mn[2], . . . , mn[NS]], (4)

where TS is the sampling period and NS is the total number of time samples. In general,
using all NC chirps increases the signal-to-noise ratio (SNR) for the object, but also increases
the time it takes to acquire and store sensor data. Therefore, in this study, only the sampled
data from the first chirp are used to reduce the time required to generate the SAR image.
The effect of increasing the SNR is achieved by generating an image considering all time
samples from each chirp, which is explained in Section 2.2.

2.2. Fundamentals of Range Migration Algorithm

In this study, we use the RMA-based method to reconstruct the SAR image. The RMA
method is efficient for near-field SAR image generation [22], which is suitable for SAR
image reconstruction on small radar-equipped platforms. Reconstructing the SAR image
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in the RMA method is equivalent to calculating the reflectivity at each point (xi, zi). The
reflectivity depends on the radar cross section of the object and the distance between the
radar and the object, which greatly affects the quality of the SAR image reconstruction
result. First, we assume that the initial position of the SAR platform is x0 and that it moves
along the x-axis with a constant velocity v, which is shown in Figure 2. In the figure, the
position of the SAR platform can be expressed as xi = x0 + (i− 1)vTP (i = 1, 2, . . . , NM),
where NM denotes the total number of measurements.

Figure 2. Movement of the SAR platform in the azimuth direction.

In general, to reconstruct the results of radar detection as an image, data acquisition is
required at regular spatial intervals along a straight line. In other words, the signal of (4)
is obtained at each point xi for every TP. If the first chirp signal received at i-th point is
expressed as m(i), the initial input of the SAR image reconstruction can be expressed as
follows:

M =
[
m(1), m(2), . . . , m(NM)

]T
, (5)

where the size of M becomes NM × NS. Then, we apply the Fast Fourier transform (FFT)
in the x-axis direction on M, which can be expressed as F{M}. If we set the number of
FFT points to be equal to NM, the size of F{M} also becomes NM × NS.

The next step in SAR image generation is the compensation of the amplitude and
phase of F{M}. To compensate the amplitude, the FFT result must be multiplied by the
wavenumber in the z-axis direction [26], which can be calculated as follows:

kz
2 = (2k)2 − kx

2, (6)

where k is the wavenumber, and kx is the wavenumber in the x-axis direction. Because the
frequency of the FMCW radar signal changes with time, k = 2π f

c has a value that varies
according to the effective bandwidth ∆ f e f f . Based on (6), the amplitude compensation
matrix Kz is generated, which has the size of NM × NS. In addition, the phase for position
zi in the z-axis direction can be compensated with the factor e−jKzzi , which also has the
size of NM × NS. Therefore, the compensation for the amplitude and phase can be summa-
rized as F{M}⊗Kz

⊗
e−jKzzi , where

⊗
denotes the element-wise multiplication operator

for matrices.
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Finally, an inverse Fourier transform is applied to reconstruct the SAR image, which
can be expressed as follows:

M̂ = F−1
{
F{M}

⊗
Kz
⊗

e−jKzzi
}

, (7)

where the size of M̂ is equal to M. As mentioned in Section 2.1, to increase the SNR of
the reconstructed SAR image at point (xi, zi), the process of adding reflectivities for all
NS time samples is applied. Finally, the reflectivity at point (xi, zi) can be expressed as
follows:

r(xi, zi) =
NS

∑
q=1

M̂(p = i, q), (8)

where M̂(p, q) denotes the (p, q)-th element of M̂.

3. Proposed SAR Image Reconstruction with Compressive Sensing

When the radar sensor data are received at all NM measurement points, the sensor
data can be expressed as M in (5). However, if the SAR platform is not moving at a
constant velocity, the distance between the two measurement points changes with time,
as shown in Figure 3. When the regular data acquisition is not performed, the quality
of the reconstructed SAR image deteriorates. Therefore, we propose a CS-based signal
recovery method for restoring the image quality when the moving speed of the platform is
not constant.

Figure 3. Regular and irregular data acquisition.

If we express the data matrix with irregular data acquisition as M̃, the matrix can be
thought of as a matrix in which some values in M are filled with zeros. Therefore, the
problem of restoring M from M̃ can be defined as the l1-norm minimization problem [24].
As shown in Figure 3, we assume that the size of M̃ is ÑM × NS, where ÑM is less than NM.
If the received signal vector at all measurement points for the j-th time samples is expressed
as M̃(u, v = j), the signal vector s∗ we want to restore can be obtained by solving the
minimization problem, which is expressed as follows:

s∗ = argmin ‖s‖1

subject to Fs = M̃(u, v = j), (9)

where ‖·‖1 denotes the l1-norm operator. In addition, the matrix F represents the inverse
Fourier transform matrix of size ÑM × NM. The problem in (9) can be re-expressed as a lin-
ear program problem, and it can be solved with the primal-dual interior point method [27].
Finally, by multiplying s∗ by the inverse Fourier transform matrix G of size NM × NM
again, signals recovered in the time domain can be obtained, which are expressed as Gs∗.
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If this process is repeated for all NS time samples, a signal matrix reconstructed in
the time domain M̃∗ is obtained. Then, the SAR image can be reconstructed by apply-
ing the same amplitude and phase compensation method as in (7) to M̃∗, which can be
expressed as follows:

M̂∗ = M̃∗
⊗

Kz
⊗

e−jKzzi . (10)

Finally, the reflectivity at point (xi, zi) can be expressed as:

r∗(xi, zi) =
NS

∑
q=1

M̂∗(p = i, q), (11)

where M̂∗(p, q) denotes the (p, q)-th element of M̂∗. In (11), we also add reflectivities for
all time samples to increase the SNR.

Moreover, when the CS-based signal recovery is applied to a signal in which I/Q
components are combined, phase information is not properly restored and the SAR image
quality can be degraded. Thus, we apply the CS-based signal recovery method to each of
the I/Q components in order to improve image quality, as shown in Figure 4.

Figure 4. Proposed CS-based signal recovery method applied to each of the I/Q components.

In Figure 5, the processes of the conventional SAR image reconstruction using the
RMA and the proposed SAR image reconstruction using the CS-based algorithm are
summarized. As shown in the figure, the Fourier transform and inverse Fourier transform
are sequentially applied in the conventional SAR image reconstruction. However, those
processes were replaced by the CS-based signal restoration in our proposed method.

Figure 5. Conventional SAR image reconstruction using the RMA and the proposed CS-based SAR
image reconstruction method.



Sensors 2021, 21, 7283 7 of 13

4. Performance Evaluation
4.1. Radar Sensor Data Acquisition

In this section, we evaluate performance by applying the proposed method to ac-
tual radar sensor data. In our experiments, we used the FMCW radar sensor module
developed by Texas Instruments. It consists of a 76–81 GHz automotive radar sensor (i.e.,
AWR1642BOOST) and a real-time data-capture adapter (i.e., DCA1000EVM), as shown in
Figure 6. In addition, the radar parameter values used in our experiments are summarized
in Table 1.

Figure 6. Radar sensor module used in our experiments.

Table 1. Radar parameters used in the FMCW radar system.

Radar Parameters Value

Center frequency, fc 78.79 (GHz)
Bandwidth, ∆ f 3.57 (GHz)

Effective bandwidth, ∆ f e f f 1.79 (GHz)
Sweep time, ∆t 151 (µs)

The number of time samples in each chirp, NS 256
The number of chirps, NC 8

Sampling frequency 10 (MHz)
Range resolution 8.4 (cm)

Velocity resolution 0.79 (m/s)

Using the radar sensor with these specifications, we conducted radar signal mea-
surements in an outdoor parking lot, which is shown in Figure 7a. In the experimental
environment, two different cars (i.e., Tucson made by Hyundai Motor Company and Soul
made by Kia Motors) were parked side by side, and the radar sensor was mounted on a
rail. The rail was placed parallel to the front bumpers of both cars at a distance of 2 m. The
radar sensor was installed on the rail so that the boresight direction of the antenna system
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was directed toward the car. In other words, the moving direction of the radar and the
boresight direction of the antenna were perpendicular to each other. Then, the radar moved
at a constant speed from left to right on the rail, and we acquired and stored sensor data
at intervals of 10 cm using the data-capture adapter. We set the data acquisition interval
to 10 cm, in consideration of the range resolution presented in Table 1. In summary, the
radar sensor data were acquired every 10 cm using this measurement system, as shown in
Figure 7b. Because the distance from the left side of Car 1 to the right side of Car 2 is 6.4 m,
there were a total of 64 measurement points between them (i.e., NM = 64).

(a)

(b)

Figure 7. (a) Experimental environment; (b) radar sensor data acquired every 10 cm.

4.2. SAR Image Reconstruction Results

First, we reconstructed the SAR image using all the acquired sensor data, which means
that the conventional RMA was applied. We applied the FFT to the acquired radar sensor
data in the x-axis direction, which is equivalent to F{M}. Figure 8 shows the Fourier
transform result of the radar sensor data acquired from a total of 64 points. As shown in the
figure, components with significant magnitudes exist sparsely in the FFT-processed matrix
data. For this matrix data, the amplitude and phase compensation method described in
Section 2.2 was applied, and then the inverse Fourier transform was applied again. When
reconstructing the SAR images, the position in the range direction, zi, was set from 0 to
5 m at 10 cm intervals. Finally, the SAR image reconstruction result using the conventional
RMA is shown in Figure 9. As shown in the figure, the radar signals are strongly reflected
on the front faces of the two cars, and this is clearly shown in the SAR image reconstruction
results. In addition, the figure shows strong reflections of radar signals even from the wall
between the cars.
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Figure 8. Fourier transform result of the radar sensor data acquired from all measurement points.

Figure 9. SAR image reconstruction result using the sensor data acquired from all measurement
points (i.e., using the conventional RMA method).

Next, instead of using the sensor data acquired from all measurement points, the SAR
image was reconstructed using only data acquired from randomly selected measurement
points. That is, it corresponds to the case where the radar sensor data were acquired
when the speed of the SAR platform was not constant and varied. For example, we
reconstructed the SAR image assuming that 10% of the total measurement data were lost.
Then, the proposed CS-based signal recovery method in (9) was applied to the radar sensor
data in which the I/Q components were combined; the following SAR reconstruction
result is shown in Figure 10. The white lines in the figure indicate randomly selected and
discarded measurement points, and correspond to the sensor data restored by the CS-based
method. As shown in the figure, the SAR image was not properly reconstructed because
the amplitude and phase components of the radar sensor data were not properly restored
by the CS-based signal recovery.

Therefore, we finally applied the proposed CS-based signal recovery technique to each
of the I/Q components, as shown in Figure 4. Figure 11 shows the SAR image reconstruc-
tion results when 90%, 80%, 70%, and 60% of the total radar sensor data were randomly
selected and used for the signal recovery, respectively. When comparing Figures 10 and 11a,
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the quality of the image reconstruction result was greatly improved as compared to when
the proposed signal recovery was applied to the signal in which the I/Q components
were combined. Moreover, although the amount of the sensor data was reduced and
non-uniform interval data acquisition was applied, the SAR image reconstruction results
were similar to those in Figure 9. Because the acquired radar signal has a sparse char-
acteristic in the FFT domain, as shown in Figure 8, the CS-based signal recovery can be
effectively applied.

Figure 10. SAR image reconstruction result: when the CS-based signal recovery is applied to the
sensor data in which the I/Q components are combined.

To quantitatively evaluate the performance of the proposed CS-based SAR image
reconstruction method, we calculated the Pearson correlation coefficient [28] between the
reconstructed SAR images and the reference SAR image (i.e., Figure 9). In other words, the
degree of similarity between ρ(xi, zi) and ρ∗(xi, zi) for all points (xi, zi) is evaluated as
the value of the correlation coefficient. Table 2 shows the calculated correlation coefficient
values for each case. As given in the table, the correlation decreases as the amount of sensor
data used decreases. However, even if 30% of regularly acquired data are lost, the SAR
image reconstructed with the remaining data has a correlation of 0.83 with respect to the
reference SAR image. Therefore, with our proposed method, even if the radar-equipped
SAR platform does not acquire sensor data at spatially regular intervals, the SAR image
can be effectively reconstructed.

Table 2. Pearson correlation coefficient [28] according to the ratio of the radar sensor data used.

Ratio of Radar Sensor Data Used Correlation Coefficient

90% 0.93
80% 0.89
70% 0.83
60% 0.76
50% 0.69
40% 0.66
30% 0.59
20% 0.38
10% 0.28
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(a) (b)

(c) (d)

(e) (f)

Figure 11. SAR image reconstruction result using the CS-based signal recovery: (a) 90% of the total radar sensor data used;
(b) 80% of the total radar sensor data used; (c) 70% of the total radar sensor data used; (d) 60% of the total radar sensor data
used; (e) 40% of the total radar sensor data used; (f) 20% of the total radar sensor data used.
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5. Conclusions

In this paper, we proposed the CS-based signal recovery method for reconstructing
SAR images from irregular sensor data acquisition. First, we applied the l1-norm mini-
mization problem to restore the sensor data from non-uniformly acquired sensor data. In
addition, by applying the proposed CS-based recovery method to each of the I/Q compo-
nents of the radar sensor data, the effect of distortion occurring in the phase of the signal
was also reduced. Finally, the performance of the proposed method was verified using the
data obtained from the automotive FMCW radar sensor. The SAR image was reconstructed
using only a part of the entire radar sensor data, and the similarity with the reference SAR
image was calculated through the correlation coefficient. The proposed method is expected
to be efficiently used in small SAR platforms (e.g., vehicles or drones) that hardly move at
a constant speed.
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ADC Analog-to-digital converter
CS Compressive sensing
DSP Digital signal processor
FFT Fast Fourier transform
FM Frequency mixer
FMCW Frequency-modulated continuous wave
I/Q In-phase and quadrature
LPF Low-pass filter
RMA Range migration algorithm
Rx Receiving antenna
SAR Synthetic aperture radar
SNR Signal-to-noise ratio
Tx Transmitting antenna
VCO Voltage-controlled oscillator
WG Waveform generator
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