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Abstract: This study proposes an artificial neural network-based method to classify road structures for automotive radar
systems. Generally, road structures generate unwanted echoes called clutter, which degrades the performance of target
detection, and may cause critical errors in autonomous driving modes. However, recognition and classification of each individual
structure type is very difficult, because there are various types of structures made by different materials which cause ambiguity
in the recognition and classification process. To deal with these classification ambiguities, the authors propose an artificial
neural network-based recognition and classification method. Road structures are classified by applying artificial neural network
to the frequency domain-received signals of automotive radar systems. Once the neural network has been trained with the
received signals, it is used to determine the type of road structure with instantaneous received signals. The classification
performance was evaluated by experimenting with the number of antenna elements and radar snapshots. In addition, to find the
most suitable artificial neural network structure, the authors experimented with the number of nodes and layers. After completing
a period of deep learning using actual experimental data, the total classification accuracy was about 95%.

1 Introduction
With the recent growing interests in autonomous vehicles, the
importance of various sensors has significantly increased in order
to ensure the safety of cars, drivers, and the pedestrians [1]. As
currently implemented, autonomous vehicles incorporate cameras,
lidars, radars, and ultrasonic sensors. Among these, cameras
require light sources to detect a target, and therefore have poor
detection performance in shaded areas or at night; however, the
detection performance of radar sensors is insensitive to light
sources [2]. In addition, radar sensors can detect a target with a
relatively long distance compared to ultrasonic sensors [3], and the
lidar sensors require higher production cost than the radar sensors.
For these reasons, many groups are researching about the
automotive radar and its applications [4–7].

The detection performance of radar is affected by the road
environments [8–12]. The target detection performance of radar is
significantly low in the presence of road structures, such as iron
tunnels, sound barriers [13–15]. In particular, if the road structure
consists of metal, the intensities of the received signals reflected
from the road structure are often stronger than those from the
vehicle target, which means that the target vehicle cannot be
detected appropriately. Since target detection failure can result in
fatal accidents, it is important that the radar systems can detect
targets even in harsh road environments to ensure safe autonomous
driving. To detect targets in such environments, it is required to
develop reliable methods for recognising the environment.

Some studies have proposed methods to detect road structures
using lidar systems or camera systems [16–20]; however, the
techniques used in these papers are not applicable for radar
systems. In [13, 15], the recognition of road structures using radar
have been introduced. In [13], a method to recognise iron tunnels
using Shannon entropy was investigated. In [15], recognition of
guard rails, sound barriers, and iron tunnels was discussed.
However, they only recognised metal structures and does not
classify the road structures. In [21, 22], a machine learning
algorithm was used to classify road structures. They extracted

several features and used these features to train a support vector
machine (SVM), which is a simple type of machine learning
algorithm. However, to use the SVM, it is necessary to extract the
representative features well, and the classification performance
changes greatly depending on the selected features.

Therefore, we propose a method to classify the types of road
structures by using deep learning which can extract unknown
features by itself. Road structures are classified based on the fact
that the statistical distribution of the received signal strength and
fast Fourier transform (FFT) magnitude response differ depending
on the road structures. Thus, road structures are classified using
FFT magnitude response as the input of artificial neural network
(ANN). As the output of ANN, sound barriers, iron tunnels, typical
underground tunnels, and open roads are set up. We measured
received radar signals for the road structure along the Yongin–
Seoul Expressway. The performance of the road structure
classification system was evaluated by changing the number of
receive antenna elements, the number of snapshots used as input
data, and the ANN structure. The training, validation, and test sets
comprised 70, 15, and 15% of the used data, respectively. With this
approach, it was possible to recognise road structures in real time.
Compared to [21] in which road structures are classified by direct
extraction of features, the proposed method demonstrated that
better classification performance can be obtained by using ANN
without extracting features. As a result, once the type of structure
has been recognised, it is expected that adaptive target detection
algorithms can be used for the according road environment.

The remainder of this paper is organised as follows. A system
model of the frequency-modulated continuous wave (FMCW)
radar and measurement procedures along the specific road
structures are introduced in Section 2. In Section 3, a method of
classifying road structures using ANN is presented. Then, the
classification results from the ANN method are analyzed in Section
4. Finally, the paper is concluded in Section 5.

IET Radar Sonar Navig., 2019, Vol. 13 Iss. 6, pp. 1010-1017
© The Institution of Engineering and Technology 2019

1010

http://crossmark.crossref.org/dialog/?doi=10.1049%2Fiet-rsn.2018.5610&domain=pdf&date_stamp=2019-06-01


2 System model and target detection in
automotive FMCW radar
2.1 System model of FMCW radar

Assume a single-input and multiple-output FMCW radar system
composed of one transmitting antenna and N identical receiving
antenna elements with uniform spacing d. Then, the transmitted
signal in the FMCW radar system can be expressed as follows:

S(t) = ATcos 2π f c − BW
2 t + BW

2ΔT t2 , (1)

where AT is the amplitude of the transmitted signal, f c is the center
frequency of the transmitted signal, BW is the sweep bandwidth of
the transmitted signal, and ΔT is the sweep time of the transmitted
signal. The time-domain received signal reflected from multiple
targets, R(t), can be expressed as

R(t) = ∑
l = 1

L
ARlcos 2π f c − BW

2 + f dl (t − tdl)

+ BW
2ΔT (t − tdl)

2 ,
(2)

where ARl is the amplitude of the received signal from the lth
target, f dl is the Doppler frequency reflected at the lth target, tdl is
the time delay corresponding to the lth target, and L is the number
of targets. The signal received by the antenna elements is
demodulated by a mixer and a low-pass filter. The demodulated
signal can then be expressed as

M(t) = ∑
l = 1

L
AMlcos 2π BW

ΔT tdl − f dl t

+2π f c − BW
2 + f dl tdl − πBW

ΔT tdl
2 ,

(3)

where AMl is the amplitude of the demodulated signal from the lth
target. By applying the Fourier transform to the demodulated
signal, we obtain a frequency called the beat frequency, from
which we can obtain the target information, such as range and
velocity. The beat frequency can be expressed as

f bl = BW
ΔT tdl − f dl . (4)

This beat frequency f bl can be extracted by applying a peak
detection algorithm, such as the constant false alarm rate (CFAR)
[23]. The sampled time-domain demodulated signal can be
expressed as follows:

xi = [xi(1), xi(2), …, xi(Ns)]T,
(i = 1, 2, …, Nscan),

(5)

where Ns denotes the number of time samples, i is the scan index,
and Nscan is the total number of scans. The FFT result of xi is
expressed as

Xi(k) = ∑
n = 1

Ns

xi(n)e− j(2π /NFFT)(k − 1)(n − 1),

(k = 1, 2, …, NFFT),
(6)

where NFFT denotes the number of points in FFT. Since Xi(k) is a
complex number, the magnitude response is obtained by taking the
absolute value for each element, as follows:

Ci = Xi(1) , Xi(2) , …, Xi(NFFT) T . (7)

2.2 Sensor parameter description

We measured radar signals about the road structures along the
Yongin–Seoul Expressway. To judge whether it is applicable
directly in an actual road environment, the experiment was
conducted in various environments while driving on an actual road
rather than an ideal environment. Furthermore, the experiment was
performed under various conditions while changing the ego
velocity continuously and with varying distances from the target.
The measurements were conducted using a long-range radar
manufactured by Mando Corporation. This system has a field of
view (FoV) from −10° to 10° and the maximum detection range of
250 m. The number of transmit and receiving antenna elements
were 1 and 4, respectively, the antenna spacing between each
receiving antenna element was 1.8λ where λ is the wavelength of
the transmitted signal, and FFT length is 2048. In operation, the
system transmitted a 76.5 GHz FMCW radar signal with a
bandwidth of 500 MHz and a 10 ms sweep time for the up- and
down-chirping. One scan takes 100 ms, consisting of up- and
down-chirping times of 10 ms and signal processing times of 90 
ms.

2.3 Target detection in various road structures

In this section, we discuss the FFT results for different road
environments. General elements in driving environments, such as
sound barriers, iron tunnels, typical underground tunnels, and open
roads, are shown in Fig. 1. A total of 600 scans (i.e. from C1 to
C600) acquired while driving for 1 min in four different road
environments are shown in Fig. 2. The x axis can be converted to
time. If the relative velocity between the target and the radar-
equipped vehicle is zero, y axis can be converted to distance.
Sound barriers appear from about the 300th scan to the 600th scan
in Fig. 2a, and the horizontally curved lines indicate other vehicles
driving in the FoV of our radar. If a target vehicle is faster than the
radar-equipped vehicle, the up-slope curve extends from the lower
left to the upper right. If the target vehicle is slower than the radar-
equipped vehicle, the down-slope curve extends from the upper left
to the lower right. Since there are a lot of targets, only a few targets
that are noticeable in Fig. 2 are marked. In case of stationary road
structures, curves appear as lines having tangential slopes
proportional to the velocity of the radar-equipped vehicle. If the
radar-equipped vehicle is moving at a constant velocity, lines are
straight. In Fig. 2a, straight lines appear in the frequency domain
when the vehicle enters the section with sound barriers. In Fig. 2b,
the signals reflected by the metal structures in the iron tunnel are
dominant. Thus, the target vehicles could not be accurately
detected beyond a certain critical distance. While iron tunnels
possess similar characteristics to the sound barrier because they are
both made of iron, the received signals reflected from iron tunnels
are stronger than those reflected from the sound barriers. In Fig. 2c,
the 200th to the 600th scan is the inside of a typical underground
tunnel, and several unwanted reflections occur due to the tunnel
structure. However, since the typical underground tunnel is not
made of iron, the intensities of the reflected signals are relatively
weak; thus, the preceding vehicle is detected fairly well. In Fig. 2d,
the effect of the median strip appears periodically, but this is much
less likely to act as clutter than the other road structures. The
targets are well detected on the open road, unlike environments
having metal road structures. As shown in Fig. 2, when 600 scans
are obtained, the characteristics of the road structures are distinct
enough to tell the difference between them. 

Instead, the instantaneous FFT magnitude response is also
enough to tell the difference. Instantaneous FFT magnitude
responses of a single scan for each road environment are shown in
Fig. 3. The red circles in the figure represent the signals that are
reflected from the target vehicles, while the red lines indicate the
threshold lines using order statistics (OS)-CFAR [24], one of the
CFAR algorithms. If an FFT magnitude is greater than the CFAR
threshold, the point is recognised as a meaningful target. Thus, in
an ideal situation, all of the red circles should be above the red line.
Figs. 3a and b show multiple reflected signals from the road
structures, which cause the desired targets to not be properly
detected. In addition, the intensities of the reflected signals in the

IET Radar Sonar Navig., 2019, Vol. 13 Iss. 6, pp. 1010-1017
© The Institution of Engineering and Technology 2019

1011

 17518792, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-rsn.2018.5610 by C

hung-A
ng U

niversity, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



iron tunnel are stronger than in other road environments. As shown
in Fig. 3c, non-target signals are also received while the vehicle is
in a typical underground tunnel. However, since a typical
underground tunnel is not made of iron structures, the targets are
well detected compared to other environments such as iron tunnels
or sound barriers. In Fig. 3d, unlike metal road structures, the
targets are easily detected on the open road. Generally, the number
of vehicles does not greatly affect the road structure classification
performance, because the reflection signal by the road structure is
more intense than the reflection signal by other vehicles. Moreover,
we did not consider the influence of the number of vehicles and the
experiment was carried out in situations where the number of
vehicles was varied. Based on these results, the received signals

reflected from each structure have unique characteristics even
during one scan. Thus, these characteristics can be used to
distinguish between the different structures. Since the different
metal density of road structure results in the different intensities of
the reflected signals, instantaneous FFT magnitude responses can
be used to classify the types of road structures. 

3 Road structure classification via ANN
An ANN is a type of machine learning algorithms. While the
performance of most machine learning techniques depends on how
features are extracted from the received data, deep learning
algorithms automatically extract meaningful features through the

Fig. 1  Snapshots of
(a) Sound barrier, (b) Iron tunnel, (c) Typical underground tunnel, and (d) Open road

 

Fig. 2  Accumulated FFT data for
(a) Sound barrier, (b) Iron tunnel, (c) Typical underground tunnel, and (d) Open road
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training process and are able to identify hidden features that
otherwise would not be found.

ANN algorithms used for target classification include
convolutional neural network [25, 26] and recurrent neural network
[27]. However, they are not suitable for automotive radar that
needs real-time signal processing. The computational complexity
of CNN is O ∑l = 1

Nlayer cl ⋅ sl
2 ⋅ nl ⋅ ml

2 , where l is the index of a CNN
layer, Nlayer is the number of convolutional layers, and cl is the
number of input channels of the lth layer. In addition, sl is the
spatial size of the filter, nl is the number of filters in the lth layer,
and ml is the spatial size of the output feature map [28]. The
computational complexity of RNN is O(P2Q) per epoch, where P is
the number of units in an RNN layer and Q is the total number of
time steps [29].

Thus, ANN known as PatternNet, which is relatively simple in
network structure and has low complexity, is used to classify and
recognise road structures [30–32]. A radar-equipped vehicle is used
to gather time domain received signal data across four different
road environments, namely, sound barrier, iron tunnel, typical
underground tunnel, and open road. Then, the frequency domain
signal is obtained by performing FFT on the signal received in the
time domain. Next, the magnitude responses of FFT are compared
to each other. In this paper, we employ a multilayer neural network
called PatternNet. The structure of PatternNet with several hidden
layers is shown in Fig. 4. Learning of the multilayer artificial
neural network is performed via a backpropagation algorithm that
is divided into four stages [33]. Fig. 5 shows the flowchart of the
proposed neural network. The specific description of each stage in
the flowchart is as follows. The first stage is to initialise the
network. This requires each weight and threshold value in each
neuron to be assigned within a certain range. The second stage is to
determine the activation. The function from the input layer to the
hidden layer can be expressed as follows:

hr(p) = f ∑
q = 1

Nin

gq(p)wqr(p) − br ,

(r = 1, 2, …, Nhidden)
(8)

where hr(p) and gq(p) denote the values of the rth node of the
hidden layer and the qth node of the input layer, respectively. The
qth node of the input layer contains Xi(q)  corresponding to the qth
value of the FFT magnitude response. In addition, wqr(p) is the
weight between hr(p) and gq(p), br is the bias of hr(p), p is the
iteration index, Nin is the total number of input nodes, Nhidden is the
total number of hidden nodes, and the function f ( ⋅ ) denotes an
activation function. As in (8), the calculation process from the
hidden layer to the output layer can be expressed as

os(p) = f ∑
r = 1

Nhidden

hr(p)wrs(p) − bs ,

(s = 1, 2, …, Nout)
(9)

where os(p) denotes the value of the sth node of the output layer,
wrs(p) is the weight between os(p) and hr(p), bs is the bias of os(p),
and Nout is the total number of output nodes. Here, we have
performed experiments to classify four road structures, so Nout is 4.
Once the activation has been determined, the weights are learned in
the third stage. The goal here is to update the weight to minimise
the magnitude of the error, which can be expressed as

E(p) = 1
2 ∑

s = 1

Nout

(o^s(p) − os(p))2, (10)

where o^s(p) is the sth actual output value. Here, the value of wrs(p)
that minimises E(p) can be expressed as

Fig. 3  Instantaneous FFT magnitude responses for
(a) Sound barrier, (b) Iron tunnel, (c) Typical underground tunnel, and (d) Open road
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wrs(p + 1) = wrs(p) − η ∂E(p)
∂wrs(p)

= wrs(p) − ηδs
o(p)hr(p),

(11)

where

δs
o(p) = os(p)(1 − os(p))(o^s(p) − os(p)), (12)

and η is the step size. The term wqr(p) can be updated in the same
way. This can be expressed as

wqr(p + 1) = wqr(p) − η ∂E(p)
∂wqr(p)

= wqr(p) − ηhr(p)(1 − hr(p))

× ∑
s = 1

Nout

wrs(p)δs
o(p)gq(p) .

(13)

Finally, as an iterative stage, p is increased and the activation
and weight learning stages are repeated until the error reaches zero
in all epochs.

4 Target classification results
This section presents the classification performance when ANN is
applied to experimental data obtained using an actual automotive
radar system. The experiments were conducted on the Yongin–
Seoul Expressway, and the experimental data consist of 13,680
scans to verify the deep learning performance, of which 70, 15, and
15% of the data is reserved for training, validation, and test set,
respectively. The FFT magnitude response from (7) is employed as
the input to PatternNet. The output is a 4 × 1 vector since we
classify four types of road structures. The output layer is
configured as a competitive layer because at least one of the road
environments must be recognised in each snapshot. The following
results are all based on the FFT magnitude response obtained from
four antenna elements. This is because the classification
performance is very poor when the phase part of the FFT result or
the FFT result itself is directly used as the input.

The performance of deep learning depends on the number of
hidden layers, number of nodes, and type of activation function. To
ascertain the effects of each factor, the road structure classification
process is conducted while varying each factor and monitoring the
results. The classification accuracy based on the number of nodes
in the hidden layer when one hidden layer is used is shown in
Fig. 6. In Figs. 6a–c the tanh, sigmoid, and satlin functions are
used as the activation functions, respectively, where the tanh
function can be expressed as f (x) = (ex − e−x)/(ex + e−x), sigmoid
can be expressed as f (x) = 1/(1 + e−x) [34]. satlin can be
expressed as

f (x) =
0, (x < 0)
x, (0 ≤ x < 1)
1, (1 ≤ x)

.

Satlin stands for saturating linear function. The results from testing
with different number of hidden layer nodes show that, if the
number of nodes is <20 or >80, the performance becomes poor. In
addition, when the tanh or satlin function is used, the classification
performance is the best when the number of nodes is about 50.
When the sigmoid function is used, the classification performance
is the best when 70 nodes are used. 

The effect of the number of layers is shown in Fig. 7. In this
test, the number of nodes in the hidden layer is fixed at 50 while
the number of hidden layers is increased. In Fig. 7, the best
classification performance is achieved when only one hidden layer
is used. When the number of hidden layers is increased to two or
more, no significant performance change is observed. This is
because when the number of hidden layers is increased, it
sometimes results in overfitting, which degrades the classification

performance [35]. In the case of the saturating linear function,
classification performance is similar to other activation functions.
However, due to the fact that it does not get out of the saturation
section, training often fails. For the similar reason, when rectified
linear unit was used as an activation function, the training failed
frequently and the road structure classification was almost
impossible. As shown in Figs. 6 and 7, no significant performance
difference between tanh or sigmoid as the activation function is
observed. Thus, all following experiments were carried out using
tanh as the activation function in the road structure classification
process. 

Next, the variation in performance is analysed versus the
number of receiving antenna elements N. An NFFT × N matrix
contains the up-chirp FFT magnitude response of the received
signals, where NFFT = 1024 and N = 1, 2, 3, or 4. The number of
hidden layer and the number of node are set based on the previous
experimental results. The number of hidden layer is one and the
number of nodes in the hidden layer is 50. A tanh function is used
as the activation function in the hidden layer. The results of
classifying road environments by applying the ANN to actual
experimental data are listed in Table 1. Increasing the number of
receiving antenna elements also improved the road structure
classification performance. Furthermore, the classification
accuracy for classifying iron tunnels is almost 100% because they
exhibit distinct characteristics compared to other road
environments. Sound barriers are not as distinctive as other road
structures. Therefore, their classification performance is the lowest
among the four road environments. 

Fig. 4  Framework of the proposed artificial neural network
 

Fig. 5  Flowchart of the proposed artificial neural network
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The different types of roads can exhibit similar characteristics
when one FFT magnitude response is used. In order to prevent this,
the deep learning process is executed with three consecutive
magnitude responses (e.g. Ci, Ci + 1, and Ci + 2). Thus, input data size
is 1024 × 12. Table 2 shows the results of deep learning with three
consecutive FFT magnitude responses inserted simultaneously as
the input data. In Table 2, the first row represents the actual road
structure and the first column represents the road structure
estimated from the test result. In these results, the number of
hidden layers is one and the number of hidden layer nodes is 50. In
addition, a tanh function is used as the activation function. In this
test, all of the iron tunnels are properly classified, while, for the
sound barriers, nearly 10% of the test data is incorrectly recognised

as typical underground tunnels. Consequently, the total
classification accuracy is 95%. The average classification
performance is enhanced by 3%p when more than one FFT
magnitude response is used. 

Finally, we compare the classification performance between
two input settings; the FFT magnitude response without any feature
extraction, and extracted features of the FFT magnitude response.
Similar to the previous study [21], the mean, variance, skewness,
and kurtosis of the FFT magnitude responses are used as the
features. When the features are extracted and used as the input to
ANN, the input size of ANN was 4 × 4. The road structure
classification results for the deep learning using the above listed
features are shown in Table 3. The data used for the classification

Fig. 6  Classification performance with an increasing number of nodes in
the hidden layer when the activation function is
(a) tanh, (b) sigmoid and (c) satlin

 

Fig. 7  Classification performance with an increasing number of hidden
layers when the activation function is
(a) tanh, (b) sigmoid and (c) satlin

 
Table 1 Classification performance according to the number of antenna elements
Input data size Sound barrier, % Iron tunnel, % Typical underground tunnel, % Open road, % Average, %
1024 × 1 71.8 96.0 88.6 92.5 87.8
1024 × 2 75.7 96.7 91.6 93.7 90.1
1024 × 3 76.0 98.0 91.9 94.2 90.8
1024 × 4 80.9 98.1 92.6 94.3 91.7
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of road structures are measured by radar as in [21]. The input of the
classifier is the FFT magnitude response of the received time-
domain signal, and no further preliminary processing was done on
the input, such as OS-CFAR. Next, for the performance
comparison with the SVM, the road structure classification was
performed using the feature and SVM proposed in [21]. Table 4
shows the classification results using the Gaussian kernel. The
mean, variance, coefficient of variance, skewness, and kurtosis of
the received signal are used as features. When SVM is used, the
classification performance is much lower than ANN algorithm
proposed in this paper. Particularly, in the case of the sound barrier,
the classification accuracy is <50%. The experiment uses one
hidden layer and 50 nodes and tanh is used as the activation
function. The detection performance for a typical underground
tunnel and open road is similar to that when the FFT magnitude
response is used as the input to artificial neural network; however,
the detection performance of an iron tunnel and sound barrier is
significantly worse. In the case of the sound barrier, the extracted
features are not sufficiently distinct compared with those of the
other road structures, so they could not be accurately classified.
This result shows improvement of classification performance by
over 7%p compared with the results using support vector machine. 

5 Conclusion
In this paper, we classified road structures by applying an artificial
neural network to the frequency domain signals received from
various road environments. We evaluated how the classification
performance varied with the number of hidden layers, the number
of nodes in a hidden layer, and the types of activation function.
Using the results obtained from various experiments, we propose
which neural network structure suits the road structure
classification. In addition, we confirmed how classification
performance varies with input data size by changing the number of
antenna elements and the number of snapshots. Based on our
results, it was demonstrated that our proposed method was able to
effectively classify road structures without extracting features from
the measured data in advance. When the deep learning method was
applied, the four different road environments were accurately

recognised with an average accuracy of 95%. The results of this
experiment confirm the proposed deep learning method can be
used to classify various road structures. Using these results, we can
apply a target detection algorithm suitable for each road
environment. In future research, we will classify more diverse road
structures existing in the urban areas, and additionally attempt to
recognise transition regions.
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