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Abstract: In automotive radar systems, a limited number of antenna elements are used to estimate the
angle of the target. Therefore, array interpolation techniques can be used for direction of arrival (DOA)
estimation to achieve high angular resolution. In general, to generate interpolated array elements from
original array elements, the method of linear least squares (LLS) is used. When the LLS method is
used, the amplitudes of the interpolated array elements may not be equivalent to those of the original
array elements. In addition, through the transformation matrix obtained from the LLS method, the
phases of the interpolated array elements are not precisely generated. Therefore, we propose an array
transformation matrix that generates accurate phases for interpolated array elements to improve DOA
estimation performance, while maintaining constant amplitudes of the array elements. Moreover,
to enhance the effect of our interpolation method, a power calibration method for interpolated
received signals is also proposed. Through the simulation, we confirm that the array interpolation
accuracy and DOA estimation performance of the proposed method are improved compared to those
of the conventional method. Moreover, the performance and effectiveness of our proposed method
are also verified using data obtained from the commercial radar system. Because the proposed
method exhibits better performance when applied to actual measurement data, it can be utilized in
commercial automotive radar systems.

Keywords: array interpolation; automotive radar; direction of arrival (DOA) estimation

1. Introduction

In recent years, radar systems have been installed in automobiles to detect targets located in
multiple directions. Typically, automotive radar systems use frequencies in the 24-GHz or 77–81-GHz
band. Since such a high frequency band is used, the miniaturization of the radar antenna system
has become possible. In the automotive radar system, the number of receiving antenna elements is
gradually decreasing to reduce the manufacturing cost of the radar. Therefore, various techniques
have been proposed for accurately estimating the direction of arrival (DOA) of the target with the
limited antenna elements as much as possible.

Array interpolation is one of the methods for improving the DOA estimation accuracy using a
limited number of antenna elements. Several studies on enhanced array interpolation methods have
been conducted [1–5]. In [1], the Taylor series approximation was used to generate interpolated array
elements in a uniform circular array and achieved improved DOA estimation performance; however,
because the order of the series is limited to one less than the maximum number of array elements, the
approximation performance is not guaranteed for automotive radar systems that use only a few (e.g.,
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four or eight) array elements. In addition, the norm-constrained least squares method was used to find
the interpolated microphone array in [2], but the problem-solving process was heuristic because the
proper norm constraint parameter was determined empirically. Recently, the effective interpolation
method that changes the nonuniform co-prime array to the uniform linear array was proposed in [3].
Furthermore, the enhanced DOA estimation method using the characteristics of the covariance matrix
generated by the virtual array interpolation for the co-prime array has been proposed in [4]. In [5],
the authors improved the angle estimation performance by linearly predicting the received signals
and virtually extending the array.

Among the various array interpolation methods, an array interpolation method that moves
array elements from an original location to a desired location using a transformation matrix is widely
used [6–8]. To this end, the linear least squares (LLS) method has been widely used to identify the
proper transformation matrix [6–12]. However, a transformation matrix obtained by means of the
LLS method is not the best solution for interpolating array elements. When this transformation
matrix is applied, interpolated array elements are generated by linear combinations of original array
elements. In this case, the amplitudes of interpolated array elements can be different from those of
original array elements. If amplitude differences exist among the array elements, the performance
of DOA estimation algorithms is degraded [13]. In addition, because the solution derived from the
LLS method is obtained in the process of simultaneously minimizing differences in amplitudes and
phases, the phase information of the interpolated array elements is not accurately formulated, which is
a critical factor for DOA estimation.

Thus, in this paper, we propose a transformation matrix in the logarithmic domain for the
array interpolation. We focus on minimizing the phase differences between the original and the
interpolated array elements. First, we take logarithms for the array elements and extract the phase
information from them. We then apply the LLS method to the logarithmic-domain matrices to find
an appropriate transformation matrix. Finally, the interpolated array elements are generated by
the new matrix, and the DOA estimation is conducted. Based on a comparison of interpolation
errors of the proposed and conventional transformation methods, our array transformation method
successfully interpolates newly-produced array elements with more elaborate phases. In addition,
the proposed array transformation does not affect the amplitudes of the interpolated array elements;
they are conserved even after the transformation. Moreover, for a given antenna array, the proposed
transformation matrix for that array is calculated and stored (offline) in advance. Thus, we do not have
to calculate the transformation matrix in real time.

We also extend the proposed array interpolation scheme to received signal interpolation. When we
use the transformation matrices obtained by the LLS method and our proposed method, the powers
of the interpolated received signals are not uniform over all array elements. In this case, the effect
of the array interpolation and the performance of the DOA estimation are not fully ensured. Thus,
to mitigate this problem, we also propose a calibration method for the interpolated received signal
powers. The simulation results confirm that our proposed method performs DOA estimation better
than the conventional array interpolation method. In addition, based on actual measurement data
acquired using an automotive radar, our method shows improved angular resolution and estimation
performance. The proposed method can be effectively used in a radar system using a small number of
array elements.

The remainder of this paper is organized as follows. In Section 2, we introduce the basic signal
model for the array antenna, as well as the conventional array interpolation technique using the
LLS method. Next, the proposed array interpolation method is described in Section 3. In this
section, we also propose a method of calibrating the interpolated received signals for more accurate
DOA estimation. Simulation and measurement results are provided in Sections 4 and 5, respectively.
We conclude this paper in Section 6.
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2. Fundamentals of Array Interpolation

2.1. Signal Model for the Array Antenna

We assume that signals, coming from K directions of θ1, θ2, · · · , θK, are incident on N linearly
placed array elements. The location of the array elements is [d1, d2, · · · , dN ] and θk (k = 1, 2, · · · , K)
is defined from the boresight direction of the array antenna. Assuming far-field narrow-band signal
sources, the received signal vector of the array at time t can be expressed as:

X(t) = A× S(t) + N(t)

= [x1(t), x2(t), · · · , xN(t)]T (1)

where [·]T denotes the vector transpose operator and A = [a(θ1), a(θ2), · · · , a(θK)] is the steering
matrix composed of the steering vectors a(θk) given by:

a(θk) = [ej 2π
λ d1 sin θk , ej 2π

λ d2 sin θk , · · · , ej 2π
λ dN sin θk ]T . (2)

λ denotes the wavelength corresponding to the carrier frequency. S(t) = [s1(t), s2(t), · · · , sK(t)]T is
the incident signal vector, where sk(t) (k = 1, 2, · · · , K) is the complex amplitude of the incident signal
from the kth signal source at time t. These amplitudes are assumed to be zero-mean complex Gaussians
and uncorrelated with each other. In addition, the noise vector N(t) = [n1(t), n2(t), · · · , nN(t)]T is
assumed to be the zero-mean complex Gaussian vector, and its components are also uncorrelated
with each other. The samples from S(t) and N(t) are also assumed to be uncorrelated with each other.
If there is a correlation between the signals received from the radar system, the correlation can be
lowered through signal processing techniques such as spatial smoothing [14].

2.2. Conventional Array Interpolation Method

In this section, we briefly introduce the conventional array interpolation technique using the
transformation matrix derived from the LLS method. For the field of view (FOV) of an automotive
radar, which is expressed as:

Θ = {θp | θp = θL + (p− 1)× θR − θL
P− 1

, p = 1, 2, · · · , P}, (3)

we find a suitable matrix that transforms the original array elements into the interpolated array
elements (θL and θR are angles that indicate the left and the right boundaries of the FOV). In this range,
the steering matrix of the original array elements can be given as:

A(Θ) = [a(θL), a(θL + ∆θ), · · · , a(θL + (P− 2)∆θ), a(θR)] (4)

where ∆θ = θR−θL
P−1 is the angle step size. Then, if we want to interpolate array elements in the location

[g1, g2, · · · , gM], the steering matrix of the interpolated array elements is determined as:

B(Θ) = [b(θL), b(θL + ∆θ), · · · , b(θL + (P− 2)∆θ), b(θR)] (5)

where b(θp) = [ej 2π
λ g1 sin θp , ej 2π

λ g2 sin θp , · · · , ej 2π
λ gM sin θp ]T (p = 1, 2, · · · , P). Assuming that a matrix

T transforms the original steering matrix to the interpolated steering matrix, it can be expressed as:

B(Θ) = T×A(Θ). (6)

To find the proper transformation matrix T, the least squares method is used as:

T∗ = arg min
T

(‖B(Θ)− T×A(Θ)‖F) (7)
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where ‖·‖F denotes the Frobenius matrix norm. Then, based on the method of LLS, the transformation
matrix can be determined as:

T∗ = B(Θ)A(Θ)H(A(Θ)A(Θ)H)−1 (8)

where [·]H denotes the Hermitian matrix operator. Finally, from (6) and (8), the estimate of B(Θ) is
given as:

B̂T∗(Θ) = T∗ ×A(Θ)

= B(Θ)A(Θ)H(A(Θ)A(Θ)H)−1 ×A(Θ). (9)

In addition, the (m, p)th element of the matrix B̂T∗(Θ) can be expressed as:

B̂T∗
(m, p)(Θ) =

N

∑
n=1

{
T∗(m, n) ×A(n, p)(Θ)

}
=

N

∑
n=1

{
T∗(m, n) × ej 2π

λ dn sin θp
}

,

∀m ∈ {1, 2, · · · , M}, ∀p ∈ {1, 2, · · · , P} (10)

where T∗(m, n) and A(n, p)(Θ) denote the (m, n)th and the (n, p)th elements of the matrices T∗ and
A(Θ), respectively.

Through this transformation matrix, received signals for the interpolated array elements can also
be generated, which are defined as:

Ŷ(t) = T∗ × X(t)

= [ŷ1(t), ŷ2(t), · · · , ŷM(t)]. (11)

By utilizing these interpolated received signals, the authors of [6–12] conducted improved
DOA estimations.

3. Logarithmic-Domain Array Interpolation

3.1. Proposed Array Interpolation Method

When we use the conventional transformation matrix for array interpolation, a major problem
occurs. Based on the transformation matrix obtained from the LLS method, interpolated array elements
are generated by linear combinations of original array elements. In this case, the amplitudes of the
interpolated array elements may not be equivalent to those of the original array elements. In other
words,

∣∣∣B̂T∗
(m, p)(Θ)

∣∣∣ does not always become unity. When the amplitudes of each array element are not
uniform over the entire array, DOA estimation performance is degraded [13]. In addition, based on the
solution derived from the LLS method, the phases of the interpolated array elements are not precisely
generated. For DOA estimation, the phase information of the interpolated array elements is critical.
Therefore, in this section, we propose a more effective array interpolation method that minimizes the
phase differences between the original and the interpolated array elements while maintaining the
equivalent amplitudes of the array elements.
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For the elements of the steering matrices on both sides of (6), we take logarithms such as:

LOG(A(Θ)) =


log(A(1, 1)(Θ)) · · · log(A(1, P)(Θ))

log(A(2, 1)(Θ)) · · · log(A(2, P)(Θ))
...

. . .
...

log(A(N, 1)(Θ)) · · · log(A(N, P)(Θ))

 ,

LOG(B(Θ)) =


log(B(1, 1)(Θ)) · · · log(B(1, P)(Θ))

log(B(2, 1)(Θ)) · · · log(B(2, P)(Θ))
...

. . .
...

log(B(M, 1)(Θ)) · · · log(B(M, P)(Θ))

 , (12)

where LOG(·) denotes the operator that takes logarithms for each element in the matrix and
B(m, p)(Θ) indicates the (m, p)th element of the matrix B(Θ). All elements in matrices LOG(A(Θ))

and LOG(B(Θ)) have pure imaginary values. Then, in the logarithmic domain, we find a proper
transformation matrix V that transforms LOG(A(Θ)) to LOG(B(Θ)), which is expressed as:

LOG(B(Θ)) = V× LOG(A(Θ)). (13)

As in the original domain, the appropriate matrix V can be found using the LLS method, and the
solution is given as:

V∗ = LOG(B(Θ))LOG(A(Θ))H ×
{

LOG(A(Θ))LOG(A(Θ))H
}−1

. (14)

This matrix V∗ effectively transforms the phases of the original array elements into those of
the interpolated array elements. However, since the matrix is defined in the logarithmic domain, it
cannot be directly applied to the original array elements as in (9). In other words, this transformation
matrix cannot be expressed with a linear operator. Instead, it can be written with the original array
elements as:

B̂V∗
(m, p)(Θ) =

N

∏
n=1

{
A(n, p)(Θ)

}V∗(m, n)
,

∀m ∈ {1, 2, · · · , M} , ∀p ∈ {1, 2, · · · , P} (15)

where B̂V∗
(m, p)(Θ) is the (m, p)th element of the newly-interpolated steering matrix B̂V∗(Θ) and V∗(m, n)

indicates the (m, n)th element of the matrix V∗.
The conventional transformation matrix in (8) formulates the interpolated array elements with

linear combinations of the original array elements. However, this new transformation matrix generates
only the phase information of the interpolated array elements using combinations of the phases of the
original array elements. In other words, based on our transformation, it conserves the amplitudes of
the original array elements in the interpolated array elements because:

∣∣∣B̂V∗
(m, p)(Θ)

∣∣∣ =

∣∣∣∣∣ N

∏
n=1

{
A(n, p)(Θ)

}V∗(m, n)

∣∣∣∣∣
=

∣∣∣e∑N
n=1{j 2π

λ dn sin θpV∗(m, n)}
∣∣∣ = 1,

∀m ∈ {1, 2, · · · , M} , ∀p ∈ {1, 2, · · · , P} . (16)

Therefore, the proposed array transformation affects only the phases of the interpolated array
elements and generates more accurate phases for the interpolated array elements. The transformation
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matrix T∗ does not preserve the amplitudes of the original array elements because
∣∣∣B̂T∗

(m, p)(Θ)
∣∣∣ is not

always unity. Thus, the interpolation accuracy derived from the new transform matrix V∗ is higher
than that from the conventional matrix T∗.

3.2. Enhanced Received Signal Interpolation

Similar to the received signal interpolation in (11), received signals of the interpolated array
elements with the transformation matrix V∗ are expressed as:

ẑm(t) =
N

∏
n=1
{xn(t)}V∗(m, n) ∈ Ẑ(t),

∀m ∈ {1, 2, · · · , M}. (17)

Using Ẑ(t) = [ẑ1(t), ẑ2(t), · · · , ẑM(t)], we conduct the DOA estimation and can achieve
improved performance compared to the estimation using Ŷ(t).

For a much better DOA estimation, we also consider the power of the received signals. When we
use the interpolated received signal vectors, Ŷ(t) and Ẑ(t), power differences exist among the
interpolated received signals. In other words,

|ŷm(t)|2 = |ŷm′(t)|2 and |ẑm(t)|2 = |ẑm′(t)|2

(for m 6= m′, m′ ∈ {1, 2, · · · , M}) (18)

does not always hold, because:

N

∑
n=1

∣∣∣T∗(m, n)

∣∣∣2 6= N

∑
n=1

∣∣∣T∗(m′ , n)

∣∣∣2 ,

T∗(m, n)T∗(m, n′) 6= T∗(m′ , n)T∗(m′ , n′) and
N

∑
n=1

V∗(m, n) 6=
N

∑
n=1

V∗(m′ , n)

(for n 6= n′, n′ ∈ {1, 2, · · · , N},
for m 6= m′, m′ ∈ {1, 2, · · · , M}) (19)

(see Appendix A) where · denotes the complex conjugate of a complex number. This power
imbalance can cause performance degradation in the DOA estimation [13]. In our proposed method,
the amplitudes of B̂V∗

(m, p)(Θ) are equivalent for all array elements. However, it is not directly related to
the powers of the interpolated received signals, and power differences exist among the interpolated
received signals. Therefore, to mitigate this problem, we propose an effective compensation method to
formulate the received signals of each interpolated array element such that they have similar power
levels while maintaining the effect of our proposed phase interpolation method. In other words,
the compensated received signal is given as:

ŵm(t) =

 ∏
n∈N(m)

|xn(t)|


1

|N(m)|
× exp

j ∑
n∈N(m)

{
V∗(m, n) 6 xn(t)

} ∈ Ŵ(t) (20)

where:

N(m) = {n∗ | n∗ = argn

(
V∗(m, n) 6= 0

)
, n = 1, 2, · · · , N},

∀m ∈ {1, 2, · · · , M} , (21)
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and
∣∣∣N(m)

∣∣∣ denotes the cardinality of the set N(m). When comparing ŵm(t) with ẑm(t), the interpolated
phase of ŵm(t) is the same as that of ẑm(t). Therefore, the phase interpolation effect from the
transformation matrix V∗ is maintained. In addition, when we use this compensated interpolated
received signal, the following equation is always established as:

|ŵm(t)|2 = |ŵm′(t)|2

(for m 6= m′, m′ ∈ {1, 2, · · · , M}), (22)

because:

|ŵm(t)|2 =

 ∏
n∈N(m)

|xn(t)|


2

|N(m)|

=

|x1(t)| × · · · × |xN(t)|︸ ︷︷ ︸
|N(m)|


2

|N(m)|

=

|x1(t)|2 × · · · × |xN(t)|2︸ ︷︷ ︸
|N(m)|


1

|N(m)|

∼= γ, ∀m ∈ {1, 2, · · · , M} . (23)

In other words, the powers of the interpolated received signals are nearly equivalent among the
array elements. Thus, if we use the received signal vector Ŵ(t) for the DOA estimation, we can achieve
more enhanced performance than when using Ŷ(t) and Ẑ(t).

4. Simulation Results

Many studies have been conducted on the location in which to interpolate array elements to
improve the accuracy of DOA estimation algorithms. In [6,8], the authors located the interpolated array
elements that minimized interpolation errors within given conditions. In addition, the array searching
method proposed in [12] revealed enhanced DOA estimation accuracy with the interpolated array.
However, this method was deemed too heuristic and time consuming. In this paper, to verify the DOA
estimation accuracy resulting from our proposed interpolation method, we transformed the original
array elements to the minimum-redundancy linear arrays, while maintaining identical apertures.
In general, minimum-redundancy linear arrays show the maximum resolution for a given number
of array elements by minimizing the number of redundant spacings in the array [15,16]. Moreover,
previous studies have reported that non-uniform linear arrays perform better at DOA estimation
than do uniform linear arrays that have the same apertures [17,18]. Therefore, in our simulation,
by transforming the original array to the non-uniform minimum-redundancy linear array, we analyzed
the performance improvement in the DOA estimation.

In the simulation, we used four array elements (N = 4) that are widely used in automotive
long-range radar (LRR). The location of the original array elements was [d1, d2, d3, d4] =

[0, 2λ, 4λ, 6λ]. It is well known that the minimum-redundancy linear array location of four array
elements is [0, 1, 4, 6] [15,16]. Thus, using the array transformation matrices, we interpolated array
elements in the location [g1, g2, g3, g4] = [0, 1λ, 4λ, 6λ]. Here, we assumed that two targets were
located at [θ1, θ2] = [−3.5 ◦, 2.5 ◦] and adopted the Bartlett method [14] as the DOA estimation
algorithm. In addition, the signal-to-noise ratio (SNR) at the array elements was set to 10 dB, and 1000
time samples were used to construct the correlation matrix used in the Bartlett algorithm. The FOV
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was given as Θ = {θp | θp = −10 ◦ + (p− 1)× 0.1 ◦, p = 1, 2, · · · , 201}, which was equivalent to the
FOV of the LRR. Since T∗ and V∗ were calculated and stored only once when the number of array
elements and the FOV were given, the stored values can be used repeatedly without having to identify
another T∗ and V∗.

First, under these simulation conditions, we calculated two types of interpolation errors, which
were given as:

EU =
∥∥∥B(Θ)− B̂U(Θ)

∥∥∥2

F
,

EU
phase =

∥∥∥ 6 B(Θ)− 6 B̂U(Θ)
∥∥∥2

F
,

∀U ∈ {T∗, V∗}. (24)

The smaller the error values were calculated based on (24), the more accurate the array
interpolation was conducted. For both transformation matrices, T∗ and V∗, we calculated the
interpolation errors by changing the size of the FOV. The result is given in Figure 1. As the figure shows,
the interpolation errors calculated from V∗ were almost close to zero. In addition, for the FOV of the
LRR (i.e., the size of the FOV being 20 ◦), the errors are given as [ET∗ , EV∗ ] = [1.240, 4.719× 10−28]

and [ET∗
phase, EV∗

phase] = [1.004, 4.700 × 10−28]. Therefore, judging from both types of interpolation

errors, our proposed array transformation matrix B̂V∗(Θ) was more approximate to B(Θ) than was
B̂T∗(Θ). In other words, the interpolated array elements were accurately generated when the proposed
interpolation method was employed. For larger FOV sizes, the interpolation errors of the conventional
method became larger because the interpolation matrix was calculated more accurately when the DOA
range of the targets was tightly within the FOV.
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Figure 1. Two types of interpolation errors from T∗ and V∗.
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Using these transformation matrices, we formulated the received signals and conducted the
DOA estimation. As shown in Figure 2, with the original received signals, the Bartlett method could
not resolve the two targets, and the estimated DOA was −0.1◦. In general, when we used four
array elements with 2λ spacing, the half-power beamwidth became 6.5◦. Therefore, the difficulty in
distinguishing those given DOAs was reasonable. Even with the interpolated received signals from
T∗, two different DOAs were not estimated, and the estimated DOA was 1.2 ◦, which was not the exact
value. However, with the interpolated received signals from V∗, the Bartlett method showed enhanced
angular resolution, and we can find two different DOAs such as [−2.8 ◦, 2.0 ◦]. Moreover, when using
the interpolated received signal vector with the power calibration, Ŵ(t), the best estimation result
was achieved, and the estimated DOA values were [−3.1 ◦, 2.2 ◦], which were close to the actual
DOA values.
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Bartlett with V
∗ and Ŵ(t)

Figure 2. Normalized Bartlett pseudospectrums for two adjacent targets located at [−3.5 ◦, 2.5 ◦].

For the statistical performance evaluation, we calculated the resolution probability Pr for the
conventional Bartlett algorithm and the Bartlett with array interpolation methods. This probability is
defined as:

Pr =
Nr

Nt
× 100 (%) (25)

where Nr indicates the number of times that two distinct DOAs were extracted from the received
signals and Nt denotes the number of simulations. Since we conducted this simulation 1000 times
under the same conditions, Nt became 1000. In addition, we calculated the root mean squared error
(RMSE) defined as:

RMSE =

√√√√√∑K
k=1 ∑Nt

q=1

{(
θk − θ̂

(q)
k

)2
}

Nt
(◦) (26)
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where θ̂
(q)
k is the estimated value of θk (k = 1, 2) in the qth (q = 1, 2 · · · , Nt) simulation. When the

number of the estimated targets was one, we used this as θ̂
(q)
k . The results are shown in Table 1.

Considering the resolution probability and the RMSE, our proposed method performed better than the
conventional Bartlett and the Bartlett with the transformation matrix T∗. In addition, while maintaining
the simulation conditions, except the array SNR values, we calculated the resolution probability and
the RMSE. As Figures 3 and 4 show, our proposed method yielded good estimation results despite the
different array SNR values. Moreover, after changing the number of time samples used to build the
correlation matrix, a performance comparison among the interpolation methods was conducted, and
the results of which are given in Figures 5 and 6. Even though only a few time samples were used, our
proposed array transformation showed improved estimation performance.

Table 1. Resolution probabilities and root mean squared errors for two adjacent targets located at
[−3.5 ◦, 2.5 ◦].

DOA Estimation Method Pr ( %) RMSE (◦)

Conventional Bartlett 0 4.28
Bartlett with T∗ and Ŷ(t) 74.9 2.67
Bartlett with V∗ and Ẑ(t) 99.4 0.64
Bartlett with V∗ and Ŵ(t) 99.9 0.45
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Bartlett with V
∗ and Ẑ(t)
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Figure 6. Root mean squared errors versus the number of time samples (SNR is 10 dB).

We also conducted a simulation for a case in which three targets existed in the FOV of the
radar. The simulation was conducted while maintaining the same simulation conditions given
in Figure 1, except for the target information, and the result is shown in Figure 7. Here, the
targets were located at [θ1, θ2, θ3] = [−8 ◦, 1.5 ◦, 7.5 ◦]. The conventional Bartlett and the Bartlett
with the transformation matrix T∗ each estimated only two DOAs: [−8.4 ◦, 3.2 ◦] and [−8.6 ◦, 2.7 ◦],
respectively. Thus, these methods failed to resolve the targets placed at [θ2, θ3] = [1.5 ◦, 7.5 ◦]. However,
when applying our proposed transformation matrix, we could identify the three different DOAs.
Moreover, from the power calibrated interpolated received signal vector Ŵ(t), the DOAs were
estimated as [−8.6 ◦, 1.8 ◦, 8.8 ◦], which were the most exact estimated values. We also compared the
performance of the proposed method to that of the multiple signal classification (MUSIC) algorithm,
which is known as a high-resolution DOA estimation algorithm [19]. To apply the MUSIC algorithm,
the number of targets must be estimated in advance using the Akaike information criterion or
minimum description length [20,21]. If the number of targets is well estimated (K̂ = 3), the most
exact performance occurs. However, if the number is not accurately estimated (e.g., K̂ = 1 or
K̂ = 2), the estimation performance deteriorates considerably, and it cannot be used as shown in
Figure 7. In addition, since the MUSIC algorithm performs the eigenvalue decomposition and the
multiplication of matrices spanned by the noise eigenvectors, additional computational complexity
O
(

N3 + N2 × (2N − 2L− 1)
)

occurs compared to the conventional beamforming algorithm (i.e., the
Bartlett method) [22,23]. Moreover, the Bartlett method is more robust to noise variance than the
MUSIC algorithm [14]. Thus, for automotive radars, the Bartlett algorithm may be more appropriate
for stably estimating the DOA of a target under noisy road environments.
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MUSIC (K̂ = 1)

MUSIC (K̂ = 2)

MUSIC (K̂ = 3)

Figure 7. Normalized pseudospectrums for three targets located at [−8 ◦, 1.5 ◦, 7.5 ◦].

Under the same simulation conditions, we also applied the total least squares estimation of
signal parameters via rotational invariance techniques (TLS EPSRIT) [24]. The TLS ESPRIT method is
one of subspace-based DOA estimation algorithms like the MUSIC and is a nonparametric DOA
estimation method. When we used the TLS ESPRIT algorithm, the DOAs were estimated as
[−26.5 ◦, −13.8 ◦, 12.7 ◦], which shows a large difference from the actual values. Because the TLS
ESPRIT performs the eigenvalue decomposition three times to estimate the DOA, it requires more
computation than our method. In addition, when using a small number of antenna elements, proper
DOA estimation performance is not guaranteed with the ESPRIT method. Moreover, we compared the
performance of the beamspace MUSIC algorithm [25] with that of our proposed method. We needed to
find the approximate DOA of the target in the beamspace MUSIC method, which was an unnecessary
process in our proposed method. After finding the approximate angle, a beamforming matrix was
generated based on that angle. Generating the appropriate beamforming matrix is the most important
point of the beamspace DOA estimation algorithms. For example, if the beamforming matrix was
generated in the range of −1 ◦–3 ◦, the DOA was estimated as 1.8 ◦, which was close to the real value.
However, if the beamforming matrix was formed between 1 ◦ and 5 ◦, the DOA was estimated as 2.3 ◦.
In addition, when using beamspace DOA estimation algorithm, the algorithm had to be repeated as
many times as the number of targets.

Furthermore, simulations were conducted not only for the four array elements, but also for
three and five array elements. When the number of array elements was three, the original location
of the array elements was given as [d1, d2, d3] = [0, 1.5λ, 3λ]. This array was transformed to
the minimum-redundancy array, and interpolated array elements were located at [g1, g2, g3] =

[0, 1λ, 3λ] [15,16]. In addition, we assumed that targets were located at [θ1, θ2] = [−4 ◦, 6.5 ◦] and that
the FOV ranged from −15 ◦–15 ◦. Since the half-power beamwidth for the given array was 12 ◦, the
array had a very low angular resolution, and the given DOAs were difficult to distinguish from the
conventional Bartlett algorithm. In addition, for the five array elements, the location of the original
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array elements was given as [d1, d2, d3, d4, d5] = [0, 2.25λ, 4.5λ, 6.75λ, 9λ], and it was transformed to
the location [g1, g2, g3, g4, g5] = [0, 1λ, 4λ, 7λ, 9λ] [15,16]. For this case, the FOV was equal to that
of the LRR, and targets were placed at [θ1, θ2] = [−1 ◦, 3 ◦]. These DOAs were hard to separate out
using the conventional Bartlett because the half-power beamwidth for the given array was 4.5 ◦. For
both cases of three and five array elements, the resolution probability and the RMSE were as given in
Figures 8–11, respectively, by increasing the array SNR from 0 dB–10 dB. As shown in the figures, our
method also performed better for cases in which the number of array elements was three and five.
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Figure 8. Resolution probabilities versus SNR (N = 3).
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Figure 10. Resolution probabilities versus SNR (N = 5).
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Figure 11. Root mean squared errors versus SNR (N = 5).



Sensors 2019, 19, 2410 16 of 21

5. Measurement Results

To verify the performance of our proposed method, we also conducted actual measurements
on a testing ground of the Mando Corporation using its automotive LRR. In the measurement,
a single-element transmit antenna and four-element receiving uniform linear array antenna (N = 4)
were used, and the spacing between adjacent elements was 1.8λ. In addition, the half-power
beamwidth of the array antenna was 7 ◦, and the FOV of the LRR ranged from−10 ◦–10 ◦. This antenna
system was equipped with an automotive radar and transmitted a 76.5-GHz frequency-modulated
continuous wave signal. The transmitted signal was reflected from the front targets, and then, the
reflected signals were received by the array antenna.

Figure 12 shows the measurement environment. Two identical target vehicles were located at
[θ1, θ2] = [−1.7 ◦, 4.6 ◦] and were 40 m away from a radar-equipped vehicle. In this measurement,
we also used the Bartlett algorithm for the DOA estimation method and calculated the resolution
probability and the RMSE for the original received signals and the interpolated received signals derived
from the array interpolation methods. Under the same measurement environment, we recorded 600
radar scans. Thus, Nt in (25) and (26) became 600 in this case. The results are listed in Table 2. Similar to
the simulation results, based on both measures, the DOA estimation with the proposed transformation
matrix V∗ showed better angular resolution and estimation accuracy than that of the conventional
Bartlett and Bartlett method with the transformation matrix T∗. Furthermore, the estimation with Ŵ(t)
showed the most improved resolution and estimation performance.

Figure 12. Measurement environment of two target vehicles located at [−1.7 ◦, 4.6 ◦].

Table 2. Resolution probabilities and root mean squared errors for two target vehicles located at
[−1.7 ◦, 4.6 ◦].

DOA Estimation Method Pr ( %) RMSE ( ◦)

Conventional Bartlett 0 5.72
Bartlett with T∗ and Ŷ(t) 0.67 6.20
Bartlett with V∗ and Ẑ(t) 46.7 4.65
Bartlett with V∗ and Ŵ(t) 68.0 3.90
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Using the same automotive radar, the measurements were conducted on the expressway, as
shown in Figure 13. In the experimental data, 100 radar scans were extracted when two targets were
almost at the same distance and were close each other. For those cases, the DOA estimation methods
were applied, and the results are listed in Table 3. Although the performance of the proposed algorithm
was slightly lower than in the environment of Figure 12, the proposed algorithm showed improved
angular resolution and lower RMSE over the other algorithms. It can be seen that the overall angular
estimation performance degraded from the actual experimental measurement results rather than the
simulation results. This was because the quality of the received signal was degraded due to the clutter
caused by the surrounding road structures in an actual road environment [26,27]. In the environment
shown in Figure 13, because the radar signals reflected from the wall of the tunnel were received with
those from the desired targets, the quality of the received signal was inevitably deteriorated.

Figure 13. Measurement environment of two target vehicles (expressway).

Table 3. Resolution probabilities and root mean squared errors for two target vehicles (expressway).

DOA Estimation Method Pr ( %) RMSE ( ◦)

Conventional Bartlett 0 7.83
Bartlett with T∗ and Ŷ(t) 1.25 6.57
Bartlett with V∗ and Ẑ(t) 43.3 4.98
Bartlett with V∗ and Ŵ(t) 65.1 4.21

6. Conclusions

In this paper, we proposed a logarithmic-domain transformation matrix used for array
interpolation to improve the accuracy of DOA estimation. Our transformation matrix was obtained
by minimizing the differences between the phases of the original array elements and the interpolated
array elements. Our proposed method identified a more accurate transformation matrix with less
phase distortion, and the amplitudes of the array elements were maintained after the transformation.
In addition, to improve the accuracy of the DOA estimation algorithm, we proposed a method for
adjusting the powers of the interpolated received signals to a similar level. Finally, from the simulation
and the measurement results, we verified that our new method showed much better angular resolution
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and estimation accuracy than did the DOA estimation using the conventional transformation matrix
derived from the LLS method. The proposed method can be effectively applied to radar systems using
a small number of antenna elements, such as automotive radar systems.
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Appendix A

First, ŷm(t) and ŷm′(t) in (11) can be expressed as:

ŷm(t) =
N

∑
n=1

{
T∗(m, n) × xn(t)

}
,

ŷm′(t) =
N

∑
n=1

{
T∗(m′ , n) × xn(t)

}
. (A1)

If we assume that received signals of the original array elements have nearly equal power such as:

|xn(t)|2 ∼= γ ≥ 0 (n = 1, 2, · · · , N), (A2)

then the powers of each signal are given as:

|ŷm(t)|2 =

∣∣∣∣∣ N

∑
n=1

{
T∗(m, n) × xn(t)

}∣∣∣∣∣
2

= γ×
N

∑
n=1

∣∣∣T∗(m, n)

∣∣∣2 + 2
N

∑
n=1,
n′=1,
n 6=n′

<
{

T∗(m, n)T∗(m, n′)xn(t)xn′(t)
}

,

|ŷm′(t)|2 =

∣∣∣∣∣ N

∑
n=1

{
T∗(m′ , n) × xn(t)

}∣∣∣∣∣
2

= γ×
N

∑
n=1

∣∣∣T∗(m′ , n)

∣∣∣2 + 2
N

∑
n=1,
n′=1,
n 6=n′

<
{

T∗(m′ , n)T∗(m′ , n′)xn(t)xn′(t)
}

(A3)
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where <{·} is the operator that takes the real part of a complex number. Since:

N

∑
n=1

∣∣∣T∗(m, n)

∣∣∣2 6= N

∑
n=1

∣∣∣T∗(m′ , n)

∣∣∣2 ,

T∗(m, n)T∗(m, n′) 6= T∗(m′ , n)T∗(m′ , n′)

(for n 6= n′, n′ ∈ {1, 2, · · · , N},
for m 6= m′, m′ ∈ {1, 2, · · · , M}), (A4)

the powers of the interpolated received signals from the transformation matrix T∗ are not equivalent
in all array elements.

In addition, the interpolated received signals in (17) can be expressed as:

ẑm(t) =
N

∏
n=1
{xn(t)}V∗(m, n) ,

ẑm′(t) =
N

∏
n=1
{xn(t)}V∗(m′ , n) . (A5)

Therefore, the powers of each term are given as:

|ẑm(t)|2 =

∣∣∣∣∣ N

∏
n=1
{xn(t)}V∗(m, n)

∣∣∣∣∣
2

=
∣∣∣{x1(t)}V∗(m, 1)

∣∣∣2 × · · · × ∣∣∣{xN(t)}V∗(m, N)

∣∣∣2
=

N

∏
n=1

∣∣∣{xn(t)}V∗(m, n)
∣∣∣2,

|ẑm′(t)|2 =

∣∣∣∣∣ N

∏
n=1
{xn(t)}V∗(m′ , n)

∣∣∣∣∣
2

=
∣∣∣{x1(t)}V∗(m′ , 1)

∣∣∣2 × · · · × ∣∣∣{xN(t)}V∗(m′ , N)

∣∣∣2
=

N

∏
n=1

∣∣∣{xn(t)}V∗(m′ , n)
∣∣∣2. (A6)

Since ∀V∗(m, n) ∈ R and ∀V∗(m′ , n) ∈ R, the above equation is redefined as:

|ẑm(t)|2 =
N

∏
n=1

{
|xn(t)|2

}V∗(m, n)

=
N

∏
n=1

γV∗(m, n) = γ∑N
n=1 V∗(m, n) ,

|ẑm′(t)|2 =
N

∏
n=1

{
|xn(t)|2

}V∗(m′ , n)

=
N

∏
n=1

γ
V∗(m′ , n) = γ∑N

n=1 V∗(m′ , n) . (A7)
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However, because:

N

∑
n=1

V∗(m, n) 6=
N

∑
n=1

V∗(m′ , n)

(for m 6= m′, m′ ∈ {1, 2, · · · , M}), (A8)

the interpolated received signals have different powers for each element.
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