
sensors

Article

Simultaneous Target Classification and Moving Direction
Estimation in Millimeter-Wave Radar System

Jin-Cheol Kim †, Hwi-Gu Jeong † and Seongwook Lee *

����������
�������

Citation: Kim, J.-C.; Jeong, H.-G.;

Lee, S. Simultaneous Target

Classification and Moving Direction

Estimation in Millimeter-Wave Radar

System. Sensors 2021, 21, 5228.

https://dx.doi.org/10.3390/s21155228

Academic Editor: Mengdao Xing

Received: 29 June 2021

Accepted: 30 July 2021

Published: 2 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronics and Information Engineering, College of Engineering, Korea Aerospace University,
Goyang-si 10540, Gyeonggi-do, Korea; wls12cjf@kau.kr (J.-C.K.); wjdgnlrn02@kau.kr (H.-G.J.)
* Correspondence: swl90@kau.ac.kr; Tel.: +82-2-300-0121
† These authors contributed equally to this work.

Abstract: In this study, we propose a method to identify the type of target and simultaneously
determine its moving direction in a millimeter-wave radar system. First, using a frequency-modulated
continuous wave (FMCW) radar sensor with the center frequency of 62 GHz, radar sensor data for a
pedestrian, a cyclist, and a car are obtained in the test field. Then, a You Only Look Once (YOLO)-
based network is trained with the sensor data to perform simultaneous target classification and
moving direction estimation. To generate input data suitable for the deep learning-based classifier,
a method of converting the radar detection result into an image form is also proposed. With the
proposed method, we can identify the type of each target and its direction of movement with an
accuracy of over 95%. Moreover, the pre-trained classifier shows an identification accuracy of 85%
even for newly acquired data that have not been used for training.

Keywords: millimeter-wave radar; moving direction estimation; target classification; you only look
once (YOLO)

1. Introduction

One of the essential functions required for autonomous vehicles is to recognize and
identify various objects on the road. In general, by processing data acquired from automo-
tive sensors, such as cameras, lidars, and radars, the type and location information of an
object can be estimated. For example, the vision sensor can detect lanes [1] and discriminate
objects on the road [2]. In addition, the lidar and radar sensors mainly perform the function
of estimating the position of an object [3,4]. However, in dark nights or in bad weather
conditions, the object recognition performance of the camera is seriously deteriorated.
Thus, there is a need for a method that can compensate for the degradation of the camera’s
recognition performance using other automotive sensors.

In general, the radar’s detection performance is not severely degraded even in the
harsh environments [5]. Moreover, the disadvantages of conventional automotive radar
sensors having low range and angular resolution are overcome by using high bandwidths
and multiple antenna elements [6]. Based on these advances, it has become possible to
detect objects on the road in high resolution even through automotive radar sensors. In
high-resolution radar systems, an object that was detected as a single point is detected as
a point cloud composed of multiple points [7], which implies that not only the location
information of the object but also its size and shape can be estimated. Therefore, it becomes
possible to effectively classify the types of detected objects in the high-resolution radar
system. The target classification is important in determining the control principles of
autonomous vehicles.

In this study, we propose a method to discriminate the type of object in a high-
resolution radar system. Even the moving direction of the detected object can be estimated
simultaneously through the proposed method. In automotive radar systems, the possibility
of identifying the type of detected object by applying deep learning techniques has been

Sensors 2021, 21, 5228. https://doi.org/10.3390/s21155228 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9115-4897
https://doi.org/10.3390/s21155228
https://doi.org/10.3390/s21155228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21155228
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21155228?type=check_update&version=1


Sensors 2021, 21, 5228 2 of 14

confirmed in many studies [8,9]. In addition, a method of estimating the moving direction
of a vehicle by applying a convolutional neural network (CNN) to the range-angle detection
result was proposed in [10]. In our work, we use a You Only Look Once (YOLO)-based
network [11], one of the CNN-based classifiers for target detection and classification.

Research on applying the YOLO network to radar sensor data has been actively con-
ducted in recent years [12–17]. In [12,13], the basic YOLO network-based object detection
was performed in the range-velocity domain. In addition, the target classification in the
two-dimensional (2D) range domain using YOLO networks were proposed in [14,15]. In
recent studies, more advanced versions of YOLO networks were applied to radar sensor
data to perform effective object detection [16,17]. Generally, the YOLO network is used
to locate an object and classify its type in a given red, green, and blue (RGB) image. To
combine the YOLO network with a high-resolution radar system, a method of converting
an object detected as a point cloud into a 2D image form is required. Thus, we propose a
method of storing the radar detection result as an image through lossy compression, which
enables the network to extract the features of the object effectively. Through the proposed
technique, we can generate input data in a form suitable for training the YOLO-based
network.

Finally, we evaluate the performance of the proposed method using radar sensor data
acquired in the test field. In our experiment, we use a frequency-modulated continuous
wave (FMCW) radar system with the center frequency of 62 GHz and the bandwidth of
3 GHz. This frequency band is being considered important for joint radar and communica-
tions in recent years [18,19]. The radar sensor data are obtained for cases where a person, a
cyclist, and a car move in various directions, and then the type and moving direction of
each object are determined using the YOLO network-based classifier. Moreover, the perfor-
mance of the pre-trained classifier is verified with new data that have not been used for the
network training. The proposed method can play an important role in a bad environment
where the object recognition performance of the camera sensor is severely degraded.

In summary, the main contributions of this paper are:

• We obtained the point cloud-based object detection result using a high-resolution
radar system, and proposed a method to convert it into an image format suitable for
training the CNN-based classifier.

• Based on the high-resolution radar sensor data, we designed a deep learning-based
classifier that can determine the type of detected object and estimate its moving
direction as well. In conventional studies, classifiers that perform only a single
purpose have been proposed.

• Our proposed method is different from the target classification methods using the
range and velocity information of an object [12,13], because the proposed target
classification method is performed based on the overall shape of the object.

• In conventional radar systems, target detection, point clustering, and target tracking
are sequentially performed to estimate the moving direction of an object. The proposed
method can determine the moving direction of the object by using only the target
detection results.

The remainder of this paper is organized as follows. First, the basic principles of
the millimeter-wave FMCW radar sensor are introduced in Section 2. Then, Section 3
describes the conversion of radar detection results into images. In Section 4, the proposed
simultaneous target classification and moving direction estimation method is explained
and its performance is evaluated. Finally, we conclude this paper in Section 5.

2. Basic Principles of Millimeter-Wave FMCW Radar System
2.1. Millimeter-Wave Band FMCW Radar Sensor

In this study, we used an FMCW radar system operating in the millimeter wave band,
and its configuration is shown in Figure 1. In this radar system, a series of waveforms whose
frequency increases linearly with time are transmitted, as shown in Figure 2. In the figure,
fc represents the center frequency of the transmitted signal, and ∆T and ∆Bm (m = 1, 2)
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are the sweep time and bandwidth of each waveform, as shown in Figure 2. All waveforms
use the same center frequency, but the first N1 waveforms and the next N2 waveforms use
different bandwidths. Thus, the n-th transmitted waveform in (n− 1)∆T < t < n∆T can
be expressed as

xn(t) = Ax exp
(

j
(

2π
(

fc −
2n− 1

2
∆Bn

)
t + 2π

∆Bn

∆T
t2 + φn

))
, (1)

where Ax and φn represent the amplitude and phase offset of the n-th transmitted waveform.

Figure 1. Configuration of the millimeter-wave band FMCW radar system.

Figure 2. Waveforms transmitted from the FMCW radar system.

The specifications of the radar sensor we used are summarized in Table 1. In general,
the range resolution of the FMCW radar system is determined by the bandwidth, which
can be calculated as ∆r = c

2Bn
[20]. As given in the table, a single target can be detected as

multiple points because the range resolution is in units of several centimeters. In addition,
the signal processing cycle of our radar system is 50 ms, which means that one detection
result is generated every 50 ms.

Table 1. Specifications of our FMCW Radar Sensor.

Parameters Detection Mode
Short-Range Mode Long-Range Mode

Center frequency, fc (GHz) 62
Bandwidth, ∆B (GHz) 3 1.5

Range resolution, ∆r (cm) 5 10
Transmit and receiving antenna elements 1 × 4 2 × 4

Sweep time, ∆T (µs) 150
The number of waveforms, N1 and N2 128

Signal processing cycle (ms) 50
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2.2. Distance, Velocity, and Angle Estimation in FMCW Radar System

The transmitted signal in (1) is reflected by targets in the radar’s field of view. To
extract both amplitude and phase information from the received signal, it is passed through
the in-phase and quadrature (IQ) modulator. The IQ-modulated received signal can be
expressed as

yn(t) =
K

∑
k=1

Ay, k exp
(

j
(

2π
(

fc −
2n− 1

2
∆Bn

)
(t− td, k) + 2π

∆Bn

∆T
(t− td, k)

2 + φn

))
, (2)

where Ay, k denotes the amplitude of the received signal reflected from the k-th (k =
1, . . . , K) target. In addition, td, k denotes the time delay caused by the distance between
the radar and the k-th target.

Then, yn(t) is multiplied by xn(t), and the output passes through a low-pass filter
(LPF), as shown in Figure 1. Finally, a down-converted baseband signal is obtained, which
is expressed as

mn(t) = {xn(t)yn(t)}LPF, (3)

where {·}LPF represents the output of the LPF. This baseband signal consists of the sum of
sinusoids, and each sinusoid contains distance and velocity information for each object. By
applying a Fourier transform to a set of mn(t), the distance to the object and the velocity of
the object can be estimated [21]. For example, in the short-range detection mode, distance
and velocity information of several objects can be estimated by applying a 2D Fourier
transform to ms = [m1(t), m2(t), . . . , mN1(t)].

Moreover, to find the exact position of the object, the angle between the radar sensor
and the object must be identified. In the automotive radar system, multiple receiving
antenna elements are widely used to estimate the angle information of an object [22]. To im-
prove the angular resolution, our radar system adopts a multiple-input and multiple-output
(MIMO) antenna system consists of several transmit and receiving antenna elements [6], as
given in Table 1. These antenna elements are arranged in the horizontal direction for az-
imuth angle estimation. The angle of the object can be estimated from the phase difference
of the signals incident on the horizontally arranged antenna element [23]. In this study,
we use a delay-and-sum beamforming method [24] to estimate the angle information of
multiple targets [25].

3. Target Image Generation in Radar System

In this section, the radar signal measurement environments and experimental scenar-
ios are described. In addition, a method of converting the object detection result into an
image form suitable for training the YOLO network is proposed.

3.1. Measurement Environment

With the FMCW radar sensor described in Section 2, radar signal measurements were
conducted. In this experiment, we divided the measurement results into 9 representative
cases (i.e., Cases 1 to 9), as shown in Figure 3. Each object went straight, moved from left to
right, and moved from right to left, and the same experiments were repeated by changing
the distance between the object and the radar. A pedestrian, a cyclist, and a car moved in
the test field as shown in Figure 4, and reflected radar signals were acquired and stored for
each case.
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8 (i) Case 9

Figure 3. Experimental scenarios for a pedestrian, a cyclist, and a car: Cases 1 to 9.

3.2. Radar Detection Result in 2D Distance Plane

As explained in Section 2.2, we can estimate the distance, velocity, and angle informa-
tion of the target from the received radar signal. The information of the k-th target can be
expressed in the 2D x-y distance plane as follows:

[xk, yk]
T = [d̂k sin θ̂k, d̂k cos θ̂k]

T , (4)

where d̂k and θ̂k are the estimated distance and angle between the radar and the k-th target,
respectively. However, in a high-resolution radar system, a single target is detected as
multiple points. That is, the k-th target is detected as points [xkp , ykp ]

T (p = 1, 2, . . . , Pk),
where Pk is the number of points derived from the k-th target.
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8 (i) Case 9

Figure 4. Radar signal measurements in the test field: Cases 1 to 9.

In previous studies [12,13,15], the type of object was determined with a single detection
result. However, it is difficult to extract information about the movement of the target
from the single detection result. Thus, to understand the change in the moving direction
of the target over time, we use the accumulated detection results. If the accumulated
detection results are used, the velocity information of the target is also reflected and the
probability of false object detection can be reduced. As given in Table 1, target detection
results are generated every 50 ms in our radar system. Therefore, if ND detection results
are accumulated, information on the movement change of the target for ND × 50 ms can be
identified. In this study, we accumulated 15 consecutive detection results, which means
that ND becomes 15 and ND × 50 becomes 0.75 s.

Figure 5 shows the accumulated radar detection results for 0.75 s for a pedestrian, a
cyclist, and a car, respectively. As shown in the figure, each target is detected as a number
of points because the range resolution of our radar sensor is in units of several centimeters.
From a pedestrian to a car, each target is detected as more points because the physical size
of the target increases. In addition, the movement information of the target is reflected in
the accumulated detection result.

3.3. Target Image Generation

In general, RGB images are widely used as input data for CNN-based image classifiers.
However, because the detection results in Figure 5 are expressed as monochromatic point
clouds, they are not suitable as input data for the CNN-based classifier. Therefore, it is
essential to convert the radar detection result into an appropriate input format.

As a solution, we save the detection result in the joint photographic experts group
(JPEG) format, one of the lossy compression method [26]. By storing the detection result
through the lossy compression method, we can force color difference to the monochromatic
detection result. For example, where there are many blue points, the distortion of the RGB
values is small, but in the part where there are few blue points, the RGB values are severely
distorted. Thus, if the area where the points are concentrated is defined as the central area,
the points in the central area are expressed close to black and blue, and the points in the
surrounding area are expressed in red, yellow, green, pink, and cyan. Therefore, through
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the proposed transformation method, information on the edge of the object and the number
of points constituting the object is stored as RGB information.

Figure 6 shows the object detection results converted into images suitable for training.
As shown in the figure, near the center of each target is represented by dark colors, and
the edges of each target are represented by relatively light colors. Therefore, by converting
the detection result into an image format with the lossy compression, information on the
width and length of the object is effectively reflected in RGB values.

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8 (i) Case 9

Figure 5. Accumulated detection results in the 2D distance plane: (a) when a pedestrian goes straight
(b) when a pedestrian moves from right to left (c) when a pedestrian moves from left to right (d) when
a cyclist goes straight (e) when a cyclist moves from right to left (f) when a cyclist moves from left to
right (g) when a car goes straight (h) when a car moves from right to left (i) when a car moves from
left to right.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 6. Regenerated detection results: (a) when a pedestrian goes straight (b) when a pedestrian
moves from right to left (c) when a pedestrian moves from left to right (d) when a cyclist goes straight
(e) when a cyclist moves from right to left (f) when a cyclist moves from left to right (g) when a car
goes straight (h) when a car moves from right to left (i) when a car moves from left to right.

4. Proposed Simultaneous Target Classification and Moving Direction Estimation

In this section, a method of classifying the type of target and determining its moving
direction with the regenerated object detection results is introduced. Then, the performance
of the proposed method is evaluated based on the radar sensor data acquired from the test
field. In addition, new data that have not been used for network training are also used to
validate the feasibility of our proposed method.

4.1. Structure of YOLO Network for Radar Target Identification

In this work, a YOLO-based network is used to identify the type and moving direction
of the target, which is described in Figure 7. As shown in the figure, the Darknet-53 [27]
was used in the feature extraction stage, and the YOLOv2 [28] was used in the classification
stage. In the feature extraction network, the converted input image passes through multiple
blocks, each of which consists of layers for convolution, batch normalization, and activation.
As an activation function, a leaky rectified linear unit (ReLu) is used. The sizes of the filters
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used in each layer are also indicated in Figure 7. Through this process, target features are
extracted at multiple scales. Then, the YOLO network performs target identification based
on the features extracted from the Darknet-53. Finally, the proposed network finds the
location and size of the target in each input image, and determines it as one of nine cases
(e.g., Cases 1 to 9).

Figure 7. Proposed network for the target classification and moving direction estimation.

Table 2 summarizes the number of input image data used for training, validation, and
test. For training, validation, and test data sets, 70%, 10%, and 20% of total input images
were used, respectively. In addition, the parameter values used when training the network
are summarized in Table 3. With the given parameter values, we trained the network in
Figure 7, and Figure 8 shows the root-mean-square error (RMSE) and and loss values for
the data set used for network training and validation. After 500 iterations, the network
performance is stabilized, and the RMSE and loss values converge to specific values.

Table 2. The Number of Input Image Data Used for Training, Validation, and Test.

Case Training (%) Validation (%) Test (%) Total Number of Images

Case 1 70.8 10 19.2 250
Case 2 74.5 7.7 17.8 220
Case 3 71.6 9.8 18.6 225
Case 4 71 13.4 15.6 500
Case 5 71.4 9 19.6 500
Case 6 67.4 9.6 23 500
Case 7 71.2 10 18.8 309
Case 8 68.2 7.8 24 462
Case 9 67.1 11.6 21.3 371

Table 3. Parameter Values Used in YOLO-based Network.

Parameter Value

Batch size 128
Width 256 (pixels)
Height 256 (pixels)

Channels 3 (R, G, B)
Learning rate 0.001
Momentum 0.9
Max epochs 30

Iterations 4350
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(a)

(b)

Figure 8. Training and validation of the network: (a) RMSE (b) loss value.

4.2. Performance Evaluation

In our network, when the accumulated radar detection result converted into an RGB
image is input to the trained network, the location, type and direction of movement of
the target are determined immediately, which means that simultaneous target detection
and classification is possible. In other words, when the detected points are scattered in
the accumulated detection result, the YOLO-based network immediately finds points that
correspond to meaningful targets.

Figure 9 shows the instantaneous target identification results through our proposed
network. After network training is finished, the processing speed for new input is fast
because only simple addition and multiplication operations are performed inside the
network. The yellow box in the figure shows the expected type and moving direction of the
detected object. In addition, the number in the box indicates the probability of how close
the detected object is to the expected case. As shown in the figure, the type of detected
target and its direction of movement are simultaneously determined in each image with
high accuracy.

In addition, Table 4 is a confusion matrix showing classification results for a total of
9 cases. In our data set, most of the classification errors occurred when identifying the
movement of a pedestrian and a cyclist. In other words, the trained network confuses Cases
2 and 5, and Cases 3 and 6 the most. As shown in Figure 6, the widths of a pedestrian and
a cyclist detected by the radar are similar, and the main difference between the two objects
exists in the length of the point cloud. As input to the network, we used the accumulated
radar detection results. Therefore, a fast-moving pedestrian and a slow-moving cyclist can
show similar patterns in detection results, which can degrade the classification performance
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of the network. On the other hand, in the case of a car, its type and movement is identified
with very high accuracy, because the number of detected points and the size of the point
cloud are larger than those of the pedestrian and cyclist.

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8 (i) Case 9

Figure 9. Instantaneous target identification results: Cases 1 to 9.

Table 4. Confusion Matrix for Cases 1 to 9.

Actual Case Predicted Case (%)
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Case 1 98.0 0 0 2 0 0 0 0 0
Case 2 0 100.0 0 0 0 0 0 0 0
Case 3 0 0 95.3 0 0 4.7 0 0 0
Case 4 0 0 0 100.0 0 0 0 0 0
Case 5 0 6.12 0 0 93.88 0 0 0 0
Case 6 0 0 1.74 0 0 98.26 0 0 0
Case 7 0 0 0 0 0 0 100.0 0 0
Case 8 0 0 0 0 0 0 0 100.0 0
Case 9 0 0 0 0 0 0 0 0 100.0
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We also compared the performance of the proposed method with that of the moving
direction estimation method using a simple CNN [10]. When the same data were used as
input, the average estimation accuracy was 91.4%. Unlike the YOLO network, all input
images need to be set to the same size to train a CNN. In addition, the location of an object
cannot be automatically found when the simple CNN-based method is used, which was
possible with the YOLO-based network. Thus, the YOLO network-based moving direction
estimation is more efficient in terms of target detection and classification.

4.3. Performance Evaluation in New Environments

We also checked how the classification performance of the trained YOLO network
changes for new data sets other than the existing data sets. Thus, we acquired data in a new
environment and put the data into the pre-trained network to evaluate its performance.
Figure 10 shows the result of immediately discriminating the type and moving direction of
the detected object by the pre-trained network. As given in the yellow box, although they
are new data that have not been used for training, the pre-trained network shows quite
high identification accuracy.

In the newly acquired data set, the type and moving direction of the car were deter-
mined with an average of 85% accuracy. We expected that higher recognition accuracy can
be obtained by increasing the amount of radar sensor data used for network training. In
addition, as shown in Figure 10, the tree on the right side of the vehicle is continuously
detected, but the YOLO-based network determined it as a meaningless target. By accu-
mulating experimental data for various types of targets on the road and labeling them, a
network having more stable classification performance can be trained.

(a) Case 7 (b) Case 8 (c) Case 9

Figure 10. Instantaneous target identification results in new environments: Cases 7 to 9.

5. Conclusions

In this paper, we proposed a method of classifying the type of target and estimating
its moving direction in the millimeter-wave FMCW radar system. In our method, lossy
compression was used to convert the object detection results of the radar sensor into an
RGB image format. Then, we designed and trained the YOLO-based classifier with the
input images to determine the type and moving direction of a pedestrian, a cyclist, and a
car. The trained YOLO network determined the type and direction of the target with an
accuracy of over 95%. In addition, for the new data set that were not used for training,
the proposed method showed more than 85% recognition and classification accuracy. The
results of this study can be used to find out the heading direction of the vehicle through
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the overall shape of the detected points, which can help predict the next movement of the
detected vehicle.
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The following abbreviations are used in this manuscript:

2D Two-dimensional
CNN Convolutional neural network
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IQ In-phase and quadrature
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MIMO Multiple-input and multiple-output
RGB Red, green, and blue
RMSE Root-mean-square error
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