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Abstract: In this paper, we introduce mapping results in an indoor environment based on our own
developed dual-mode radar sensor. Our radar system uses a frequency-modulated continuous wave
(FMCW) with a center frequency of 62 GHz and a multiple-input multiple-output antenna system. In
addition, the FMCW radar sensor we designed is capable of dual-mode detection, which alternately
transmits two waveforms using different bandwidths within one frame. The first waveform is for
long-range detection, and the second waveform is for short-range detection. This radar system is
mounted on a small robot that moves in indoor environments such as rooms or hallways, and the
radar and the robot send and receive necessary information to each other. The radar estimates the
distance, velocity, and angle information of targets around the radar-equipped robot. Then, the radar
receives information about the robot’s motion from the robot, such as its speed and rotation angle.
Finally, by combining the motion information and the detection results, the radar-equipped robot
maps the indoor environment while finding its own position. Compared to the actual map data, the
radar-based mapping is effectively achieved through the radar system we developed.

Keywords: dual-mode detection; frequency-modulated continuous wave radar; multiple-input
multiple-output antenna; simultaneous localization and mapping

1. Introduction

Recently, not only the autonomous driving of automobiles, but also the autonomous
driving of robots indoors is attracting a lot of attention from people. The core technology
for autonomous driving of robots is simultaneous localization and mapping (SLAM), which
maps the surrounding environment while the robot locates itself. The SLAM in robots has
been implemented based on data acquired from laser and camera sensors mounted on
a robot. However, these sensors have very poor detection performance in environments
where the amount of light is insufficient or in foggy environments.

Therefore, in recent years, studies to utilize radar sensors for the mapping have been
conducted because radar sensors have the advantage of less degradation in detection
performance even with environmental changes. For example, indoor mapping results
using ultra-wideband (UWB) radar systems were introduced in [1–4]. In [2], the mapping
was performed using the acquired data while manually rotating a single UWB radar
sensor in 45 degree increments. In addition, to find the angle information of the object
for the SLAM, a method of sequentially transmitting UWB pulses with three different
center frequencies was proposed in [3]. Recently, the authors in [4] proposed a method
for obtaining spatial information of objects by using two receiving antennas in different
directions. In [5], the SLAM was performed in an indoor environment using a frequency-
modulated continuous wave (FMCW) radar using 24 GHz as the center frequency. In
this study, the antenna was mechanically rotated 360 degrees to detect multiple targets
at the same time. Moreover, the authors in [6,7] presented the mapping results in indoor
smoky situations. In both studies, a radar system developed by Fraunhofer Institute
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for High Frequency Physics and Radar Techniques (FHR) that mechanically rotates the
antenna through a motor was applied. In [8], indoor SLAM was performed using a radar
sensor using the 122 GHz, but the maximum detectable distance of the radar was only a
few meters.

As such, most of the radar systems used in the conventional studies on the radar-
based mapping use a low frequency band, so the range resolution is inevitably low. In
addition, in such studies, the angular resolution was low using a small number of antenna
elements, and a method of mechanically rotating the antenna was used to overcome a
narrow angle detection range. Unlike previous studies, the radar sensor we developed
performs the mapping with high range and angle resolution, which does not require
mechanical or manual rotation of the antenna system. The radar system we developed
transmits the FMCW radar signal with a center frequency of 62 GHz. In other words,
the radar can use a wider bandwidth and thus has better range resolution [9]. In addition,
the FMCW radar signal has the advantage of being able to achieve high range resolution
through pulse compression [10]. Moreover, instead of using a motor to rotate the antenna
mechanically [5–8], our radar system adopts an electronic scanning method that uses an
array antenna system. To improve the angular resolution within limited radar hardware,
we also use a multiple-input multiple output (MIMO) antenna system [11]. The angular
resolution is further improved by using the array interpolation method in [12] together.

The radar sensor we developed has the following advantages. The use of very
short wavelengths in millimeters can reduce the size of the antenna system, allowing
the radar to be miniaturized. In addition, compared to radar systems using the UWB (i.e.,
3.1 to 10.6 GHz), our radar system adopting the millimeter wave band can use a wider
bandwidth and thus has better range resolution. Moreover, unlike the mechanical scanning
methods, the electronic scanning method has the advantage that it can be operated in
several modes simultaneously and has a short detection cycle [13]. As such, despite its
small size compared to the conventional radar systems, our radar sensor has superior
range and angular resolution and is suitable for high-resolution object detection in an
indoor environment. When the radar detects the position of an object in high resolution,
the mapping result of the indoor environment becomes more accurate.

We mount this radar sensor on a small robot and conduct measurements in indoor
corridor environments. To perform the mapping using a radar sensor, it does not end
with plotting the radar detection result, but continuously reflecting the movement of the
robot. Thus, the radar system receives information about the moving velocity and rotation
angle of the robot from its motor and the radar detection result is corrected by considering
the robot’s movement every frame. Finally, the mapping is achieved by accumulating
the corrected detection results and a map around the radar-equipped robot is plotted.
In the process of performing the mapping, moving targets can hinder the radar sensor
from drawing an accurate map. Thus, we improve the accuracy of the mapping result by
removing moving targets in the mapping result. One of the advantages of the radar-based
mapping is that the radar can immediately discriminate between moving and stationary
targets based on their estimated velocities because the velocity of the target can be estimated
directly by applying Fourier analysis [14]. However, unlike radar sensors, because the main
purpose of camera sensors or lidar sensors is to extract an image of a target, additional
signal processing algorithms [15] or waveform changes [16] are required to estimate the
velocity information of the target from those sensors.

The remainder of this paper is organized as follows. First, the dual-mode FMCW
radar system that we developed is introduced in Section 2. Then, in Section 3, a method of
estimating the distance, velocity, and angle of the target from the obtained radar sensor
data is explained. In addition, a method of converting the radar detection result into the
two-dimensional (2D) range map and combining the detection results of the two modes is
introduced. In Section 4, we describe the experimental environment in which the radar-
equipped robot is driving and show the mapping results in that environment. Finally, we
conclude this paper in Section 5.
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2. Dual-Mode FMCW Radar Sensor

For target detection in indoor environments, we developed the dual-mode FMCW
radar system that operates in the millimeter wave band. In this study, the dual-mode
means that both long-range detection and short-range detection are possible with a single
radar sensor. Figure 1 shows the front and back sides of the assembled printed circuit
board (PCB) of the radar system. The length, height, and width of the assembled PCB are
70 mm, 59 mm, and 9 mm, respectively. As shown in Figure 1b, a patch antenna system
was used, which consists of several transmit and receiving antenna elements. Depending
on the long-range detection mode or the short-range detection mode, different transmit
and receiving antenna elements are selected and used.

(a)

(b)

Figure 1. Assembled PCB of the dual-mode FMCW radar system: (a) the front side; (b) the back side.

Figure 2 shows the time-frequency slope of the FMCW radar signal transmitted at
each frame in our radar system. One frame defined in this study is the basic time unit of
radar signal processing, which consists of signal transmission time and signal processing
time, and its total length is 50 ms. As shown in Figure 2, multiple waveforms whose
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frequency increases linearly with time are transmitted sequentially within the transmission
time. To increase the range resolution while miniaturizing the antenna system of the radar,
the millimeter wave band was used. In addition, waveforms with a relatively narrow
bandwidth are used for long-range detection, whereas waveforms with a relatively wide
bandwidth are used for short-range detection. In our radar system, based on the center
frequency ( fc) of 62 GHz, 1.5 GHz and 3 GHz are used as bandwidths for long-range
detection and short-range detection, respectively. In general, the range resolution ∆r of the
FMCW radar signal is determined by ∆r = c

2B [9], where c and B represent the speed of
light and the bandwidth, respectively. Thus, the range resolution for each mode is 10 cm
and 5 cm, respectively. In the case of short-range detection, a wider bandwidth is used to
detect nearby objects in high resolution, which means that one object can be detected as
more points.

Figure 2. FMCW radar signal corresponding to one frame.

This FMCW radar sensor is mounted on the front of the robot as shown in Figure 3.
First, the robot passes information related to the robot’s motion (e.g., the velocity and
rotation angle of the robot) to the radar. This robot has a shape similar to a robot vacuum
cleaner and can perform linear and rotational motions. Here, rotational motion means
that the robot rotates at a constant angular velocity about the central axis. Then, the radar
sensor estimates the distance, velocity, and angle information of targets located in the field
of view (FOV). Finally, the radar sensor can map the surrounding environment combining
the motion information and its own target detection results.

Figure 3. Information exchanged between the robot and the radar.

3. Radar Signal Analysis

In this section, a method of estimating the distance, velocity, and angle information of
a target from data acquired by the dual-mode FMCW radar system is described. Using the
FMCW radar signal shown in Figure 2, the relative distance to the target and the relative
velocity of the target can be estimated. In addition, using the multiple antenna elements in
Figure 1b, the angle information between the radar sensor and the target can be estimated.
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3.1. Distance and Velocity Estimation Using FMCW Radar Signals

The FMCW radar signal in Figure 2 is radiated through the transmit antenna and then
reflected from the target. The received signal includes the time delay due to the relative
distance to the target and the Doppler frequency due to the movement of the target. The
received signal is converted to a baseband signal by passing through a frequency mixer
and a low-pass filter. Then, the baseband signal is sampled in the time domain as it passes
through an analog-to-digital converter, as shown in Figure 4.

Figure 4. Block diagram of the FMCW radar.

Then, the sampled baseband signal for the l-th chirp [17] can be expressed as

x[n, l] = Ak exp
[

j2π

{(
2B(Rk + vkTcl)

Tcc
+

2 fcvk
c

)
nTs +

2 fc(Rk + vkTcl)
c

}]
, (1)

where k (k = 1, 2, · · · , K) is the index of the target and n (n = 0, 1, · · · , N − 1) is the
index of the time sample. In addition, Ak indicates the amplitude of the baseband signal,
and Rk and vk represent the distance to the k-th target and the velocity of the k-th target,
respectively. In addition, Tc and Ts denote the sweep time of each chirp and the sampling
time, respectively. Then, the time-sampled signals for each chirp can be arranged in a
matrix as shown in Figure 5b. In our radar system, NL and NS chirps are used in each
long-range detection mode and short-range detection mode and N points are sampled
for each single chirp, resulting in two matrices of size NL × N and NS × N. If the fast
Fourier transform (FFT) is applied on the sampling axis of the matrix, the matrix data are
converted to data on the distance axis. In addition, if the FFT is applied on the chirp axis, it
is converted into the data about the velocity axis [14]. In other words, by applying the 2D
FFT to the sampled and rearranged FMCW radar signal, the relative distances to the targets
and the relative velocities of the targets can be estimated at the same time [18], as shown in
Figure 5c. Finally, target detection results in long-range mode and short-range mode are
stored every frame.

3.2. Angle Estimation Using Multiple Antenna Elements

To accurately determine the position of a target, it is necessary to know not only the
distance to the target but also the angle between the radar and the target. In general, the an-
gular resolution improves as the number of antenna elements increases [11]. However,
as the number of antenna elements increases, the size of the radar sensor also increases.
Thus, to more accurately obtain the angle information of the target without significantly
increasing the size of the radar sensor, we adopt the MIMO antenna system using multiple
antenna elements.
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Figure 5. Distance and velocity estimation process in the FMCW radar system: (a) transmitted and
received FMCW radar signals on the time-frequency axis; (b) the time-sampled signals in the form of
the matrix; (c) 2D FFT results.

In the short-range detection mode, one transmit antenna element and four receiving
antenna elements (i.e., 1 × 4 single-input multiple-output (SIMO) antenna system) are
used. In addition, the spacing between the receiving antenna elements is dR × [e1, e2, e3]
in sequence, where dR denotes the basic unit of the spacing between receiving antenna
elements. The antenna spacing can be determined in several ways, but we used the
minimum-redundancy linear array that shows the maximum resolution for a given number
of antenna elements by minimizing the number of redundant spacing in the array [19].
On the other hand, two transmit antenna elements and four receiving antenna elements
(i.e., 2 × 4 MIMO antenna system) are used in the long-range detection mode. In this
case, the spacing between the receiving antenna elements is the same as the short-range
detection mode, and the spacing between the transmit antenna elements is set to dT = etdR,
where et is an integer value for the spacing between transmit antenna elements.

Assuming that the spacing between the antenna elements is very small compared to
the distance between the radar and the target, almost parallel signals are received at each
antenna element. Under this assumption, in the short-range detection mode, the phase
values of the signals received from each antenna element become 2π sin θk

λ dR × [0, e1, e1 +
e2, e1 + e2 + e3], where θk is the angle between the radar and the k-th target and λ is
the wavelength corresponding to the center frequency of the FMCW radar signal. Here,
the phase value of the first receiving antenna element is set as a reference value, and λ
becomes 4.8 mm because the radar system uses 62 GHz as the center frequency. In addition,
the concept of the minimum redundancy linear array can be extended to the MIMO
antenna system to achieve high angular resolution [20]. For long-range detection mode,
because two transmit antenna elements with dT spacing are used, more antenna spacing
combinations can be generated by the MIMO antenna principle [11]. Thus, the phase values
of the signals received by each antenna element become 2π sin θk

λ dR × [0, e1, e1 + e2, e1 +
e2 + e3, et, et + e1, et + e1 + e2, et + e1 + e2 + e3] in the long-range detection mode. Figure 6
shows the expansion of the number of receiving channels in the MIMO antenna system.
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Along with the actual receiving channels, virtual receiving channels are generated by the
spacing between the transmit antenna elements. Because the time-division multiplexing
scheme [21] is used in the transmission process, transmitted signals can be distinguished at
the receiving antenna end.

Figure 6. Expansion of receiving channels in the MIMO antenna system.

In addition to this, we use an array interpolation technique to create more antenna
spacing combinations. This method uses signals received from limited antenna elements
and generates interpolated signals as if they were received from more antenna elements.
In general, signals are interpolated using a transform matrix generated by the method
of least squares [12]. We also use the linear least squares (LLS) to create more antenna
spacing combinations in the SIMO and MIMO antenna systems [22]. The transformation
matrix is not created every time a signal is received from the antenna but is predetermined
by setting the FOV and the spacing to be interpolated. Thus, the transform matrix once
calculated from the LLS method can be used continuously without changes in the radar
system. In our radar system, the empty antenna spacing between 0 to dR × (e1 + e2 + e3) is
interpolated at dR spacing in short-range detection mode. Even in long-range detection
mode, the empty antenna spacing between 0 to dR × (et + e1 + e2 + e3) is interpolated at
dR spacing.

Finally, the angle of the target is estimated by finding the phase difference values of
the received signals. For example, angle estimation algorithms, such as the conventional
beamformer (i.e., Bartlett beamformer) [23], minimum variance distortionless beamformer
(i.e., Capon beamformer), [24], multiple signal classification (MUSIC) [25], and estimation
of signal parameters via rotational invariance techniques (ESPRIT) [26], can be used to
estimate the phase difference. In general, these angle estimation algorithms can be applied
directly to the time-sampled signals of each receiving channel [27]. In that case, we can
estimate the incident angles of multiple signals received at the same time. However, it is
difficult to pair the estimated angle values with the targets existing in the 2D FFT domain
of Figure 5c. Thus, we use the angle estimation in the 2D FFT domain that accurately
extracts only the angle information of each target [28], as shown in Figure 7. After 2D FFT
of the signals received from each receiving antenna element, the values corresponding
to the k-th target are collected and generated as a vector xk. Because the distance and
velocity information acquired from each receiving antenna channel is equivalent for the
same target, the signal values at the same indices from the 2D FFT results are selected.
Basically, because the FFT is a linear transformation, the angle information of the target
is included in the phase of the frequency-domain signal even after the 2D FFT. In other
words, xk still contains the values of the phase difference between each receiving channel.
Finally, we create the correlation matrix using xk, which can be expressed as

Rk =
1

Nv
xkxH

k , (2)
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where Nv is the number of receiving channels extended by the MIMO antenna principle
and the array interpolation. This correlation matrix can be used in the spectrum-based
angle estimation algorithms, such as the Bartlett and Capon, and the subspace-based
angle estimation algorithms, such as the ESPRIT and the MUSIC. In this study, the Bartlett
beamformer is used to estimate the angle of the target because it requires less computation
than other algorithms [29] and exhibits stable performance even with coherent sources [30].
The Bartlett beamformer can be expressed as

P(θ) = aH(θ)Rka(θ), (3)

where a(θ) denotes the steering vector [27]. Therefore, the angle θ that makes the value of
P(θ) maximize becomes the estimated angle of the k-th target.

Finally, the specifications for each detection mode are summarized in Table 1. The
maximum detectable range is determined by the antenna beam pattern and transmit power,
and each mode uses the same transmit power. Thus, in the long-range detection mode,
because the antenna beam pattern was designed to detect objects up to 20 m with the same
transmit power, it inevitably has a narrow FOV. On the other hand, in the short-range
detection mode, the antenna beam pattern was designed to detect objects up to 10 m with
the same transmit power, so it has a wider FOV.

Figure 7. Angle estimation process in the FMCW radar system.
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Table 1. Specifications for each detection mode.

Detection Mode Long-Range Mode Short-Range Mode

Bandwidth, B (GHz) 1.5 3
The number of chirps, NL and NS 256 256
The number of time samples, N 128 128
Maximum detectable range (m) 20 10

Range resolution (m) 0.1 0.05
Maximum detectable velocity (m/s) 8 8

Velocity resolution (m/s) 0.315 0.315
FOV (deg.) −20∼20 −60∼60

Transmit power (dBm) 10 10
Total transmission time (ms) 50

3.3. Detection Results in Dual-Mode

The distance obtained in Section 3.1 is the distance in the radial direction to the target
based on the position of the radar-equipped robot, and the angle obtained in Section 3.2
is the angle between the front direction of the radar and the target, as shown in Figure 8.
Therefore, the distance and angle information of the k-th target can be converted into the
2D position coordinates based on the radar position, which is expressed as

(xk, yk) = (Rk cos θk, Rk sin θk). (4)

In addition, a radar-equipped robot performs not only straight movement, but also
circular rotation. Thus, to draw a 2D range map while accumulating the coordinates of the
detected targets, the yaw rate of the robot must also be considered. If the robot performs
yaw rotation by the angle θY, the position of the k-th target in Equation (4) will be changed
as follows:

(x̃k, ỹk) = (Rk cos(θY − θk), Rk sin(θY − θk)). (5)

Therefore, if the detection results are accumulated without considering the yaw rate,
the accuracy of the mapping becomes very low. The yaw rate of the robot can be obtained
from its motor, and the detection result must be corrected every frame using this value.

Figure 8. Representation of target coordinates in a 2D range map.
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These 2D target detection results can be obtained in each of the two modes and they
are finally combined, as shown in Figure 9. The detection result of the short-range detection
mode is superimposed on that of the long-range detection mode. In the case of targets
detected in both modes, the reliability of the detection result is high. However, in the case
of a target detected only in one mode, the reliability may not be high. In the case of such
targets, they can be removed through the target tracking. In addition, because the robot
can perform circular rotation, targets outside the FOV can also be detected through its
rotational motion.

Figure 9. Combination of detection results from both modes.

4. Indoor Environment Mapping Using Dual-Mode Radar Detection Results

After mounting the radar on the robot, we accumulated radar signal data in the
indoor environment. The radar-equipped robot starts driving straight in the corridor of
the building, as shown in Figure 10a. In the initial driving environment, a chair and a cart
of different sizes are located at different distances. In our radar system, one frame is set
to 50 ms, which implies that the radar sensor derives the target detection results 20 times
per second. In addition, because we use 1.5 GHz and 3 GHz as bandwidths in each mode,
the range resolution becomes 10 cm and 5 cm, respectively. That is, even if the size of objects
existing indoors is quite small, it can be detected as several points. Figure 10b shows the
radar detection results accumulated for 500 frames in this environment, in which we can
see that the chair and the cart are detected as multiple points. In this figure, the detected
points in each mode are represented in different colors. Because these three-dimensional
objects, such as the chair and the cart, have different radar cross sections for each part, it is
difficult to derive the exact size of the object. However, through repeated radar detection,
we can determine the approximate size of the object. In this process, detected points for
each object can be grouped through a clustering algorithm such as the density-based spatial
clustering of applications with noise [31].
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(a)

(b)

Figure 10. Measurement in an indoor environment: (a) a photograph of the environment; (b)
accumulated detection results of the dual-mode radar.

Then, the radar-equipped vehicle keeps moving forward and encounters a person
walking from right to left, as shown in Figure 11a. In this experiment, a man passed the
radar’s FOV at a speed of about 1 m/s. In Figure 11b, radar detection results for additional
1000 frames were accumulated and drawn. Looking at the figure, the moving person is
also detected as multiple points in the radar detection results. However, compared to a
chair or a cart, the number of detected points is fewer because the person has a smaller
radar cross section and the width of the human body is shorter.
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(a)

(b)

Figure 11. Measurement in an indoor environment: (a) photographs of the environment; (b) accumu-
lated detection results of the dual-mode radar.

To accurately draw a map around a robot using radar sensor data, the points cor-
responding to the moving target must be removed. In this study, we use a method to
identify moving targets by using the relative velocity between the detected points and the
radar-equipped robot. This method can be applied without high computational complexity
because radar sensors can directly extract target velocity information, unlike sensors such
as lidars and cameras. If the velocity of the robot received from the motor is vM and the
index of the target detected in dual-mode in each frame is k̃, the stationary target can be
selected by finding all k̃ that satisfies ∣∣vM − vk̃

∣∣ < ε, (6)

where ε is the threshold value. Through this method, the moving velocity of the robot is
compared with the velocities of the detected targets. Even if the radar does not receive
the moving velocity of the robot from the motor, a method of estimating the velocity
of the robot using only the radar sensor data was proposed in [32]. Finally, Figure 12b
shows the final mapping result after removing detected points corresponding to moving
targets, and the points caused by the moving person almost disappeared. In Figure 12b,
because most of the radio waves are not reflected on the glass door and pass through them,
the detected points for those doors are less visible in the mapping results. In addition,



Sensors 2021, 21, 2469 13 of 16

points detected outside the wall can be considered ghost targets generated by multiple
propagation paths of radio waves.

(a)

(b)

Figure 12. Indoor environment mapping using dual-mode radar detection results: (a) photographs
of the environment; (b) final mapping result after removing moving targets.

To evaluate the accuracy of the position estimation, we used the 2D floor plan of the
building. In other words, the actual map data of the indoor environment drawn with black
lines in the figure were compared with the detection results from the radar sensor data.
To verify how similar the actual wall position and the wall estimated from the detected
points were, the trend lines for each wall were estimated by the random sample consensus
(RANSAC) [33] algorithm. The RANSAC algorithm can automatically extract the trend line
for points on the plane. We applied the RANSAC method to the points detected on each of
four walls, and the results are indicated by orange dashed lines in Figure 12b. As shown
in the figure, the trend lines predicted by the RANSAC were very similar to the actual
wall positions, and had a slope error within three degrees. In addition, we compared the
actual and the estimated positions of the robot itself. The robot’s position was estimated
from motion information acquired from the robot’s motor. In our measurement, the radar-
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equipped robot was set to move in a straight line, but the estimated positions are slightly
off the straight line, as shown in the figure. Finally, the actual and the estimated positions
of the robot itself showed a mean absolute error of 5%.

5. Conclusions

In this paper, we presented the mapping results based on the data acquired from
the dual-mode radar sensor. The radar sensor we designed can alternately transmit two
different waveforms that use different bandwidths in each frame, allowing short-range
detection and long-range detection at the same time. This radar system has excellent range
resolution due to its high center frequency and wide bandwidth, which enables it to detect
one object as multiple points. In addition, we used array interpolation with the MIMO
antenna system to improve the angular resolution. After mounting this radar on a small
robot, radar sensor data were acquired while driving in an indoor corridor environment.
Finally, by combining the motion information received from the robot with the radar
detection results, the radar-equipped robot mapped the indoor corridor environment
while estimating its position. In addition, a map with improved accuracy for the indoor
environment was obtained when we used the velocity information of moving targets
extracted from the radar sensor data. To increase the accuracy of radar-based mapping,
it can be effective to use map data generated from existing radar detection results as a
priori information. The radar sensor-based SLAM is expected to be used effectively in an
environment where camera or laser sensor-based SLAM performance is degraded.

Author Contributions: Conceptualization, S.L. and S.-Y.K.; methodology, S.L.; software, S.-Y.K. and
B.-J.K.; validation, S.L. and S.-Y.K.; formal analysis, B.-J.K. and H.-S.L.; investigation, B.-J.K. and
H.-S.L.; resources, S.L. and J.-E.L.; data curation, B.-J.K. and H.-S.L.; writing—original draft prepara-
tion, S.L. and S.-Y.K.; writing—review and editing, S.L.; visualization, S.L. and S.-Y.K.; supervision,
S.L. and J.-E.L.; project administration, J.-E.L.; funding acquisition, S.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2021R1G1A1007836).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

2D two-dimensional
ESPRIT Estimation of signal parameters via rotational invariance techniques
FFT Fast Fourier transform
FHR Fraunhofer Institute for High Frequency Physics and Radar Techniques
FMCW Frequency-modulated continuous wave
FOV Field of view
MIMO Multiple-input multiple-output
MUSIC Multiple signal classification
PCB Printed circuit board
RANSAC Random sample consensus
SIMO Single-input multiple-output
SLAM Simultaneous localization and mapping



Sensors 2021, 21, 2469 15 of 16

References
1. Deißler, T.; Thielecke, J. Feature based indoor mapping using a bat-type UWB radar. In Proceedings of the IEEE International

Conference on Ultra-Wideband, Vancouver, BC, Canada, 9–11 September 2009; pp. 475–479.
2. Guerra, A.; Guidi, F.; Ahtaryieva, L.; Decarli, N.; Dardari, D. Crowd-based personal radars for indoor mapping using UWB

measurements. In Proceedings of the IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing,
China, 16–19 October 2016; pp. 1–4.

3. Schouten, G.; Steckel, J. RadarSLAM: Biomimetic SLAM using ultra-wideband pulse-echo radar. In Proceedings of the Interna-
tional Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–8.

4. Schouten, G.; Stecke, J. A biomimetic radar system for autonomous navigation. IEEE Trans. Robot. 2019, 35, 539–548. [CrossRef]
5. Marck, J.W.; Mohamoud, A.; vd Houwen, E.; van Heijster, R. Indoor radar SLAM: A radar application for vision and GPS denied

environments. In Proceedings of the European Radar Conference, Nuremberg, Germany, 9–11 October 2013; pp. 471–474.
6. Fritsche, P.; Wagner, B. Modeling structure and aerosol concentration with fused radar and LiDAR data in environments with

changing visibility. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver,
BC, Canada, 24–28 September 2017; pp. 2685–2690.

7. Mielle, M.; Magnusson, M.; Lilienthal, A.J. A comparative analysis of radar and lidar sensing for localization and mapping. In
Proceedings of the European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6 September 2019; pp. 1–6.

8. Park, Y.S.; Kim, J.; Kim, A. Radar localization and mapping for indoor disaster environments via multi-modal registration to prior
LiDAR Map. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
4–8 November 2019; pp. 1307–1314.

9. Cohen, M.N. An overview of high range resolution radar techniques. In Proceedings of the National Telesystems Conference
Proceedings, Atlanta, GA, USA, 26–27 March 1991; pp. 107–115.

10. Stove, A.G. Linear FMCW radar techniques. IEE Proc. F Radar Signal Process. 1992, 139, 343–350. [CrossRef]
11. MIMO Radar. Available online: Https://www.ti.com/lit/an/swra554a/swra554a.pdf (accessed on 1 March 2021).
12. Friedlander, B. Direction finding using an interpolated array. In Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, Albuquerque, NM, USA, 3–6 April 1990; pp. 2951–2954.
13. Kahrilas, P.J. Design of electronic scanning radar systems (ESRS). Proc. IEEE 1968, 56, 1763–1771. [CrossRef]
14. Patole, S.M.; Torlak, M.; Wang, D.; Ali, M. Automotive radars: A review of signal processing techniques. IEEE Signal Process. Mag.

2017, 34, 22–35. [CrossRef]
15. Zhang, P.; Xu, S.; Zhang, E. Velocity measurement research of moving object for mobile robot in dynamic environment. In

Proceedings of the 10th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou,
China, 25–26 August 2018; pp. 235–238.

16. Crouch, S. Velocity measurement in automotive sensing: How FMCW radar and lidar can work together. IEEE Potentials 2020, 39,
15–18. [CrossRef]

17. Jung, J.; Lee, S.; Lim, S.; Kim, S. Machine learning-based estimation for tilted mounting angle of automotive radar sensor.
IEEE Sens. J. 2020, 20, 2928–2937. [CrossRef]

18. Winkler, V. Range Doppler detection for automotive FMCW radars. In Proceedings of the 2007 European Microwave Conference,
Munich, Germany, 9–12 October 2007; pp. 1445–1448.

19. Moffet, A.T. Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 1968, AP-16, 172–175. [CrossRef]
20. Chen, C.-Y.; Vaidyanathan, P.P. Minimum redundancy MIMO radars. In Proceedings of the IEEE International Symposium on

Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 45–48.
21. Schmid, C.M.; Feger, R.; Pfeffer, C.; Stelzer, A. Motion compensation and efficient array design for TDMA FMCW MIMO radar

systems. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic,
26–30 March 2012; pp. 1746–1750.

22. Tuncer, T.E.; Yasar, T.K.; Friedlander, B. Direction of arrival estimation for nonuniform linear arrays by using array interpolation.
Radio Sci. 2007, 42, 1–11. [CrossRef]

23. Bartlett, M.S. Smoothing periodograms from time series with continuous Spectra. Nature 1948, 161, 686–687. [CrossRef]
24. Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [CrossRef]
25. Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [CrossRef]
26. Roy, R.; Kailath, T. ESPRIT—Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech

Signal Process. 1989, 37, 984–995. [CrossRef]
27. Gross, F.B. Smart Antennas for Wireless Communications with MATLAB, 2nd ed.; McGraw-Hill Professional: New York, NY,

USA, 2005.
28. Lee, H.-B. Efficient Parameter Estimation Methods for Automotive Radar Systems. Ph.D. Thesis, Department of Electrical and

Computer Engineering, College of Engineering, Seoul National University, Seoul, Korea, 2016.
29. Godara, L.C. Application of antenna arrays to mobile communications, Part II: Beam-forming and direction-of-arrival considera-

tions. Proc. IEEE 1997, 85, 1195–1245. [CrossRef]
30. Shahi, S.N.; Emadi, M.; Sadeghi, K. High resolution DOA estimation in fully coherent environments. Prog. Electromagn. Res. C

2008, 5, 135–148.

http://doi.org/10.1109/TRO.2018.2889577
http://dx.doi.org/10.1049/ip-f-2.1992.0048
Https://www.ti.com/lit/an/swra554a/swra554a.pdf
http://dx.doi.org/10.1109/PROC.1968.6748
http://dx.doi.org/10.1109/MSP.2016.2628914
http://dx.doi.org/10.1109/MPOT.2019.2935266
http://dx.doi.org/10.1109/JSEN.2019.2958417
http://dx.doi.org/10.1109/TAP.1968.1139138
http://dx.doi.org/10.1029/2007RS003641
http://dx.doi.org/10.1038/161686a0
http://dx.doi.org/10.1109/PROC.1969.7278
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1109/29.32276
http://dx.doi.org/10.1109/5.622504


Sensors 2021, 21, 2469 16 of 16

31. Lim, S.; Lee, S.; Kim, S.-C. Clustering of Detected Targets Using DBSCAN in Automotive Radar Systems. In Proceedings of the
2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018; pp. 1–7.

32. Lim, S.; Lee, S. Hough transform based ego-velocity estimation in automotive radar system. Electron. Lett. 2021, 57,
80–82. [CrossRef]

33. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004.

http://dx.doi.org/10.1049/ell2.12048

	Introduction
	Dual-Mode FMCW Radar Sensor
	Radar Signal Analysis
	Distance and Velocity Estimation Using FMCW Radar Signals
	Angle Estimation Using Multiple Antenna Elements
	Detection Results in Dual-Mode

	Indoor Environment Mapping Using Dual-Mode Radar Detection Results
	Conclusions
	References

