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Abstract
In this study, a target classification method based on point cloud data in a high‐resolution
radar sensor is proposed. By using multiple antenna elements arranged in horizontal and
vertical directions, pedestrians, cyclists and vehicles can be expressed as point cloud data
in the three‐dimensional (3D) space. To perform target classification using the spatial
characteristics (i.e. length, height and width) of the target, the 3D point cloud data is
orthogonally projected onto the xy, yz and zx planes, respectively, and three types of
images are generated. Then, a multi‐view convolutional neural network (CNN)‐based
target classifier using those three images as inputs is designed. To this end, a method for
synthesising the detection results of three directions in series or in parallel is proposed.
The proposed classifier can learn the spatial characteristics of the target by using the
detection results of multiple viewpoints. Compared to the CNN‐based classifier that uses
only the detection result of a single plane as input, the proposed method shows 4.5%p
higher classification accuracy in terms of the target with the lowest classification accuracy.
In addition, the proposed multi‐view CNN structure shows improved classification
performance and shorter training time compared to the well‐known deep learning
methods for image classification.

1 | INTRODUCTION

In general, the most widely used waveform in automotive
radar sensors is a frequency‐modulated continuous wave
(FMCW) [1]. In the FMCW radar system, the range resolu-
tion improves as the bandwidth used increases. Recently, as
the frequency bandwidth available for the automotive radar
sensor is widened, the range resolution is also improved. In
addition, a multiple‐input and multiple‐output (MIMO) an-
tenna system [2] has been adopted to ensure high
angular resolution in a physically limited size. Therefore,
unlike the conventional low‐resolution radar systems, high‐
resolution radar systems that can express a single target as
point cloud composed of several points have been developed
[3–6].

Accordingly, with the development of a high‐resolution
radar system, a target classification method differentiated
from a low‐resolution radar system is required. In the low‐

resolution radar system, the radar cross section [7] or
range‐Doppler characteristics of the target [8] were mainly
used for target classification. However, in recent years, some
studies have been conducted to detect targets and classify
them in point cloud‐based 77 GHz FMCW radar systems.
For example, the authors in ref. [9] trained a kernel support
vector machine by extracting several features from point
cloud data to identify pedestrians and vehicles. In addition, a
deep convolutional neural network (CNN) to classify multi-
ple motions of a single person in a 77 GHz FMCW radar
system was proposed in ref. [10], where the network was
trained with accumulated point cloud data. Also, in ref. [11],
the authors acquired point cloud data for several people
using automotive radar and proposed a deep learning
network to distinguish each person. Moreover, the authors of
ref. [12] proposed the target classification network using self‐
attention mechanisms for millimetre‐wave automotive radar
systems. They also classified targets on the road by extracting
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multidimensional feature vectors from the point cloud data
and training the machine learning‐based classifiers with those
vectors [13].

In this article, we propose an effective target classifica-
tion method for a high‐resolution MIMO FMCW radar
sensor. First, radar sensor data is acquired for representative
targets, such as pedestrians, cyclists, sedans and sport utility
vehicles (SUVs). The radar sensor we use has a range res-
olution of several centimetres. In addition, because the radar
sensor uses antenna elements arranged in horizontal and
vertical directions, the azimuth and elevation angles of the
target can be estimated. Thus, using the estimated distance
and angle information, the detected targets are expressed as
point cloud data in a three‐dimensional (3D) space.
From the overall shape of the point cloud data, we can
obtain information about the length, height and width of
the target.

To effectively acquire spatial characteristics of the target,
the point cloud data is orthogonally projected in three
different directions (i.e. xy, yz and zx planes), and the
detection results on three different planes are generated.
Then, we design a CNN‐based target classifier that uses three
images as input. To this end, a method for combining the
detection results of three directions in series or parallel is also
proposed. Because the target detection result in each direction
includes spatial information according to the type of the
target, target classification accuracy can be improved by using
the three images together. Finally, the classification accuracy
of the proposed multi‐view CNN‐based classifier is compared
with that of the classification method using only the detection
result of a single direction. Moreover, the classification per-
formance and training time of the proposed method are
compared with those of the well‐known deep learning‐based
image classifiers.

In summary, the main contributions of this study can be
summarised as follows:

� Radar sensor data is acquired for four types of targets (e.g.
pedestrians, cyclists, sedans and SUVs) from the high‐
resolution automotive radar sensor, and a point cloud‐
based target classification method is proposed.

� Unlike the conventional classification methods that use the
target detection result in a single direction, the proposed
method uses the detection results from multiple viewpoints
of the target.

� To generate input data for training a CNN‐based classifier,
we propose a method for synthesising radar detection re-
sults of three directions in series or parallel.

The remainder of the paper is organised as follows. In
Section 2, the fundamentals of target detection in the MIMO
FMCW radar system are explained. Then, we describe the radar
signal measurement environment and present the basic
detection results in Section 3. Next, in Section 4, the multi‐
view CNN‐based target classification is proposed and its
classification performance is also evaluated. Finally, we
conclude this paper in Section 5.

2 | TARGET DETECTION IN MIMO
FMCW RADAR SENSOR

2.1 | Distance and velocity estimation using
FMCW radar signal

The FMCW radar sensors are widely used in automotive radar
systems, because they can estimate the distance to the target
and the velocity of the target at the same time [14]. As shown
in Figure 1, Nq chirps whose frequency increase linearly with
time are sequentially transmitted in our FMCW radar system.
In the figure, fc, Δf and Δt represent the centre frequency, the
operating bandwidth and the chirp duration of each chirp
respectively. In addition, Tf represents the entire transmission
period, and we define it as one frame.

If we assume that the transmitted FMCW radar signal is
reflected from the kth target moving at a relative velocity of vk
at a distance of Rk, the received radar signal includes a time
delay due to Rk between the radar and the kth target and a
Doppler shift due to vk between the radar and the kth target.
Also, the Doppler shift can be expressed as fd, k = 2vk fc/c,
where c is the speed of light. Then, the received FMCW radar
signal is down‐converted to a baseband signal after passing
through a frequency mixer and a low‐pass filter (LPF). Finally,
the baseband signal sampled at the analog‐to‐digital converter
(ADC) can be expressed as

b½ p; q� ¼
PNk

k¼1
Akexp

�

j2π
�
2RkΔ f
cΔt f s

p

þ
2vk fcΔt

c
qþ

2Rk fc
c

��

;

ð1Þ

where Nk denotes the total number of targets and Ak de-
notes the amplitude of the baseband signal corresponding to
the kth target. In Equation (1), p (p = 1, 2, …, Np) is the
index for time samples in each chirp and q (q = 1, 2, …, Nq)
is the index for each chirp. In addition, fs represents the
sampling frequency and is the reciprocal of the sampling
period Ts. A block diagram for the FMCW radar system is
shown in Figure 2. The system consists of the waveform
generator, voltage‐controlled oscillator (VCO), amplifiers,
transmit and receiving antenna elements (Tx and Rx),

F I GURE 1 Signal transmitted from the frequency‐modulated
continuous wave (FMCW) radar system
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frequency mixers, phase shifter, LPF, ADC and digital signal
processor (DSP).

The time‐sampled baseband signal of Equation (1) can be
expressed in the form of a two‐dimensional (2D) matrix,
which is shown in Figure 3a. Then, the distance and the
relative velocity to the target can be estimated by applying the
Fourier transform in the direction of the sampling axis (i.e.
p‐axis) and in the direction of the chirp axis (i.e. q‐axis),
respectively, as shown in Figure 3. In summary, if the 2D
Fourier transform is applied to Equation (1), the distance and
velocity information of multiple targets can be extracted at
once [15]. The 2D Fourier transform result of Equation (1)
can be expressed as

B½r; s� ¼
1

NpNq

XNp

p¼1

XNq

q¼1
b½p; q�

� exp
�

− j2π
�
pr
Np
þ
qs
Nq

��

:

ð2Þ

2.2 | Angle estimation using MIMO antenna
system

2.2.1 | Data cube generation for angle estimation

To estimate the angle information of targets, the MIMO an-
tenna system consisting of multiple transmit and receiving
antenna elements can be used. If we assume that the azimuth
and elevation angles between the centre of the antenna and the
kth target are θk and ϕk, respectively, Equation (1) can be
expanded as

b½p; q; u; v� ¼
XK

k¼1

αkexp
�

j2π
�
2RkΔf
cΔtf s

pþ
2vk fcΔt

c
q

þ
f cdt; asin θk

c
ðu − 1Þ þ

f cdr; asin θk
c

ðv − 1Þ

þ
fcdt; esin ϕk

c
ðu − 1Þ þ

f cdr; esin ϕk

c
ðv − 1Þ

þ
2Rk fc
c

��

;

ð3Þ

where dt, a and dt, e are distances between transmit antenna
elements arranged in azimuth and elevation directions
respectively. Similarly, dr, a and dr, e are distances between
receiving antenna elements arranged in azimuth and elevation
directions. In addition, u (u = 1, 2, …, NT) is the index of the
transmit antenna element and v (v = 1, 2, …, NR) is the index
of the receiving antenna element respectively.

For example, in the MIMO antenna system where the
number of transmit antenna elements is NT and the number of
receiving antenna elements is NR, the number of receiving
channels can be virtually increased to a maximum of NT � NR
[2]. In general, because angular resolution is proportional to
the number of receiving channels [16], high angular resolution
can be achieved with a limited device size by using the MIMO
antenna system. When a total of NT � NR receiving channels
are generated, a total of NT � NR 2D Fourier transform re-
sults of Equation (2) are generated. In other words, a data cube
of Np � Nq � (NT � NR) is created, which is shown in
Figure 4.

2.2.2 | Angle estimation using digital
beamforming

First, to estimate the azimuth angle of the target, receiving
channels arranged in the azimuth direction are selected from
among all virtual receiving channels. If we assume that the
number of channels in the azimuth direction is NA, a data cube
of size Np � Nq � NA is generated as shown in Figure 5a.
Then, if indices corresponding to the kth target in the 2D
Fourier transform result of each channel are rk and sk,
respectively, a total of NA sampled values can be taken as

F I GURE 3 Distance and velocity estimation: (a) applying the Fourier
transform in the direction of the sampling axis and then (b) in the direction
of the chirp axis

F I GURE 2 Block diagram of the multiple‐input and multiple‐output
(MIMO) frequency‐modulated continuous wave (FMCW) radar system
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shown in Figure 5b. Thus, the signal vector composed of
values sampled in NA channels can be expressed

BA ¼

2

6
6
4

B1½rk; sk �
B2½rk; sk�

⋮
BNA½rk; sk�

3

7
7
5: ð4Þ

Based on the signal vector of Equation (4), we use the
conventional beamformer (i.e. Bartlett method [17]) for
angle estimation, which is one of the digital beamforming
techniques. To this end, we generate a correlation matrix using
the extracted signal vector of Equation (4), which can be
expressed as

RA ¼
1
NA

BABH
A : ð5Þ

In Equation (5), the symbol (⋅)H denotes the Hermitian
operator, so RA becomes a square matrix of size NA � NA.
Then, the normalised pseudospectrum of the conventional
beamformer can be expressed as

PAðθÞ ¼
aHA ðθÞRAaAðθÞ

max
�
aHA ðθÞRAaAðθÞ

�; ð6Þ

where aA(θ) is the steering vector considering the distance
between the receiving channels in the azimuth direction.
Finally, the azimuth angle of the target is determined by θ that
maximises the value of the normalised pseudospectrum.

The process of estimating the elevation angle ϕk is similar
to that of estimating the azimuth angle θk. The difference from
the angle estimation in the azimuth direction is that NE
receiving channels are selected in the elevation direction. In
addition, the distance between receiving channels considered in
the steering vector aE(ϕ) is changed.

3 | ACQUISITION AND PROCESSING
OF RADAR SENSOR DATA

3.1 | Measurement scenarios for acquiring
radar sensor data

In our experiment, we used a radar sensor made by bitsensing
Inc. (i.e. 79 GHz AIR 4D) [18], which is shown in Figure 6.
This radar is a high‐resolution imaging radar equipped with
multi‐chip cascading technology. A camera is also mounted on
the radar, which can store images of the measurement envi-
ronment. The detailed specifications of the radar sensor we
used are summarised in Table 1. As shown in the table, the
radar sensor uses 79 GHz as the centre frequency and
1.5 GHz as the bandwidth. In addition, the number of
transmit antenna elements and the number of receiving an-
tenna elements are 12 and 16, respectively. Because the an-
tenna elements are placed in the horizontal and vertical
directions, we can estimate the azimuth and elevation angles of
the target. Then, the total number of chirps is 32 and 1024
time samples are obtained from each chirp. Also, the signal
transmission period defined as one frame is 100 ms. The
resolutions for range, azimuth angle and elevation angles are
10 cm, 2° and 5° respectively.

With the radar sensor, we acquired radar sensor data for
various types of targets. The measurement subjects were
selected as pedestrians, cyclists, sedans and SUVs, which are
commonly seen while driving on the road. In addition, even
within one target type, the measurements conducted several
times while changing the subjects. The length, height and width
information for the targets we measured is presented in
Table 2. In addition, because the radar sensor is mounted on
the bumper of the vehicle, the radar was installed at a height of
60 cm from the ground, as shown in Figure 7. Then, mea-
surements were made at a total of 14 points, and the angle and
distance between the radar and the target were different at each
measurement point, as shown in Figure 8.

F I GURE 4 Generated data cube in the multiple‐input and multiple‐
output (MIMO) frequency‐modulated continuous wave (FMCW) radar
system

F I GURE 5 Receiving channel selection for azimuth angle estimation
in the data cube
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3.2 | Target detection results in 3D space

By applying the radar signal processing technique described in
Section 2 to the acquired radar sensor data, we can find out the
distance to the target and the azimuth and elevation angles of
the target, as shown in Figure 9. In general, because the dis-
tance estimated by the radar is the distance in the radial di-
rection, the target information can be converted into (x, y, z)
coordinates in the 3D space as follows:

xk ¼ Rksin θkcos ϕk;

yk ¼ Rkcos θkcos ϕk; and
zk ¼ Rksin ϕk:

ð7Þ

For example, Figure 10 shows the detection result of
processing the radar sensor data acquired 5 m behind the
pedestrian. In Figure 10b, the points in the red box correspond
to the points detected at the actual pedestrian location. In the
FMCW radar system, the range resolution is determined as c

2Δf

[19], so it becomes 10 cm in our radar system. Thus, the
pedestrian is detected as a point cloud composed of several
points, as shown in the figure. The approximate shape and size
of the pedestrian can be obtained from the point cloud data.

4 | PROPOSED TARGET
CLASSIFICATION METHOD

4.1 | Multi‐view CNN‐based target classifier

4.1.1 | Preprocessing for input data generation

As mentioned in the previous section, the target information
(i.e. Rk, θk and ϕk) was converted into points in a 3D xyz
coordinate system. In general, because the CNN‐based clas-
sifier uses an image as input, a process of making 3D point
cloud data in the form of images is required. Therefore, we

F I GURE 6 High‐resolution radar sensor used in our experiment

TABLE 1 Specifications of the radar sensor

Parameter Value

Centre frequency, fc 79 GHz

Bandwidth, Δf 1500 MHz

The number of chirps, Nc 32

The number of time samples in each chirp, Ns 1024

The number of transmit antenna elements, Nt 12

The number of receiving antenna elements, Nr 16

Frame time, Tf 100 ms

Range resolution, ΔR 10 cm

Azimuth angle resolution, Δθ 2°

Elevation angle resolution, Δϕ 5°

TABLE 2 Length, height and width information for each target class

Class Length (mm) Height (mm) Width (mm)

Pedestrian 280–540 1680–1830 575–645

Cyclist 1680–1760 1750–1900 500–580

Sedan 4588–4995 1470–1485 1860–1870

SUV 4410–4750 1020–1715 1830–1930

F I GURE 7 Mounting location of the radar sensor

F I GURE 8 Measurement environment
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describe a method for converting the point cloud data into
images suitable for training our classifier.

The first step is to extract only the point cloud data cor-
responding to the desired target from the entire detection
result. As shown in Figure 10, because signals reflected from
surrounding objects and radar clutter are also detected, a
process of cropping only detected points corresponding to the
target is required. In this process, images received from the

camera mounted on the radar sensor, which is shown in
Figure 6, were used as references. Based on this information, a
virtual cuboid is created where the target exists, and only the
point cloud data within the area is extracted. Then, all points
outside the cube are considered clutter and are removed.
Therefore, in consideration of the spatial size of pedestrians,
cyclists and vehicles, only points corresponding to the desired
target are extracted. Figure 11 shows examples of cropped
point cloud data for pedestrians, cyclists, sedans and SUVs. As
shown in the figure, unnecessary detected points are removed,
and only information corresponding to the desired target
remains.

Then, in the second step, the cropped point cloud data is
orthogonally projected onto xy, yz and zx planes, as shown in
Figure 12. Through this process, three radar detection results
are obtained as if the target is viewed from the rear, side and
top respectively. In other words, by looking at the target from
various viewpoints, we can find out the spatial characteristics
of the target. Unlike the conventional target classification
methods that use the target detection result in one direction,
we use the detection results in three directions for a single
target.

The final step is to change the colour type of the image and
resize it to improve the training efficiency. First, to increase the
training speed, the size of the detection result for each target
type is unified to 300 � 300. In addition, images are usually
represented as 3D data in red, green and blue (RGB) format.
However, in the radar system, because information about the
shape of the target is more important than colour information,
we change the detection result to grey type to improve the
training speed in the CNN. Even if the colour type is changed,
the spatial characteristics of the target do not change. In
addition, the training speed is improved because the size of the
training data is reduced from 3D to 1D (i.e. only black infor-
mation remains in RGB format). Through these three steps,
the point cloud data generated from the radar sensor data is
transformed into images that can be used for training the
CNN‐based classifier. Figure 13 is a flowchart summarising the
step‐by‐step process of generating input images.

4.1.2 | Structure of proposed multi‐view CNN‐
based classifier

Through the process described in Section 4.1.1, the point
cloud data was converted into three images as if the target is
viewed from three directions. Now, we describe the configu-
ration of the data set for training the proposed classifier. In the
process of training the classifier, 60%, 20% and 20% of the
entire image data set are used as the training, validation and test
data sets respectively. In other words, according to the above
ratio, a total of 16,595 image data sets are divided into 9957,
3319 and 3319 images, respectively, as given in Table 3. In
addition, 9957 images in the training data set consists of 2401
images of pedestrians, 1655 images of cyclists, 3019 images of
sedans and 2882 images of SUVs. Moreover, both validation
and test data sets have 3319 images, each consisting of 800

F I GURE 9 Target detection result expressed in xyz coordinate system

F I GURE 1 0 (a) Photograph of the experimental environment and
(b) the target detection result in xyz coordinate system
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images of pedestrians, 552 images of cyclists, 1006 images of
sedans and 961 images of SUVs.

First, we designed a CNN structure that is trained using
three images in parallel, which is shown in Figure 14. The
proposed parallel‐input CNN structure is a method for
classifying target types by extracting target features from
multiple viewpoints. As shown in the figure, the proposed
structure consists of convolutional layers, normalisation
layers, rectified linear unit (ReLU) layers, pooling layers and a

fully connected layer. The proposed parallel‐input CNN
structure classifies target detection images from three aspects
into one of four target types (i.e. a pedestrian, a cyclist, a
sedan or a SUV) through convolution operation. To deter-
mine the structure of the CNN‐based classifier, the perfor-
mance was evaluated while changing the number of hidden
layers from 1 to 5. Each hidden layer consists of a con-
volutional layer, a batch normalisation layer, a ReLU layer
and a max‐pooling layer. In the training, the learning rate,

F I GURE 1 1 Cropped point cloud data: (a) for pedestrians, (b) cyclists, (c) sedans and (d) SUVs
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which affects the accuracy and speed of training, was set to
0.001. In addition, we set the number of epochs to 6, where
1 epoch means the entire data set is used once for training.
If the number of epochs is too small, underfitting occurs,
and if the number of epochs is too large, overfitting occurs.
Moreover, the process of shuffling the data was performed
every epoch. Through the process of randomly selecting and

mixing data sets, the performance of the training model is
accurately evaluated and overfitting is prevented.

Table 4 shows the average classification accuracy and
training time according to the number of hidden layers. The
training time was computed based on the AMD Ryzen 5 5600
CPU, GeForce RTX 2060 GPU and Samsung 16 GB RAM. As
given in the table, the highest classification accuracy was

F I GURE 1 2 (a) Point cloud data for a pedestrian: (b) projection onto xy plane, (c) yz plane and (d) zx plane

F I GURE 1 3 Flowchart for input data generation

TABLE 3 Configuration of the data set
Training data (60%) Total data set (100%) validation data (20%) Test data (20%)

2401 images of pedestrians 800 images of pedestrians 800 images of pedestrians

1655 images of cyclists 552 images of cyclists 552 images of cyclists

3019 images of sedans 1006 images of sedans 1006 images of sedans

2882 images of SUVs 961 images of SUVs 961 images of SUVs
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achieved when three hidden layers were used. When there are
more than three or more hidden layers, the training time in-
creases slightly, but the classification accuracy does not increase
significantly. Therefore, we decided to use a total of three
hidden layers in our classifier.

In addition, we also designed a CNN classifier that takes
three images in series, as shown in Figure 15. The serial‐input
CNN structure uses target detection images on the xy, yz and
zx planes as 3D data, similar to the method using RGB format
3D data in general image classification. In summary, the main
difference between serial‐input CNN and parallel‐input CNN
structures is the way the three images for training are combined.
In the serial‐input CNNstructure, three input images aremerged
and then training is performed, whereas in the parallel‐input
CNN structure, training is performed on each input image and
then the training results aremerged in the step just before the last
fully connected layer. To evaluate only the difference in classi-
fication performance due to structural differences, the values of
all variables related to network training were set identically in
both serial‐input and parallel‐input CNN structures.

4.2 | Performance evaluation

First, we evaluated the classification performance of the
parallel‐input CNN structure. As shown in Figure 14, input

images are classified into one of four types by the pro-
posed parallel‐input CNN structure. Table 5 shows the
confusion matrix for the parallel‐input CNN structure. The
proposed structure classified four types of targets with an
average classification accuracy of 99.13% or higher (As
given in Table 3, because a different number of input
images were used for each target type, the average classi-
fication accuracy is slightly different from calculating the
average of the components on the diagonal of the confu-
sion matrix.). As shown in the table, the classification ac-
curacy for cyclists was relatively low compared to the
classification accuracies for pedestrians, sedans, and SUVs.
Because the spatial size of cyclists is similar to that of
pedestrians rather than that of vehicles, cyclists tend to be
classified as pedestrians. In addition, Table 6 shows the
confusion matrix for the serial‐input CNN structure and
the four types of targets were classified with an average
accuracy of 99.16% or more. Similar to the case of the
parallel‐input CNN structure, the class with the lowest
classification accuracy in the serial‐input CNN structure was
the cyclist, which was 97.60%. As mentioned before, cy-
clists tend to be classified as pedestrians in both structures
because of their spatial size.

Finally, the classification performance of the proposed
method was compared with the performance when only one of
the xy, yz and zx plane target detection results was used. In

F I GURE 1 4 Proposed convolutional neural network (CNN) structure that is trained using three images in parallel

TABLE 4 Average classification
accuracy and training time according to the
number of hidden layers

The number of hidden layers 1 2 3 4 5

Average classification accuracy 98.92% 99.07% 99.55% 99.14% 98.70%

Average training time 5 m 40 s 5 m 48 s 8 m 18 s 9 m 58 s 12 m 53 s
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other words, except for the part that synthesises the input data
in Figure 15, a classifier with the same structure was trained
using only a single plane image. Table 7 summarises the time
required for training, the classification accuracies for the
training and test sets, and the class with the lowest classifica-
tion accuracy.

When comparing the proposed parallel‐input and serial‐
input CNN structures, the former takes much more time to

train than the latter. This is because training is performed on
each input image and then merged in the step just before the
last fully connected layer in the parallel‐input CNN structure.
For the training data set, the average classification accuracy was
99.13% for the parallel‐input CNN structure and it was
99.16% for the serial‐input CNN structure. In addition, the
average classification accuracy for the test data set was 99.30%
for the parallel‐input CNN structure and it was 98.92% for the
serial‐input CNN structure.

When training was performed with only one detection
result in the xy, yz and zx planes, the training time was
reduced by 60% compared to the proposed method of
merging three detection results. However, the average clas-
sification accuracies for the training and test sets were low-
ered. The proposed parallel‐input and serial‐input CNN
structures use all three spatial characteristics of length, height
and width when classifying the target. However, only two of
these characteristics are used when classifying the target us-
ing only the detection result in a single plane. For example,
because cyclists and pedestrians have similar heights and
widths, length information is required to increase classifica-
tion accuracy. However, when only the detection result in the
zx‐plane is used, there is no information in the y‐axis di-
rection indicating the length characteristic. Thus, cyclists are
misclassified as pedestrians and vice versa. Also, the advan-
tage of using all three detection results is shown in the class
with the lowest classification accuracy. As shown in the table,
the class with the lowest classification accuracy in the pro-
posed method is over 97.6%. However, when only the
detection result of a single plane is used, the classification
accuracy drops to 93.1% on average, which is 4.5%p lower

F I GURE 1 5 Proposed convolutional neural network (CNN) structure that is trained using three images in series

TABLE 5 Confusion matrix in the parallel‐input convolutional neural
network (CNN) structure

Actual class

Estimated class

Pedestrian Cyclist Sedan SUV

Pedestrian 98.18% 1.82% 0% 0%

Cyclist 2.21% 97.61% 0.18% 0%

Sedan 0% 0% 99.90% 0.10%

SUV 0% 0% 0% 100.00%

TABLE 6 Confusion matrix in the serial‐input convolutional neural
network (CNN) structure

Actual class

Estimated class

Pedestrian Cyclist Sedan SUV

Pedestrian 98.45% 1.55% 0% 0%

Cyclist 2.40% 97.60% 0% 0%

Sedan 0.10% 0% 99.80% 0.10%

SUV 0% 0% 0.10% 99.90%
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than the accuracy of the proposed method. In all methods,
the time taken to classify a new input image was approxi-
mately the same.

Finally, with the same point cloud data set, we compared
the classification performance with the well‐known deep
learning techniques, such as the GoogLeNet [20], ResNet
[21], SqueezeNet [22] and PointNet [23]. First, we compared
the classification performance with the GoogLeNet, ResNet
and SqueezeNet, which are widely used for image classifi-
cation. The time required for training, the classification ac-
curacies for the training and test sets and the class with the
lowest classification accuracy are given in Table 8. Among
the three CNN‐based structures, the ResNet showed the
highest classification accuracy of 99.70%. However,
compared to the proposed serial‐input CNN structure, the
training time increased by 445%. Therefore, although the two
methods are similar in terms of classification performance,
our proposed method is much more efficient in terms of
training time. Moreover, the confusion matrix when the
PointNet was applied is given in Table 9. As shown in the
table, the average classification accuracy was 89.33%, which
was 9.8%p lower than that of the proposed method. In
particular, the classification accuracy for cyclist was the
lowest at 82.37%. In general, a large number of points are
required for the PointNet to accurately classify a target. If
the range and angle resolution of the radar system is further
improved, the classification performance of the PointNet is
expected to improve.

5 | CONCLUSION

In this paper, we proposed the multi‐view CNN‐based target
classification method for the high‐resolution automotive radar
system. First, we processed the sensor data acquired from the
MIMO FMCW radar sensor and obtained point cloud data for
four types of targets (i.e. pedestrians, cyclists, sedans and
SUVs). To find the spatial characteristics of the target, the
point cloud data in the 3D space was orthogonally projected
onto the xy, yz and zx planes. Then, the CNN‐based classifiers
that synthesise three images in series and parallel were pro-
posed. Finally, the classification performance and training time
of the proposed CNN structures were evaluated. The pro-
posed classification method showed 4.5%p higher average
classification accuracy than the classifier using the detection
result of one plane in terms of the target with the lowest
classification accuracy. In addition, the proposed method
showed better classification performance than the well‐known
deep learning‐based image classification algorithms and was
more efficient in terms of training time.
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TABLE 7 Performance comparison with convolutional neural network (CNN) structures using a single input

Input data xy plane yz plane zx plane Images merged in parallel Images merged in serial

Time required for training 2 m 5 s 2 m 25 s 2 m 7 s 7 m 16 s 4 m 20 s

Classification accuracy for training set 97.8% 97.95% 96.11% 99.13% 99.16%

Classification accuracy for test set 98.00% 98.80% 96.20% 99.30% 98.92%

Class with the lowest classification accuracy 94.63 (pedestrian) 95.03 (cyclist) 89.7% (cyclist) 97.61% (cyclist) 97.60% (cyclist)

TABLE 8 Performance comparison
with GoogLeNet [20], ResNet [21] and
SqueezeNet [22]

Classifier GoogLeNet [20] ResNet [21] SqueezeNet [22]

Time required for training 35 m 3 s 19 m 18 s 10 m 17 s

Classification accuracy for training set 98.82% 99.70% 95.51%

Classification accuracy for test set 99.1% 99.5% 95.1%

Class with the lowest classification accuracy 96.34% (cyclist) 98.89% (cyclist) 87.7% (cyclist)

TABLE 9 Confusion matrix in the PointNet [23]

Actual class

Estimated class

Pedestrian Cyclist Sedan SUV

Pedestrian 84.76% 14.21% 0.69% 0.34%

Cyclist 16.43% 82.37% 1.20% 0%

Sedan 0.38% 4.59% 94.78% 0.25%

SUV 0.31% 2.54% 1.73% 95.42%
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