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ABSTRACT In this paper, we propose an enhanced direction-of-arrival (DOA) estimation method using
linearly predicted array expansion to improve the angular resolution for automotive radar systems with a
small number of antenna elements. The proposed method extracts the linear relation among signals received
in the array antenna and uses it to generate extrapolated signals outside the array antenna. Finally, we apply
the DOA estimation methods, such as the Bartlett and multiple signal classification algorithms, to both the
original and extrapolated signals, and verify its performance through simulations and field experiments.
From the simulation results, in terms of root-mean-square error and resolution probability, we observed that
the proposedmethod had a higher angular resolution and estimation accuracy than conventional interpolation
and extrapolation methods. Moreover, with the experiment results, we verified that the proposed array
expansion method can be suitably applied to commercial automotive radar systems.

INDEX TERMS Array extrapolation, automotive radars, DOA estimation.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation algorithms such as
the Bartlett algorithm [1] or multiple signal classification
(MUSIC) [2] are being employed in automotive radar sys-
tems to obtain the angular locations of detected targets.
However, when multipath is generated in a variety of ways
and coherent sources are present, the target position is not
correctly detected. To solve this problem, many algorithms
for estimating the DOA of the target using spatial smoothing
have been proposed [3]–[5].

In general, when estimating the DOA of a target with the
array antenna system, narrow main beamwidth and low side
lobes are required to achieve fine angular resolution [6], [7].
When the main beamwidth is wide, the targets simultane-
ously located within the beamwidth cannot be distinguished.
To obtain a narrow main beam, the number of antenna
elements in the array must be increased, which increases
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the production costs. Thus, signal processing techniques are
needed to improve the DOA estimation performance without
increasing the number of actual antenna elements.

For instance, various studies have been conducted to
enhance the angular resolution of array antenna system
with a small number of antenna elements [8]–[15]. Specifi-
cally, methods to increase the number of antenna elements
using array interpolation have been proposed in [8]–[13].
Most interpolation techniques assume that coherent sources
exist. Therefore, interpolation was performed to convert non-
uniform linear array (NLA) to uniform linear array (ULA)
and to apply the spatial smoothing technique [8], [10]. These
methods require the setup of an observation interval, called
a sector, before estimating the DOA. In other words, such
methods can be applied only when the angular location of
the target is approximately known. If the sector is set incor-
rectly and the target to be found is located outside the sector,
the target cannot be detected properly. Thus, the sector should
be set wide at first because it does not know the location of
the targets. Subsequently, since the angles of the targets are
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estimated while gradually narrowing the sector with respect
to the region where the targets exist, the calculation com-
plexity is increased by the number of times the sector is set.
Moreover, array extrapolation has been proposed to enhance
the angular resolution in [14] and [15]. However, the methods
in [14] and [15] require updating the transformation vector
whenever the signals are extrapolated. Thus, a more efficient
and concise method has to be proposed. Furthermore, a limit
to improving the angular resolution exists because the number
of extrapolated antenna elements can only be increased to
twice that of the physical antenna elements.

In this paper, we propose a linearly predicted array expan-
sion method to enhance both the angular resolution and esti-
mation accuracy of the DOA estimation algorithm. In our
proposed method, we extract the transformation vector that
represents the linear relation among received signals and
generate extrapolated elements outside the physical array
antenna elements. Moreover, the proposed array expansion
method consists of forward and backward array expansion,
which generates elements to the left and right sides of the
array antenna. When using both the original and extrapolated
signals, the angular locations of targets can be estimated
with a higher angular resolution. The performance of our
proposed method is evaluated through simulations and actual
experimental results using a commercial automotive radar
sensor to verify its applicability. In terms of the root-mean-
square error (RMSE) and resolution probability, we found
that the proposed method showed higher angular resolu-
tion and estimation accuracy compared to the conventional
methods.

In addition to extending the antenna by extrapolation or
interpolation, many methods have been proposed to achieve
finer angular estimation performance using a small num-
ber of antennas. For example, there are minimum redun-
dancy array [16], [17], nested array [18], [19], and co-prime
array [20], [21]. They have the advantage of being able to
detect more targets than the number of antennas, with limited
antenna aperture size and number of antennas by maximizing
degree of freedom. However, if the antennas are expanded
using the proposed method, we can have better angular reso-
lution than those using the conventional optimal NLA.

In [11], a disadvantage occurs in that it is necessary
to newly acquire the position of an appropriate expanded
antenna elements according to the positions of the targets
to obtain a good angle estimation performance. However,
in our proposed method, a uniform linear array antenna is
used to generate the expanded antenna elements. Since ULA
is used, there is an advantage that it is robust against mul-
tipath as compared with NLA-based techniques [22], [23].
Furthermore, the advantage of our method is that the posi-
tions of expanded antenna elements need not be calculated
at that time. In addition, unlike the methods in [8]–[13], our
method can estimate the position of targets at once without
having to set the sector, such that the target position can
be detected with little calculation irrespective of the target
location. In [14], [15], the transformation vector is obtained

using the covariance matrix of the received signal. With
this method, the number of expanded antennas can only be
generated as twice as many as the actual number of anten-
nas. If the number of extrapolated antenna elements exceeds
twice the number of physical antenna elements, the additional
extrapolated received signals are generated using only the
extrapolated signals. When the conventional extrapolation
generates the extrapolated signals, the extrapolated signal val-
ues are inaccurate because the errors continue to be reflected.
In this paper, since the expanded antenna elements are gen-
erated using the linear least-squares method, it is possible to
generate more accurate expanded antenna elements than the
conventional method by minimizing the error of the received
signal. As a result, our method can obtain better angular res-
olution and angle estimation accuracy than the conventional
method.

The rest of this paper is organized as follows. First, a signal
model for a ULA antenna and the basic DOA estimation
algorithm are presented in Section 2. In Section 3, our pro-
posed DOA estimation method using linearly predicted array
expansion is presented. Furthermore, simulation results using
the proposed method and conventional methods are analyzed
in Section 4, and the performance of the proposed method is
also examined with the actual measurement data in Section 5.
Finally, we conclude this paper in Section 6.

II. DOA ESTIMATION IN ARRAY ANTENNA SYSTEM
A. SIGNAL MODEL FOR ULA ANTENNA
We assume a single-input multiple-output antenna system,
which is composed of one transmitting antenna and N identi-
cal receiving antenna elements with uniform spacing d . If the
transmitted signal is reflected from L targets, the received
signal vector can be expressed as

x(k) = As(k)+ n(k)

= [x1(k), x2(k), · · · , xN (k)]T , (1)

where k indicates the time index for the sampled signals
and [·]T denotes the transpose operator. In addition, A =
[a(θ1), a(θ2), · · · , a(θL)] is a steering matrix composed of
steering vectors. The steering vector is given by

a(θl) = [ej
2π
λ
d1 sin θl , ej

2π
λ
d2 sin θl , · · · , ej

2π
λ
dN sin θl ]T

(l = 1, 2, · · · , L), (2)

where λ is the wavelength of the transmitted signal, di (i =
1, 2, · · · , N ) denotes the distance from the first antenna
to the i-th antenna element (i.e., di = (i − 1)d). θl
denotes the angle of the l-th target, which is defined
as the angle from the boresight direction of the array
antenna. Moreover, s(k) = [s1(k), s2(k), · · · , sL(k)]T and
n(k) = [n1(k), n2(k), · · · , nN (k)]T denote the incident
signal and the zero-mean white Gaussian noise vectors,
respectively. Here, we assume that the incident signal and
noise components are uncorrelated and the power of n(k)
is E[n(k)nH (k)] = σ 2

n I, where E[·] and (·)H denote the
expectation and conjugate transpose operators, respectively.
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B. BARTLETT ALGORITHM
In this paper, we evaluate the performance of the proposed
array expansion method mainly using the Bartlett DOA esti-
mation algorithm. In the Bartlett algorithm, the weight vec-
tor w∗ that maximizes the output signal power of the array
antenna has to be determined [24] as

w∗ = argmax
w

E
[∣∣∣wHx(k)

∣∣∣2]
= argmax

w

{
E
[
|s(k)|2

] ∣∣∣wHa(θ )
∣∣∣2+σ 2

n ‖w‖
2
2

}
, (3)

where |·| denotes the absolute value and ‖·‖2 denotes the l2-
norm. This assumes that the power of the weighted noise
component is constant, i.e., ‖w‖22 has to be set as unity. Thus,
the optimal solution of (3) is given by

w∗ =
a(θ )√

aH (θ )a(θ )
, (4)

and the power of the weighted output can be expressed as

P(θ ) = E
[∣∣∣w∗Hx(k)∣∣∣2]

=
aH (θ )Rxxa(θ )
aH (θ )a(θ )

, (5)

where Rxx = E[x(k)xH (k)] is the autocorrelation matrix of
the received signal vector given by (1). Because power P(θ )
has the highest value at the angle where the target is located,
the angle of the target can be estimated by searching θ [24].
In practice, the exact statistics for s(k) and n(k) are

unknown. If processes s(k) and n(k) are considered as
ergodic, the ensemble average can be replaced by the time
average. Thus, we can estimate Rxx using time-averaged
autocorrelation matrix as

R̂xx =
1
K

K∑
k=1

x(k)xH (k), (6)

where K is the number of time samples used to calculate the
matrix. The number of time samples is related to the range
resolution of the radar system.

III. PROPOSED LINEARLY PREDICTED ARRAY
EXPANSION
In this section, an advanced DOA estimation method is pro-
posed to enhance the angular resolution of the Bartlett algo-
rithm. The method extracts the linear relation among received
signals, and the extrapolated signals are generated outside
the regions covered by the actual array antenna. However,
because the proposed method is based on the linearity of the
phase of the received signals in uniform linear array system,
it is not applicable to nonuniform linear arrays. The extrapola-
tion includes forward and backward linearly predicted array
expansions. Then, using both the original and extrapolated
signals, we estimate the angle of the target.

FIGURE 1. Linearly predicted expansion (a) forward (b) backward.

A. FORWARD LINEARLY PREDICTED ARRAY EXPANSION
In the forward linearly predicted array expansion, we extrap-
olate the received signal beyond the N -th antenna element,
as illustrated in Fig. 1(a). To generate the signal at the (N+1)-
th antenna element located at distance Nd to the right of
the first antenna element, the linear relation among the N
received signals is extracted. If the K time-sampled received
signal vector at the i-th antenna element is expressed as

xi = [xi(1), xi(2), · · · , xi(K )]T (i = 1, 2, · · · , N ). (7)

Since the uniform linear array is used, linearity exists between
the phases of the received signals. Thus, xN can be expressed
as a linear combination of x1, x2, · · · , xN−1:

xN ≈ [x1, x2, · · · , xN−1] · uf = Xf uf = x̃N . (8)

Here, uf is the vector composed of coefficients for the linear
combination and Xf = [x1, x2, · · · , xN−1]. To find the
coefficient vector, we solve the least squares problem which
is defined as

u∗f = argmin
uf

∥∥xN − x̃N
∥∥2
2, (9)

which is the process of minimizing the error between the
actual received signal and the predicted received signal. In
(9), to obtain u∗f , which minimizes the norm of the difference
between xN and x̃N , we use the method of linear least squares
(LLS) [25]. SinceXf is not a squarematrix, there is no inverse
matrix. Thus, u∗f is calculated as

u∗f = XH
f (XfXH

f )
−1xN . (10)

Using this transformation vector that is extracted from the
original received signals, the forward linearly predicted array
expansion can be conducted to extrapolate signals to the right
side of the array. The transformation vector can be generated
in the same way even when the number of targets is plural
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Assuming that the antenna element is located outside and
to the right of the original array antenna, its corresponding
signal can be generated using transformation vector u∗f and
received signals x2, x3, · · · , xN . In general, when assuming
the (N + p)-th (p ≥ 1) antenna element is located outside
and to the right of the original array antenna, its signal can be
sequentially generated as

x̂N+p = Y(p)
f u∗f , (11)

where

Y(p)
f =



[x2, x3, · · · , xN ]
for p = 1
[x3, x4, · · · , xN , x̂N+1]
for p = 2
[xp+1, · · · , xN , x̂N+1, · · · , x̂N+p−1]
for 3 ≤ p < N − 1
[xN , x̂N+1, · · · , x̂N+p−1]
for p = N − 1
[x̂p+1, x̂p+2, · · · , x̂N+p−1]
for p ≥ N

.

(12)

Once u∗f is calculated for K time-sampled received signal
vector, it can be repeatedly used to generate extrapolated
signals.Within a snapshot, the linearity between the phases of
the received signals are preserved, so the same transformation
vector can be used to generate the expanded signals. Since
the transformation vector with the smallest error is obtained
using the linear least squared method, the error between the
expanded signal and the real signal is also considerably small.

B. BACKWARD LINEARLY PREDICTED ARRAY EXPANSION
Besides the forward array expansion, we extrapolate the
received signal beyond the first antenna element, as illus-
trated in Fig. 1(b). Similar to the forward array expan-
sion, we extract the linear relation among the N received
signals. For this expansion, the relation between x1 and
xN , xN−1, · · · , x2 can be expressed as the linear combina-
tion:

x1 ≈ [xN , xN−1, · · · , x2] · ub = Xbub = x̃1, (13)

where ub is the vector composed of coefficients for the lin-
ear combination. Then, the optimal backward transformation
vector u∗b can be obtained by solving the least squares prob-
lem, which is calculated as

u∗b = argmin
ub

∥∥x1 − x̃1
∥∥2
2 . (14)

Similar to (10), we can extract the transformation vector u∗b
by using the LLS method, which minimizes the norm of the
difference between x1 and x̃1. Thus, the solution of (14) is
given by

u∗b = XH
b (XbXH

b )
−1x1. (15)

As in the case of u∗f , u
∗
b is used for the backward linearly

predicted array expansion to extrapolate signals to the left
side of the array.

As shown in Fig. 1(b), assuming that the antenna element is
located outside and to the left of the original array antenna, its
corresponding signal can be generated using transformation
vector u∗b and xN−1, xN−2, · · · , x1. In general, when assum-
ing the (−q+1)-th (q ≥ 1) antenna element is located outside
and to the the left of the original array antenna, its signal can
be sequentially generated as

x̂−q+1 = Y(q)
b u∗b, (16)

where

Y(q)
b =



[xN−1, xN−2, · · · , x1]
for q = 1
[xN−2, xN−3, · · · , x1, x̂0]
for q = 2
[xN−q, · · · , x1, x̂0, · · · , x̂−q+2]
for 3 ≤ q < N − 1
[x1, x̂0, · · · , x̂−q+2]
for q = N − 1
[x̂N−q, x̂N−q−1, · · · , x̂−q+2]
for q ≥ N

.

(17)

In (17), x̂0 and x̂−q+1 denote the signals generated from the
antenna elements located at distances d and qd to the left of
the first antenna element, respectively. Similar to u∗f , once u

∗
b

is calculated forK time-sampled received signal vector, it can
be repeatedly used to generate extrapolated signals.

Finally, by using the proposed forward and back-
ward linearly predicted array expansion, we can gener-
ate extrapolated signals x̂−q+1, · · · , x̂0, x̂N+1, · · · , x̂N+p.
Then, the Bartlett algorithm is conducted using both the
received signals by theN elements of the actual array antenna
and the (p + q) generated signals, and we can achieve an
improved angular resolution.

IV. SIMULATION RESULTS
In this section, we verify the performance of the proposed
method through simulations. In our simulation, the number of
antenna elements in the receiving array antenna is set as four,
which is typical in automotive radar systems [11], [26], [27];
the signal-to-noise ratio (SNR) of the received signal is set
to 10 dB; the number of time sample K is set to 1361. The
number of time samples is set as above to configure as the
same to the actual radar system. In addition, two types of
antenna spacing are used, i.e., 0.8λ and 1.8λ. To prove that
the proposed algorithm works well regardless of the position
of the targets, the simulations were performed with varying
target positions.

First, we compare the DOA estimation performance using
forward, backward, and the combination of both array
expansion methods to determine the direction to expand
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FIGURE 2. RMSE according to the number of expanded antenna elements
(a) without normalization and (b) with normalization.

the array. By increasing the number of antenna elements
in the three array expansion methods, we calculate the
RMSE as

RMSE =

√√√√∑L
l=1

∑M
m=1

{
(θl − θ̂

(m)
l )2

}
LM

(◦), (18)

where M denotes the number of simulation runs and θ̂ (m)l
denotes the estimated angular location of the l-th target in
the m-th (m = 1, 2, · · · , M ) simulation. We executed M =
1000 simulation runs under the same conditions. In addition,
we disregarded the RMSE for the case when the number of
targets was incorrectly determined.

Figure 2 shows the RMSE for the three variations of our
proposed array expansion methods according to the number
of expanded array antenna elements when the targets are
located at −1◦ and 4◦ with the antenna spacing of 1.8λ.
In this simulation, because the number of antenna elements
is expanded to both sides when the combined forward and

FIGURE 3. Power of the actual (1 to 4) and extrapolated (5 to 16) signals.

backward expansion is used, we calculated the RMSE at
increments of two for all the variations of the proposed
method. Because the angular displacement between the two
targets was within the half-power beamwidth, it is difficult
to resolve the two targets with the conventional Bartlett
algorithm [28]. However, when the array elements are only
expanded by two, the targets were distinguished. The resolu-
tion probability increases even if only two expanded antennas
are added; however, because the RMSE is relatively high, it is
necessary to increase the number of expanded antennas to
four or more for a more accurate angle estimation. Because
the signal generation is similar in the forward only and the
backward only expansions, both methods show almost the
equivalent DOA estimation performance. When the number
of expanded antenna elements is less than four, little per-
formance difference exist in the three expansion methods.
However, for array expansions of or above four elements,
the combined forward and backward array expansion method
clearly outperforms the individual expansions. After this
initial evaluation, we used the combined expansion for the
remainder of the simulations.

Figure 2(a) also shows that the RMSE values does not
decrease when the number of expanded elements is more than
a certain number. This phenomenon can be related to the
power of the extrapolated signal as shown in Fig. 3, where
the power of the 4 received signals is higher than that of the
extrapolated signals using forward expansion. Furthermore,
the power of the extrapolated signals converges to zero as
the number of expanded antenna elements increases. This
can be explained as follows. Let transformation vector u∗f be
expressed as

u∗f = [uf1 , uf2 , uf3 ]
T , (19)

where ufj (j = 1, 2, 3) is the j-th element in u∗f . In this
simulation, because the sum of the magnitude of ufj is
smaller than one, the power of the extrapolated signals
gradually decreases [29]. Thus, the newly generated signals
with small power cannot considerably improve the angle
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estimation performance, and the RMSE does not further
decrease, as shown in Fig. 2(a). To solve this problem,
we considered the normalization of the extrapolated signals
as shown in Fig. 2(b). However, because the transforma-
tion vector u∗f is a vector that minimizes the error of the
extrapolated signals using the linear least-squares method,
if we normalize the extrapolated signals, the weight of the
extrapolated signals becomes large. Because the extrapolated
signals are inaccurate relative to the actual signals, the angular
estimation error increases as the weight multiplied by the
extrapolated signals increases.

In general, the side lobes increase when the antenna spac-
ing is above 0.5λ. Furthermore, when the antenna spacing is
larger than 1.0λ, undesired grating lobes are generated [7],
which cannot be distinguished from the main lobe. Thus,
it is difficult to estimate the angular location of the target
through conventional spectral-based methods such as the
Bartlett algorithm. If the antenna spacing is large, the angu-
lar resolution of targets is better. However, larger antenna
spacing has the disadvantage that grating lobes are gener-
ated near the boresight. However, we can mitigate the side
lobes and prevent the generation of grating lobes in the
field of view of the array antenna, using the proposed array
expansion method. Figure 4 shows the DOA estimation of
the Bartlett algorithm with and without the proposed array
expansion method for antenna spacings of 0.8λ and 1.8λ and
8 expanded antenna elements. Figure 4(a) shows that unlike
the conventional Bartlett algorithm, the algorithm including
the proposed expansion distinguishes two adjacent targets.
Moreover, we compare the DOA estimation performance
when applying the Bartlett with the proposed method to 0.8λ
ULA antenna to when applying the conventional Bartlett
to 2.4λ ULA antenna. The angles estimated in both cases
are (−1.9◦, 5.4◦) and (−2.2◦, 5.7◦), respectively. For the
ULA antenna with spacing 2.4λ, because the half-power
beamwidth is approximately 7.4◦,the two targets can be sep-
arated; however, grating lobes appear in the range from−30◦

to −15◦ and from 15◦ to 30◦. Due to these grating lobes,
the angles of the targets cannot be exactly estimated. On the
other hand, because the grating lobes do not appear in the
field of view when using the proposed method, grating lobes
cannot be confused with main lobes. Thus, these results
suggest that DOA estimation and its angular resolution can
be improved using the proposed method, even when the
antenna spacing is smaller than 1.0λ. Similar trends can be
appreciated when considering a spacing of 1.8λ, and grat-
ing lobes appear when using a spacing of 5.4λ, as shown
in Fig. 4(b).

Next, we compare the performance of the proposed
method with that of the conventional interpolation using LLS
method [11]. Figure 5(a) shows the DOA estimation of the
Bartlett algorithm with and without the proposed method,
and that of the Bartlett algorithm using the conventional LLS
method. For the conventional LLS method [11], sector 2 =
[θL , θR] = {θ | θL ≤ θ ≤ θR}must be set, which indicates the
observation interval in the field of view of the array antenna.

FIGURE 4. DOA estimation of the Bartlett algorithm with and without the
proposed array expansion method for spacing of (a) 0.8λ and (b) 1.8λ.

In this simulation, the sector of the conventional LLS method
is given as [−15◦, 15◦] with 8 expanded antenna elements.
As shown in Fig. 5(a), regardless of the range of the sector,
the proposed method has better angle estimation accuracy
than the conventional LLS method. In Fig 5(b), when the
sector is [−15◦, 15◦], the angular location of the targets
using conventional LLS method cannot be distinguished, and
only one target is estimated at 1.1◦. In this case, no appar-
ent performance difference exists compared to the conven-
tional Bartlett algorithm. However, when using the proposed
method, the angular locations of the targets are accurately
estimated at−0.9◦ and 2.9◦. In the conventional LLSmethod,
when the range of the sector is close to the range of target
angles, the accuracy of the estimation is improved. Thus,
we use more narrow sector as [−5◦, 5◦], and the estimation
results are also given in Fig. 5(b). When the range of the
sector gets narrow, the angles of the targets are estimated as
−1.7◦ and 1.8◦, which are close to actual angles; however,
even when the narrow range of the sector is used, the estima-
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FIGURE 5. DOA estimation of the Bartlett algorithm with and without the
proposed array expansion method, and it using the conventional LLS
method for spacing of (a) 0.8λ and (b) 1.8λ.

tion error is larger than that of using the proposed method.
In addition, if the target exists outside the sector, the conven-
tional LLS method cannot accurately estimate the position of
the target [10]- [12]. Overall, the proposed method outper-
forms conventional LLS method in estimation accuracy and
angular resolution without requiring to define a sector and
regardless of antenna spacing.

Then, we compare the DOA estimation using the
proposed method with that of using conventional extrapo-
lation [14], [15]. In the conventional extrapolation, a trans-
formation vector is obtained by using a correlation matrix
of the received signal, and the number of antenna elements
can be expanded at each side only by the same number of
the actual antenna elements [14]. Therefore, we considered
8 expanded antenna elements. Figures 6(a) and 6(b) show
the DOA estimation of the Bartlett algorithm using the pro-
posed array expansion and conventional extrapolation for
spacing of 0.8λ and 1.8λ, respectively. When the proposed

FIGURE 6. DOA estimation of the Bartlett algorithm with and without the
proposed array expansion method, and it using conventional
extrapolation for spacing of (a) 0.8λ (b) 1.8λ.

method is applied, the two targets are completely sepa-
rated, and the estimated angles are −4.8◦ and 2.2◦ for 0.8λ.
On the other hand, when using conventional extrapolation,
the exact angular locations of the targets cannot be estimated
because four peak values appear in the pseudospectrum. Even
when the antenna spacing is larger, as shown in Fig. 6(b),
the proposed method clearly outperforms the conventional
extrapolation.

We also evaluate the performance of the proposed method
and conventional extrapolation by varying the number of
expanded antenna elements. Figures 7 and 8 show the
RMSE and resolution probability according to the number
of expanded antenna elements, respectively. The resolution
probability is defined as the rate of successfully separated
targets over the simulations, where targets were located at
−1◦ and 3◦ with antenna spacing of 1.8λ. For both meth-
ods, when the number of expanded antenna elements is
below 4, the two targets are mostly indistinguishable as
shown in Fig. 8. However, for increased number of expanded
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FIGURE 7. RMSE according to the number of antenna elements using the
proposed method and conventional extrapolation.

antenna elements, the angle estimation accuracy tends to
improve. The best performance of conventional extrapolation
is achieved when the number of expanded antenna elements
is approximately twice the number of the actual antenna
elements. However, the performance of the proposed method
has more improvement when the number of antenna elements
is more than two times of the number of actual antenna
elements. Moreover, the proposed method has a lower com-
putational complexity than the conventional extrapolation,
which requires the calculation of the transformation vector
whenever signals are generated [14], [15]. In the process of
creating an expanded array, an expanded signal is first gen-
erated using the actual received signal. However, if more
than 2N expanded antennas are generated, only the expanded
signal will be used to generate the new expanded signal, so the
accuracy of the expanded signal will be lowered. However,
since the proposed method generates an expanded signal
with fairly high accuracy, the angle estimation performance
is improved even if the number of antennas is increased to
3N . Although the optimal number of the expanded antennas
varies depending on the position of the target, basically,
2N is most appropriate to generate, and in some cases,
performance increases even when 3N expanded signals are
generated.

Fig. 9 shows how RMSE varies with the number of targets.
Even though the number of targets is the same, the accuracy
varies depending on the position of the target. As the number
of targets increases, the angle estimation accuracy decreases.
Furthermore, the conventional extrapolation method cannot
accurately estimate the number of targets when the number
of targets is more than 3, but the proposed method is quite
accurate even if the number of targets increases. Fig. 10 shows
how RMSE varies with the number of snapshots. The SNR
was 0 dB, the DOAs of targets were set to−2◦ and 4◦, respec-
tively, and 10000 simulations were performed. When multi-
ple snapshots are used, the accuracy of the used data to find
DOA of targets can be increased, so the angle estimation per-
formance is improved. In Fig. 10, as the number of snapshots
used increases, the RMSE of estimated angle is decreased

FIGURE 8. Resolution probability according to the number of antenna
elements using the proposed method and conventional extrapolation.

FIGURE 9. Resolution probability according to the number of targets
using the proposed method and conventional extrapolation.

FIGURE 10. RMSE according to the number of snapshot using the
proposed method and conventional extrapolation.

for both algorithms. Fig. 11 and 12 show how the angu-
lar resolution and RMSE vary with SNR. The performance
of the proposed method and the conventional extrapolation
method are compared. To compare the performance under the
same conditions as the conventional method, the number of
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FIGURE 11. RMSE according to SNR using the proposed method and
conventional extrapolation.

FIGURE 12. Resolution probability according to SNR using the proposed
method and conventional extrapolation.

extrapolated antennas was set to 8. The SNR was increased
by 1 dB, and 10000 simulations were performed for each. The
DOAs of targets were set to −2◦ and 4◦, respectively.
In Fig. 12, the conventional method distinguishes two targets
from when the SNR is above −3dB. Thus, we calculate
RMSE only when the SNR is above −3dB. The perfor-
mance of the proposed method is slightly degraded when
the SNR is very low, but otherwise, the performance is
much improved than that of the conventional extrapolation
method.

To investigate the improvement of the proposed array
expansion method compared to the angular resolution of var-
ious NLAs proposed previously, we simulated the resolution
probability by increasing the angular interval between the
targets by 0.1◦. The total antenna aperture size is set to 11λ
and 6 antennas are used. Fig. 13 shows how the angular
resolution varies with the antenna array type for the two
SNRs. In Fig. 13(a) When the SNR is 10dB, the angular
resolution is improved by more than 2◦ compared to other
NLAs. However, because the proposed method is sensitive
to SNR changes, the angular resolution of the proposed
method approaches that of conventional NLAs under low

FIGURE 13. Resolution probability according to the DOA difference using
the actual array, proposed array, minimum redundancy array, nested
array, co-prime array, when SNR is (a) 10dB (b) −5dB.

FIGURE 14. Normalize Bartlett pseudospectra of different antenna arrays.

SNR conditions in Fig. 13(b). Moreover, in Fig. 14, the addi-
tional simulations were performed in the presence of five
targets in order to check whether the proposed method is
applicable even in the presence of a large number of targets.
When multiple targets are in close proximity and the targets
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FIGURE 15. DOA estimation of the MUSIC algorithm with and without the
proposed array expansion method considering correctly estimated (L̂ = 2)
and incorrectly estimated (L̂ = 3) number of targets.

are detected using the conventional NLAs, it appears that
there are three or four targets because not all targets can
be distinguished. However, all targets are correctly detected
by using the proposed array expansion method.

In addition, we apply the proposed array expansion to the
MUSIC DOA estimation algorithm, which delivers a high
resolution and is reported to outperform the conventional
Bartlett algorithm [24]. MUSIC algorithm is one of the sub-
space based algorithms. MUSIC is a method of estimating
the DOA of the target using the orthogonality between the
received signal and the noise component. After eigenvalue
decomposition of the covariance matrix of the received sig-
nal, the eigenvector corresponding to the noise component
is multiplied by the steering vector to find the DOA of the
target. However, to find the DOA of targets using the MUSIC
algorithm, the number of targets should be estimated in
advance.

The MUSIC angle estimation algorithm is performed
assuming that the targets correspond to the most dominant
eigenvalues obtained through the eigenvalue decomposition
of the correlation matrix of the received signal. Therefore,
if the number of estimated targets is more than the number
of actual targets, the noise component that corresponds to a
large eigenvalue can be recognized as a target. Conversely,
if the number of estimated targets is less than the num-
ber of actual targets, the signal component that corresponds
to a small eigenvalue can be recognized as noise. Thus,
in the MUSIC algorithm, the difference between the esti-
mated and actual number of targets undermines the algorithm
performance [27]. Figure 15 shows the DOA estimation of
the MUSIC algorithm with and without the proposed array
expansion method for two targets located at −1◦ and 2.5◦,
respectively and the antenna spacing of 1.8λ. In addition,
we tested the algorithm considering estimated number of
targets L̂ = 2 and L̂ = 3, to evaluate the effect of an
erroneous number of targets in the latter case (i.e., L̂ = 3).
As shown in the figure, when L̂ = 3, the two targets cannot

FIGURE 16. RMSE according to SNR using MUSIC with the proposed
method and conventional MUSIC.

FIGURE 17. Resolution probability according to SNR using MUSIC with
the proposed method and conventional MUSIC.

be identified by the MUSIC algorithm. However, when the
proposed method is applied, the angular locations of the
targets can be correctly found regardless of the estimated
number of targets. Furthermore, for statistical analysis,
we analyzed the RMSE and resolution probability through
10000 simulations. RMSE is calculated using the equation
in (18). The resolution probability is calculated from the
number of times that the targets were properly separated
into two targets during a total of 10,000 tests. As shown
in Table 1, when the proposed method is applied, the two
targets are completely separated. In addition, although the
MUSIC algorithm cannot detect the targets correctly if the
number of targets is not known in advance, the resolu-
tion probability is increased by 20% or more when the
proposed method is applied. This is almost the same as
when the conventional MUSIC algorithm is applied when
the number of targets is known. The RMSE is also low-
ered, which considerably improves the angle estimation
accuracy.
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TABLE 1. RMSE and resolution probability of MUSIC DOA estimation methods for two targets.

TABLE 2. RMSE and resolution probability of various DOA estimation methods for three targets.

Furthermore, in Fig. 16 and 17, additional simulation is
performed to verify that the proposed array expansionmethod
is well applied to MUSIC algorithm even at low SNR. The
DOAs of targets were set to −1◦ and 2.5◦, and the SNR
was increased from −20dB to 20dB in 1dB steps. Applying
the proposed array expansion method to MUSIC can achieve
good separation of both targets even under low SNR. In addi-
tion, the accuracy of the angle estimation is also improved,
which means that the RMSE is lower than that of the conven-
tional MUSIC. In addition, we verified whether the proposed
array expansion method can be applied when more than two
targets exist. Hence, Table 2 shows a comparison among
the Bartlett and MUSIC algorithms, with and without the
proposed array expansion method, the Bartlett with the con-
ventional LLS method, and the Bartlett with the conventional
extrapolation for three targets located at −8◦, −1◦, and 7◦,
and correct the estimation for L̂ = 3 of the number of targets
for the MUSIC algorithm. As shown in Table 2, the three
targets cannot be distinguished using both the conventional
Bartlett algorithm and the Bartlett algorithm with the conven-
tional extrapolation method. However, the three targets are
successfully decomposed using the proposed array expansion
method. Moreover, applying the proposed method to the
MUSIC algorithm shows that the RMSE is slightly higher
but the separation probability is higher than that of the con-
ventional MUSIC algorithm. Therefore, we confirmed that
the proposedmethod can achievemore performance improve-
ment when applied to the Bartlett algorithm than the MUSIC
algorithm. In the simulation results, the DOA estimation
using the Bartlett algorithmwith the proposedmethod obtains
angles closer to the actual values. Furthermore, because
the computational complexity of the Bartlett algorithm is
much lower than that of the MUSIC algorithm, which relies
on the eigenvalue decomposition [27], the former with the
proposed array expansion method can be considered as the
most suitable DOA estimation method for automotive radar
systems.

V. EXPERIMENTAL RESULTS
This section presents the performance of the proposed
method from the experiments with an actual automotive
radar system. We conducted the experiments in a test field
using a long-range radar manufactured by Mando Corpora-
tion (Republic of Korea). This system has a field of view
from −10◦ to 10◦ and maximum detection range of 200 m.
In addition, the number of transmitting and receiving antenna
elements are 1 and 4, and the antenna spacing between
receiving antenna elements is 1.8λ. Moreover, the system
transmits a 76.5 GHz frequency-modulated continuous wave
radar signal with bandwidth of 500 MHz and 10 ms sweep
time for the up- and down-chirp signals. The transmitted
signal is multiplied by signals reflected from targets, and
the multiplied signal passes through a low-pass filter. The
proposed array expansion method is applied to the time-
domain low-pass filtered output.

In the experimental scenario, we place only two target
vehicles in the field of view of the radar system to miti-
gate the effects of other external factors and analyze only
the signals reflected from them, as shown in Fig. 18. Two
identical target vehicles are placed at the same distance but
at different angles. Two vehicles are placed 30 m away from
the radar-equipped vehicle, and 4 m apart from each other.
In addition, they are located at−5◦ and 5◦ in the direction that
the radar-equipped vehicle is looking at. For the measured
signals in this environment, the normalized pseudospectrums
of the Bartlett algorithm with and without the proposed array
expansion method, and the Bartlett algorithm with conven-
tional LLS method and conventional extrapolation are shown
in Fig. 19. Similar to the simulation results, the Bartlett
algorithm by itself was unable to distinguish the two targets
and they were recognized as a single target. By applying
the proposed method, the two targets were identified, and
their angular positions accurately estimated at −5.3◦ and
5.8◦. Even though a narrow sector including the two target
vehicles was set when using conventional LLS method as
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TABLE 3. RMSE and resolution probability of various DOA estimation methods in actual experiments.

FIGURE 18. Experimental setup with two targets located in front of a
radar-equipped vehicle.

FIGURE 19. DOA estimation of the conventional Bartlett algorithm with
and without the proposed array expansion method, and it using
conventional LLS method and conventional extrapolation.

[−5◦ 5◦], the estimated values were highly inaccurate. More-
over, the Bartlett algorithm with conventional extrapolation
showed poor and unreliable identification and angle estima-
tion results.

To quantify the performance of the proposed method in
the statistical aspect, we evaluated the received signals from
300 measurements considering the same experimental con-
ditions and calculated the RMSE and resolution probability
for the different methods, as listed in Table 3. The compari-
son includes the Bartlett algorithm, as well as the algorithm
with the proposed array expansion method, conventional LLS

method, and conventional extrapolation. The Bartlett algo-
rithm by itself was unable to identify the two targets from
any of the 300 signals (i.e., resolution probability of 0%), and
thus, the RMSE was not calculated. The Bartlett algorithm
with either conventional LLS method or conventional extrap-
olation poorly identified the two targets, and the estima-
tion accuracy was low. However, the Bartlett algorithm with
the proposed method showed the best performance with the
highest resolution probability and the lowest RMSE among
the compared methods. Moreover, in the proposed method,
we can increase the number of array elements further in
contrast to the conventional extrapolation. The table also
shows the DOA estimation performance when 12 signals
are generated by our proposed method. In this case, the two
targets are separated bymore than 99% resolution probability,
which is more improved than using 8 extrapolated signals.

VI. COMPUTATIONAL COMPLEXITY
The computational complexity of the Bartlett algorithm is
about O(P(2N − 1)(N + P)). P denotes the sampling grid
of angle. The computational complexity of conventional
MUSIC algorithm is about O(N 3

+ JNL) to proceed eigen-
value decomposition. J is the samples of the MUSIC null-
spectrum function. In the proposed algorithm, the computa-
tional complexity depends on how many expanded antennas
are generated. Assuming that the number of expanded anten-
nas is 2N , the computational complexity is approximately
O((18P + 4K )N 2). Furthermore, we measured the actual
algorithm execution time. When the execution time of the
Bartlett algorithm is 1, the execution time of the proposed
method with Bartlett algorithm is 1.3 and the MUSIC algo-
rithm is 1.8. Compared to the conventional Bartlett algo-
rithm, the computational complexity is slightly increased, but
the computational complexity is still lower than that of the
MUSIC algorithm.

VII. CONCLUSION
In this paper, we proposed an improved DOA estimation
method using linearly predicted array expansion for auto-
motive radar systems having a small number of antenna
elements. The performance of the proposed method was
verified by simulations and actual experiments. In partic-
ular, we tested the proposed method using the Bartlett
and MUSIC algorithms, which are widely applied in auto-
motive radar systems. Unlike conventional LLS method,
our proposed method does not require a predefined sector.
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Furthermore, the proposed method has a low computational
complexity than conventional extrapolation which requires
the repeated calculation of transformation vectors to gen-
erate extrapolated signals. Overall, the proposed method
outperforms the other approaches in every simulation and
experiment with respect to estimation accuracy and angular
resolution. Therefore, the proposed method could improve
the low angular resolution caused by a small number of
antenna elements.We expect that the proposedmethodwill be
an efficient and simple approach to improve DOA estimation
without requiring additional hardware for automotive radar
systems.
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