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ABSTRACT In this work, a synaptic weight transfer method for a neuromorphic system based on resistive-
switching random-access memory (RRAM) is proposed and validated. To implement the on-chip trainable
neuromorphic system which utilizes large-scale hardware synapse units, a fast and reliable write scheme
needs to be established. Based on the experimental results, it is confirmed that the gradual set and full reset
operation is the most suitable operation scheme for fast programming due to the fundamental reliability
characteristics of the resistive-switching memory cell. Also, the superiority of this programming method
using the proposed RRAM compact model is demonstrated. In addition, a one weight/one synaptic device
structure is newly adopted for realizing high-density synapse arrays by using a nonnegative weight constraint
in supervised learning. Finally, the pattern recognition accuracies obtained at the software and hardware
levels are compared.

INDEX TERMS Neuromorphic, hardware-driven artificial intelligence, synaptic device, weight transfer,
resistive-switching random-access memory (RRAM), artificial neural network (ANN), cross-point array

architecture.

I. INTRODUCTION

Numerous studies have been conducted in academia and
industry to imitate the limitless cognitive abilities of the
human brain to learn, remember, infer, and forget in an incred-
ibly energy-efficient and natural way [1]. AlphaGo once
again opened a door to a new stage of artificial intelligence
by introducing an elaborately and systematically trained arti-
ficial neural network (ANN) model [2]. The latest deep neural
network concept and its learning algorithm should be highly
evaluated not only for their learning and inference ability, but
also for reproducibility. Recently, Intel announced a spike-
event-based neuromorphic chip called Loihi2, which doubles
the synapse density and operates 5,000 times faster than
the biological neuron [3]. Furthermore, Samsung, which is
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one of the leading companies in the semiconductor memory
business, presented the concept of delivering the structure
and function of a human brain into a high-density memory
chip [4].

A schematic diagram of a biological neural network is
shown in Fig. 1(a). Biological neurons that operate based
on the integrate-and-fire mechanism to transmit weighted
signals through the synapse region and also the synaptic
connections and their long-/short-term plasticity are known
to play the most important role in the learning and mem-
ory functions of a human brain and various studies which
implement those functionalities into electronic systems have
been reported [5]-[11]. The conceptual structure of a sim-
ple ANN (Fig. 1(b)) is deeply inspired by the biologi-
cal neural network, and this structure has been the basis
of most of the well-known neural networks [12]. Various
nonvolatile memory array structures can be considered to
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FIGURE 1. Schematic diagrams of (a) a biological neural network and
(b) an artificial neural network. (c) A 2D cross-point array structure and
(d) a 3D vertical array structure of a nonvolatile resistive memory.

realize the connectivity and synaptic plasticity of neural
networks at the hardware level, but the cross-point array
structure adopting the two-terminal resistive-switching ran-
dom access memory (RRAM) has been the most actively
discussed.

For ultrahigh-density applications, a 3D and vertically
stacked structure that is similar to the recent 3D NAND Flash
memory may also be considered as shown in Fig. 1(c) [13].
Multilevel conductivity states and long-/short-term memory
characteristics that can be realized within a highly scal-
able cell structure have made RRAM favored by many
researchers. However, the switching operation based on the
soft breakdown of a switching layer and the read opera-
tion that relies on direct charge flows through the switch-
ing layer are always a concern for this memory device,
which result in reliability issues such as uniformity and
endurance [14]-[17]. Although several approaches consid-
ering switching layer engineering, pulse operation scheme,
and unit memory structure (1R, 1S1R, 1T1R, etc.) have been
proposed and investigated to improve the reliability, they
still do not reach the industrial requirements level. At the
same time, a thorough study on the write method of a
synapse array considering the device characteristics such as
multilevel state and reliability, as well as the memory archi-
tecture, is required for a high-density and high-speed neuro-
morphic system. A fully parallel write method in a resistive
synapse array can be a suitable option due to its as speed
performance and parallelism, but it has some limitations [18].
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FIGURE 2. (a) Typical /-V curves of a multilevel resistive switching
memory. From the initial HRS, a memory cell switches to LRS and shows
different conduction characteristics based on the materials and
resistance levels. (b) In pulse operation, the conductivity is increased by
consecutive set pulses and is decreased by consecutive reset pulses.

(c) Conductive filaments generally consist of atomic vacancy regions or
electron traps. The gap between two electrodes is effectively shortened
by set pulses and is ruptured by reset pulses.

First, it is necessary to check the state of preneuron and post-
neuron nodes when performing quantitative weight update
before each write operation complicating the write operation
itself. In addition, it has difficulty utilizing various techniques
such as the incremental-step-pulse programming scheme and
verify/inhibit operation because it uses pulses with a fixed
voltage amplitude and is also based on the assumption that
the conductivity change is proportional to the overlapped
pulse width. In this work, a fast write method for hardware
transfer of ideally trained synaptic weight from an ANN is
proposed and validated. For the validation, an RRAM com-
pact model is adopted into a cross-point array and adjusted
to fit the device characteristics. For RRAM cells showing
voltage-dependent switching characteristics, a sequence of
write operation utilizing gradual set and full reset (GSFR) is
proposed and verified through SPICE simulations. Further-
more, a one weight/one synaptic device (1W1S) implementa-
tion is adopted using a nonnegative weight constraint in soft-
ware training to realize a high-density synapse array. Finally,
the pattern recognition accuracy of the multilevel conduc-
tance synaptic array is compared with that of a software-
based ANN.
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FIGURE 3. (a) Schematic diagram of a resistive memory cell structure.
The yellow circles are electron traps mostly formed close to electrodes.
(b) Circuit model which consists of several circuit elements such as
resistors, capacitors, and voltage-controlled switches. (c) DC character-
istics obtained from measurement (orange circle) and our circuit model
(solid lines). By controlling the stop voltage from 3.8 to 5.0 V, the
conductivity can be determined within a certain range.

TABLE 1. Circuit element and their value and description for unit cell
modeling.

Element Value Description

Vi (Threshold voltage): 1.0 ~ 1.74 V
Vy (Hysteresis voltage): 1.8 ~3.7V
Rox (On resistance): 30 ~ 500 kQ
Ropy (Off resistance): 1012 Q

S~S,
(Voltage-controlled
switches)

Gap resistance
(HRS to LRS)

Rg 104, _ Gap Resistance
(Nonlinear resistor) 5:10% expl-(abs(Viap) ~ 0.8) / 0.8] k2 (HRS)
g\lFonlinear resistor) 10"-exp[-(abs(Vgy ) — 1.0) / 0.3] kQ Filament Resistance
R¢ .
(Linear resistor) 100 Q Contact resistance
Ce .
(Capacitor) 0.1 fF Cell Capacitance
Cg .

0.1 fF Gap Capacitance

(Capacitor)

Il. SPICE COMPACT MODEL FOR MULTILEVEL RRAM

A. RRAM CELL CHARACTERISTICS

An RRAM typically shows the bipolar switching phe-
nomenon, which is the transition of the cell resistance state
from high resistance state (HRS) to low resistance state (LRS)
and vice versa under the opposite voltage polarity (Fig. 2(a)).
The switching voltage may vary depending on the switching
layer material, the thickness, and the combination with the
electrode materials [19], [20]. Some devices exhibit gradual
set or reset switching over a specific voltage range, and
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the characteristics can be used to obtain multilevel resis-
tance states using pulse width/amplitude modulation to store
multibit data. Each resistance state has its own conduction
mechanism and represents different I-V behaviors depending
on the switching material and the presence of the conducting
filament. The conductivity of the RRAM cell can be gradually
modulated by applying appropriate pulses [21]. In studies
on memory-based neuromorphic systems, the phenomena
of conductivity increase and decrease are commonly called
long-term potentiation and depression, respectively, which
are named after the biological synaptic plasticity character-
istics. In phase A in Fig. 2(b), the conductivity is increased
uniformly by positive set pulses, and in phase B, the amount
of change begins to decrease due to degradation of the switch-
ing efficiency. By adopting the incremental-pulse scheme, the
phase-A-like behavior can be extended but will have limita-
tions in the end. Phase C represents the initial stage of the con-
ductivity decrease by reset pulses. Similarly, when entering
phase D, the amount of change also begins to decrease. It is
known that the conductivity change behavior by an identical
pulse can be asymmetric in potentiation and depression, and
various studies to modulate the characteristics at the device
level have been reported [11]-[23]. The shape of the filament
corresponding to each resistance state (states 0—7) can be
described as shown in Fig. 2(c). All traps or vacancy regions
involved in the conduction expand further under a certain
condition, eventually connecting both electrodes. Also, under
a certain condition, the connected dense filament regions can
be ruptured, which is known to be mainly related to Joule
heating [15]-[17].

An RRAM device is considered as one of the plausible
candidates for a synaptic device in a neuromorphic hardware
system because of its scalability and simple process. Gradual
resistance changes of RRAM cells can be used to simply
express the connection strength of biological synapses in
hardware, and it is also necessary to implement an on-chip
learning method such as spike-timing-dependent plasticity
(STDP) in a unit device [24]. At the same time, low energy
consumption in an RRAM-based synaptic device is necessary
because a large number of synaptic devices operate simul-
taneously and in parallel even if an ideal 1W1S structure
is configured. Few studies have been reported to overcome
this problem by adding a thin dielectric film to suppress the
operating current [25], [26]. Similarly, the RRAM device
used in this work was able to suppress the operating current
to A-level by using a thin SiO; as a tunnel barrier layer.
Detailed explanations of the process flow and the operating
principles can be found in our previous work [27].

B. RRAM CELL MODELING FOR SPICE SIMULATION

It is necessary to implement the switching and conduction
characteristics of RRAM cells at the circuit and system levels
for the development and verification process. Several stud-
ies have been conducted and reported to realize the general
characteristics of RRAM cells [28]. A SPICE compact model
was also proposed, and it has been successfully applied to
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various RRAM devices in a cross-point array [19]. Fig. 3(a)
represents the RRAM cell structure. In general, the switching
layer of a filamentary-type RRAM cell is divided into a
filament and other region, and the filament region is con-
nected or broken depending on its resistance state. It has been
reported that the filament region may be an oxygen vacancy
for metal oxide materials or an electron trap for silicon nitride
materials, which plays a major role in charge conduction.
Fig. 3(b) shows the proposed RRAM cell model for SPICE
circuit simulation. Linear and nonlinear resistors are used
to realize the conduction behavior of the memory device.
Also, several voltage-dependent switches are used to obtain
the voltage-dependent switching characteristics. The -V
characteristics of our device and the model are represented
together in Fig. 3(c). The parameters are elaborately adjusted
to implement the voltage-dependent switching characteristics
in the range of —6.0 to 6.0 V, which are importantly utilized
in the write scheme proposed in this work. For example, the
values of a nonlinear resistor Rg and the voltage-controlled
switches S-S, are determined to describe more accurately
the conduction behavior through the rupture and the con-
nection of conduction paths. Also, a nonlinear resistor R is
placed in series and adjusted to describe the LRS conduction
behavior after the initial forming process. Although it is
necessary to determine a linear resistance R¢ considering the
magnitude and variation of the contact and line resistances in
the actual array configuration, it was not considered in this
study. In addition, capacitive elements such as the cell (Cc)
and gap (Cg) capacitances need to be elaborately determined,
but they are beyond the scope of this study and does not
affect the experimental results. Table 1 summarizes the circuit
components and parameters and their values in the model.

Ill. FAST WRITE SCHEME FOR REAL-TIME LEARNING OF
HARDWARE NEURAL NETWORK
Each layer of a neural network trained at the software level
may contain a lot of continuous or quantized weight val-
ues. To ensure the software-level inference accuracy, it is
necessary to accurately transfer the trained weight matrix
into the hardware synapse array while suppressing nonideal
phenomena such as voltage drop by line resistances, read
disturb, and leakage current. In this part, a write method
that transfers the weight matrix into synapse arrays for high
density and high-speed applications is proposed and verified.
To obtain multilevel resistance states and reach the target
state, the following schemes can be considered: gradual set
and full reset (GSFR), full set and gradual reset (FSGR), and
gradual set and gradual reset (GSGR). Although the GSGR
method, which takes full advantage of the RRAM’s bidi-
rectional gradual switching characteristics, seems the most
attractive, but it needs to be reconsidered from two perspec-
tives. First, negative voltages that are repeatedly applied can
cause serious reliability problems. For example, Fig. 4(a)
shows that reset switching failure can easily occur in pulse
operation by repeated applied negative voltage pulses. Dis-
tributions of conductance change in the gradual set and reset
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FIGURE 4. (a) Pulse operations showing that RRAM cells are vulnerable
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(b) Distributions of conductivity change in gradual set (blue) and reset
(green) operation. (c) DC cycles showing reset failures under negative
stress and high current condition.
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FIGURE 5. (a) Pulse operation for gradual set switching. (b) DC sweeps to
check the transition of resistance state by set pulses. (c) Pulse operation
for abrupt reset switching. (d) DC sweeps to check the transition of
resistance state by reset pulses.

are shown in Fig. 4(b). It is confirmed that the gradual set
operation is more reliable and uniform from the fact that the
standard deviation of conductance change by one pulse is as
small as 20% compared to the case of the gradual reset oper-
ation. DC cycles in Fig. 4(c) also show that reset operation
has more difficulty preventing switching failure compared to
the set operation, which can be easily managed by limiting
the current flow using current compliance (I¢). In fact, reset
operations have a condition that can easily cause breakdown
because the RRAM device must withstand high current and
temperature under negative bias conditions in order to trigger
reset switching without the current limit. On the other hand,
set failure, which can be defined as failure of proper switching
operation from HRS to LRS, has been considered a relatively
minor issue and rarely reported, and it never occurred in our
experiment. In addition, the high resistance tail of the set-
state distribution, known to be caused by this set failure [29],
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FIGURE 6. Voltage and current waveforms of (a) Ni/SiNx/p*-Si and (b)
Ni/SiNx/Si0, /p*-Si RRAM cells when applying the incremental step
pulse scheme in two different cycles. By inserting a thin SiO, layer, highly
reliable gradual switching characteristics can be achieved and current
overshoot can be suppressed by itself.

is thought to be mostly resolved using the current compliance
and the incremental-pulse scheme proposed in this study. Sec-
ond, the bidirectional gradual switching operation may lead to
longer time by complicating the write scheme and may also
increase the burden of the peripheral circuitry by requiring
a bidirectional sense-out operation. Recently, GSGR-based
write methods have been proposed [30], [31]. Compared to
the method proposed in this work, they are identical in terms
of adopting iterative loops of the program-verify operation
and incremental-step-pulse technique to reach the target con-
ductivity of gradual RRAM. The main difference between
those methods and the proposed method is whether gradual
set or reset is determined based on the comparison with the
target state and the current cell state. Such a decision process
before each write loop and a bidirectional switching process
may not be beneficial in terms of overall speed and device
reliability.

Pulse operation and its effect on device conductivity are
shown in Fig. 5(a)-(d). With a positive set pulse, the conduc-
tivity level gradually increases (Fig. 5(a) and (b)). Similarly,
with a negative reset pulse, the conductivity level abruptly
decreases (Fig. 5(c) and (d)). As described in Fig. 2(b), there
is a fundamental difference in the pattern of the conductivity
change due to positive-/negative-pulse application especially
in the initial stage. Using these asymmetric switching behav-
iors, the concept of a high-speed write method is proposed
and validated. It can be easily understood that the slight
differences between the measurement and simulation data
shown in Fig. 5(b) and (d) have little effect on the overall
speed of the write method because it cooperatively utilizes
the incremental-pulse scheme, multiple set/read loops, and
verify/inhibit techniques. The voltage and current waveforms
showing the effect of the inserted thin (~1.5 nm) oxide
layer on the switching characteristics are shown in Fig. 6.
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FIGURE 7. (a) Resistive-switching memory array and the subcircuit unit
for array-level SPICE simulation. (b) Write target cells and inhibit cells of
the selected WL in the proposed write operation. (c) Fast write scheme
using the GSFR characteristics of multilevel resistive memory cells.

As incremental step pulses from 4.2 to 4.6 V are applied
in two different cycles, abrupt switching occurs and a high
current of several mA flows in the absence of SiO,, which
may seriously affect the device reliability. On the other hand,
when SiO» is inserted, it can be seen that a reliable gradual
switching that guarantees multilevel resistance states occurs
consistently and that operating current is reduced by more
than 10 times due to the SiO; tunnel barrier. The reduction
in operating current has an important meaning because it is
directly related to the reduction in energy consumption and
the maximum number of synaptic devices that operate in
parallel and simultaneously.

A schematic diagram of an RRAM cross-point array and
the description of our cell model are represented in Fig. 7(a).
The device characteristics can be implemented using the
SPICE subcircuits, and this model can be simply embedded
in the netlist of the cross-point array. The concept of the WL-
by-WL write scheme is described in Fig. 7(b). Vw is applied
to the selected WL, and GND or Vi is applied to the BL
to determine whether it is written or inhibited. In addition,
1/2Vwy is applied to the unselected WL, thereby suppressing
the conductivity change (write disturb) of the cells in the
unselected WLs. The voltage waveforms in Fig. 7(c) are
sequences that perform fast multilevel write operations. For
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TABLE 2. Simulation parameters.

Parameter  Value Description
tser 1 ps SET pulse width
trst 2 us RESET pulse width
trp 1 s READ pulse width
torr 200 ns Interval between two pulses
Vser 38~50V SET pulse amplitude
Vgst -5V RESET pulse amplitude
Vsrep 0.1~04V Incremental voltage step
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FIGURE 8. (a) Voltage waveforms of the BL and selected/unselected WL.
(b) Voltage and current waveforms when fast GSFR write scheme is used.
(c) Transition of each cell conductivity when the proposed write scheme is
adopted.

the first step, all RRAM cells in the selected WL are prepared
to have the lowest conductivity using the full reset operation.
Then, a small set voltage VsgT is applied to obtain a relatively
low conductivity state, and the amplitude is increased by
Vstep- A read voltage VRp is applied between each switching
pulse to sense out the conductivity state, and whether or not
the cell is inhibited is determined depending on whether or
not the target conductivity is reached. The inhibit voltage
Vg has a margin that (Vsgr — Vig) does not cause set
switching operation and that (1/2Vsgr— Vi) does not cause
reset switching operation as summarized in the following
equations.

(Vser — VIH) < VSETMin (1
IVRsTMin| > [(1/2Vser — VIH) (2)

Table 2 summarizes the parameters used in the circuit
simulations.
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IV. RESULTS AND DISCUSSION

The voltage waveforms of the BL and selected/unselected
WL are shown in Fig. 8(a). Vwr from 4.0 to 6.2 V was
applied to the selected WL, and 1/2Vwy, was applied to
unselected WL. BL is grounded at the beginning of the cycle,
and Vg was applied to the BL when the cell conductiv-
ity became equal to or greater than the target conductivity.
Fig. 8(b) and (c) shows the current waveforms and conduc-
tivity state of each cell in the selected WL. After the full reset
operation, all cells in the WL are prepared to have the lowest
conductivity state (state 0). In addition, it is confirmed that the
conductivity of each cell is increased for each cycle, and when
the target conductivity is reached, the state is maintained by
the inhibit operation. According to the experimental results,
it was confirmed that full reset operation consumes 87.76 pJ
and gradual set operations consume 30.58 pJ to 2.52 nJ,
respectively. Because the energy consumption of the write
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operation increases with the cell conductance, it is important
to achieve a precise control of the multilevel states in the
low conductivity region. More specifically, the insertion of
a thin oxide layer can be an appropriate option to reduce the
energy consumption as confirmed in Fig. 6. It should be noted
that unexpected or nonideal phenomena such as variations
from the target conductivity and initial conductivity change
after the write operation were not been considered in the
circuit simulation. The total time required for the overall write
operation of the entire array when adopting the proposed
sequence and the GSFR/FSGR operation can be expressed
as follows:

tiotal, GSFR = N[ X [1 x (trsT + tRD) + @ - (Nggare — 1)

X (tsgT + trRD)] 3)
trotal, FSGR = DwL X [1 X (tsgT + tRD) + @ - (Nstate — 1)
X (trsT + tRD)] @

In these equations, nwy, is the number of word lines, nge
is the number of conductivity states, and « is the number of
pulses to increase on the conductivity state. Fig. 9 shows the
total time required to implement 8, 16, and 32 conductivity
states in a 784 x 10 hardware synapse array. In this work,
it is assumed that only one pulse is required to move between
states (¢ = 1). It is confirmed that tioa1, GsFr 1S 35.3% to
176.5% smaller than tioral, FSGR in the case of tsgr = 1 us
and trst = 2, 3, 4, 5 us. In addition, tiral, GSFR increases
from 80.0% to 282.4% when the number of states increases
from 8 to 16 and 32. Therefore, under conditions that require
a longer reset pulse compared to the set pulse [21], the
GSFR operation is always superior in terms of reducing
the total write time. Implementing multilevel states is fun-
damentally different from implementing a binary state, and
always requires longer write time. It should be noted that
this comparison is limited to the performance of the WL-
by-WL write method using gradual switching characteristics.
Also, it can be concluded that it is advantageous to reduce the
number of states if possible provided that the performance
degradation such as inference accuracy is minimized. The
inference accuracy of a hardware synapse array after weight
transfer from an ANN was obtained by SPICE circuit sim-
ulations and compared to those of different software cases.
The weight distributions of a one-layer ANN before and
after supervised training are represented in Fig. 10(a). When
trained for 50 epochs without any constraints, it can be seen
that most of the weight values are distributed in the range
of —2 to 2. Fig. 10(b) shows the weight distributions before
and after supervised learning, and after quantization when
there is an initial/in-training nonnegative weight constraint.
The nonnegative weight constraint is set before training pro-
cess starts and is applied each time to adjust the weight
values. With the nonnegative constraint, the initial and final
weight values are distributed in the range of zero or more.
After training, the weight values can be quantized to suit the
hardware implementation. The red bars in Fig. 10(b) indi-
cate the position and distribution of the quantized weights.
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In Fig. 10(c), Casel shows the pattern recognition accu-
racy when the Modified National Institute of Standards and
Technology (MNIST) dataset is used in an ideal software
level. It can be seen that the nonnegative weight constraint
has little effect on the accuracy (Case2). According to the
experimental results in Fig. 10(c), it can be confirmed that
the negative weight value is not always essential if there are
more than 32 weight levels and to solve problems such as
simple pattern recognition. This result is also consistent with
the results of a recently reported study [11]. At the same
time, weight quantization can affect the accuracy depend-
ing on the number of states (Case3—Case5). In particular,
when the number of states is smaller than 16, the accuracy
decreases to less than 90% (Case5). From the relationship
between weight quantization and inference accuracy, it can
be seen that 16 levels (4 bits) or higher weight resolution
are required to achieve acceptable accuracy (e.g., 90%). This
would be a fundamentally necessary feature for synapse
weight to learn or classify the characteristics of image pat-
terns with analog levels. These synaptic properties related
to quantization are generally consistent with those reported
in the literature although it may be slightly affected by the
neural network structure, the number of parameters and the
complexity of the image dataset [32], [33]. The weight values
from software training can be converted into conductivity of
synaptic devices. It is assumed that the conductivity ranges
from 0.02 to 25.2 uS, and can be quantized to more than
eight levels, as shown in Fig. 3(c). Case6 shows that the
accuracy of the inference operation performed at the hard-
ware level is equivalent to that at the software level. A subtle
difference in the accuracies between software and hardware
is related to the number of test datasets. In our experiment,
10,000 test images in the MNIST dataset were used to check
the accuracy of the software, and 500 test images were used in
the circuit simulation to check the accuracy of the hardware.
From the results in Figs. 9 and 10, it can be concluded that
there is a trade-off between the inference accuracy and the
total write time, with both mainly determined by the number
of conductivity states, i.e., Ngate-

V. CONCLUSION

In this work, a fast and reliable write scheme that fully utilizes
the GSFR operation of RRAM is proposed and validated.
To realize the voltage-dependent resistance switching behav-
ior of a CMOS-compatible SiN,-based RRAM cell, a SPICE
compact model is introduced and adjusted based on the device
characteristics. Considering that set pulses generally requires
relatively shorter time than reset pulses and that reset failure
is a more vulnerable and difficult-to-handle phenomenon,
it is confirmed that the GSFR-based WL-by-WL scheme is
superior in terms of speed and reliability compared to the
FSGR-based operation. Finally, the inference accuracy of the
synaptic memory array with the nonnegative constraint and
weight quantization, is quantitatively compared with that of
an ideal software algorithm.
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