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1. Introduction

Neuromorphic electronics mimicking bio-
logical nervous systems have attracted sig-
nificant attention as a new computing
architecture with high energy efficiency,
for overcoming the von Neumann bottle-
neck issue.[1–3] In realizing artificial intelli-
gence based on hardware neuromorphic
systems, a bio-realistic synaptic memory
is a requisite component. Specifically, for
neuromorphic computing such as analog
vector–matrix multiplication, memory devi-
ces should meet various requirements,
including multilevel states with nonvolatil-
ity and high integration density.[4,5]

A resistive switching device, known as a
memristor, is a promising candidate as a
memory component for hardware-based
neural networks owing to its simple two-
terminal configuration, which allows for
crossbar–circuit integration.[6–8] In neuro-
morphic systems based on the crossbar
arrays of memristors, the one-selector–
one-memory (1S–1R)-structured cell is
generally utilized as an artificial synapse

to prevent crosstalk between neighboring cells, which causes
write disturbance during learning operations.[9–11] Therefore,
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Neuromorphic electronics attract significant attention as a new computing
architecture. Despite much effort for achieving practical neuromorphic systems,
it is still challenging to construct a synapse array ideal for complex neural
networks. Herein, a novel strategy for developing a highly integrated crossbar
array of a one-selector–one-memory (1S–1R) synapse by systematically engi-
neering ion injection is demonstrated. In the proposed synapse, an electro-
chemical metallization (ECM) memristor consisting of unstable filaments and a
typical ECM device with stable filaments act as a selector with a low leakage
current and a stable memory device, respectively. To overcome the voltage-
matching issues in constructing the 1S–1R synapse with high integration density,
ion injection related with the electrical properties is optimized in the ECM devices
via the distribution of active metal nanoparticles at the interface. The developed
synapse possesses a high on/off ratio, superior selectivity, low operating current,
and stable multilevel conductance, compared to the previously reported devices.
High feasibility for complex neuromorphic systems is demonstrated, and the
neural network based on the developed synapse array exhibits reliable parallel
computation with high energy efficiency. This promising concept of realizing
complex neuromorphic electronics is a fundamental building block for the
practical artificial intelligence.

RESEARCH ARTICLE
www.advintellsyst.com

Adv. Intell. Syst. 2022, 4, 2200110 2200110 (1 of 9) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

mailto:sinhlee@knu.ac.kr
https://doi.org/10.1002/aisy.202200110
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faisy.202200110&domain=pdf&date_stamp=2022-06-21


considerable effort has been made to develop a selector with low
leakage characteristics. However, it is still challenging to achieve
a practical 1S–1R cell for highly integrated systems, because the
on/off ratio of the cell is inherently restricted due to the strict
voltage-matching criteria between the selector and the memory
device.[12,13]

To date, various types of mechanisms for the resistive switch-
ing phenomena in memristors have been reported, including
ionic charge transfer,[14,15] oxygen vacancy ordering,[16,17] and
electrochemical metallization (ECM).[18–21] Among them, the
ECM-based devices are favorable for realizing the complex neu-
ral networks in the view points of scalability and synaptic func-
tionality.[18,20,21] In ECM-based memristors, the resistive
switching characteristics are induced by the growth (or dissolu-
tion) of a metallic nanofilament according to specific external
electric stimuli.[19] In addition, continuous conductance tuning
is enabled via the control of the filament size.[21] In recent stud-
ies, it was reported that an ECM-based memristor can serve as a
selective device with a low leakage current and excellent com-
patibility with conventional complementary metal–oxide–
semiconductor systems.[22,23] In this case, volatile threshold
switching is achieved via the formation of unstable metallic
filaments. However, a promising way for precisely controlling
the structure of the metallic filaments and the memory volatility
of the ECM device has not been demonstrated, and the realiza-
tion of an ECM-based 1S–1R synapse for highly integrated

neural networks was barely possible due to the constraints
on the voltage-matching requirements.[12,13] Thus, it is essential
to devise a strategy for developing an ECM-based 1S–1R syn-
apse with a high on/off ratio.

Here, we demonstrate a practical 1S–1R synapse with high on/
off ratio for highly integrated neural networks (see Figure 1a).
The filament stability and the resultant memory characteristics
of the ECMmemristors were controlled precisely by ion-injection
engineering. Specifically, silver nanoparticles were inserted into
the interface between the electrode and the insulator, and the
injection of metal ions in the ECM devices was adjusted via
the distribution of Ag particles, as shown in Figure 1b. A selector
with low leakage current was developed by employing an ECM
memristor with a systematically engineered filament structure.
Additionally, the operating voltages of the selector were effec-
tively optimized to meet the voltage-matching conditions for con-
structing the practical 1S–1R synapse operating with low energy
by controlling the ion injection. The developed synapse cell
exhibited a high on/off ratio of about 104, and the conductance
of the cell was stably tuned under the pulse operation. Moreover,
in the crossbar arrays of our synapse cell, the sneak current path
was prevented completely, and the reliable parallel logic compu-
tation was implemented with high energy efficiency. In an anal-
ysis based on numerical simulations, the developed 1S–1R
synapse demonstrated potential capabilities for realizing com-
plex learning systems.

Figure 1. Fabrication of the one-selector–one-memory (1S–1R) synapse for highly integrated neural networks. a) Schematics presenting the neural net-
work based on the electrochemical metallization (ECM) memristors. b) The ECM memristor configuration for controlling the ion injection. c) The fabri-
cation process for producing the interfacial Ag particles of the ECM memristor via Ostwald ripening. d) Distribution of the interfacial Ag nanoparticles
with different-sized nuclei, as investigated via field-emission scanning electron microscopy.
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2. Results and Discussion

To control the injection of metal ions in the ECM memristor,
inert metals of gold and indium tin oxide (ITO) were utilized
as the top and bottom electrodes, respectively (rather than an
active metal for ion injection, such as Ag and Cu), with interfacial
Ag nanoparticles introduced between the top electrode and an
insulator of silicon oxide (SiOx), as shown in Figure 1b. An
Ostwald-ripening-based self-assembly method was used to pro-
duce the interfacial nanoparticles (see Figure 1c).[24] The Ag
nucleation sites were first prepared via thermal deposition at a
low rate of 0.1 Å s�1. During the thermal evaporation process,
the as-deposited metal atoms balled up on the oxide layer since
the surface energy of Ag is far higher than SiOx.

[25,26] The Ag
nanoclusters were then formed using a post-annealing step at
300 °C. According to the kinetics of Ostwald ripening, Ag nuclei
can coalesce as a nanocluster under high-temperature condi-
tions.[27,28] Moreover, the number density and size of the formed
Ag particles were controlled via the thickness of the nucleus, as
shown in Figure 1d. As the nucleus thickness decreased from 4.0
to 0.5 nm, the average diameter of the particle was reduced from

about 32 to about 13 nm, and the number density of the particle
also decreased. Note that the Ag particles were maintained after
the top electrode deposition (see Figure S1, Supporting
Information).

Let us discuss the control of memory volatility in the ECM
memristor by adjusting the injection of metal ions. Here, four
types of memristor with different density of interfacial Ag par-
ticles were fabricated (Devices 1, 2, 3, and 4) using particles with
average diameters of approximately 13, 19, 22, and 32 nm,
respectively (see Figure 2a). The current–voltage (I–V ) character-
istics of the devices were first analyzed as shown in Figure 2b.
We set three different compliance currents (CCs) of 10�6, 10�5,
and 10�4 A in measuring the I–V curves of the devices. In all the
devices, the electroforming process was performed to trigger the
formation of filaments,[29,30] as shown in Figure S2, Supporting
Information. For Devices 1 and 2, the volatile threshold switch-
ing characteristics were observed irrespective of the CC values,
and the hold voltage (Vhold), whereby a device switches back to a
high-resistance state (HRS), was reduced as the CC values were
increased. This means that the unstable filaments were formed
in the devices, and the growth of the filaments was controlled by

Figure 2. Control of memory volatility in the ECMmemristor. a) Structures of the four types of ECMmemristor with different-sized interfacial Ag particles
(Devices 1, 2, 3, and 4 consisting of the particles with an average diameter of approximately 13, 19, 22, and 32 nm, respectively). b) Current–voltage curves
of the devices. c) Distribution of the threshold switching voltages of the devices during the repeated cycle tests at the compliance current of 10�6 A.
d) Dispersion of the holding voltages of the devices during the repeated cycles at the compliance current of 10�6 A. e) On/off current ratio of the devices
according to the interfacial Ag particle size.
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the CC. Note that Vhold is largely dependent on the filament thick-
ness of the ECM device.[21] Moreover, at a CC of 10�4 A, the max-
imum current values of Devices 1 and 2 (about 3� 10�5 and
8� 10�5 A, respectively) were lower than the CC, in the low-
resistance state (LRS), being an indicative of the self-CC behav-
ior. These self-CC characteristics of the devices were reliably
observed under the repeated cycles of the voltage sweeps (see
Figure S3, Supporting Information). Importantly, the self-CC
characteristics of the selective device are useful tools for reducing
the complexity of the external circuit system.[31] In contrast,
Device 3 exhibited volatile memory characteristics only under
a CC of 10�6 A, while Device 4 was operated as a nonvolatile
memory regardless of the CC (see Figure S4, Supporting
Information). This means that the growth of the metallic nano-
filaments is governed by both the CC and the injection of ions. As
the size and density of the Ag particles increased (see Figure S5,
Supporting Information), the ion injection is achieved in more
global terms, resulting in the enhancement of the filament sta-
bility and the nonvolatile memory characteristics in the ECM
memristor (see Table S1, Supporting Information). In addition
to the memory volatility, important factors for the selective device
are the operating voltages including a threshold switching voltage
(Vth) and Vhold. Figure 2c,d shows the distributions of Vth and
Vhold in the devices (Devices 1, 2, and 3) investigated for 50 cycles
at CC of 10�6 A, respectively. Here, the operating voltages of the
device were effectively changed according to the variations in ion
injection. Typically, in ECM devices, the growth of the filaments
is dominated by the electrochemical redox reaction and the ion
migration,[32,33] which means that the switching voltage and the
filament stability can be tuned via the injection of metal ions.
Given that selector–memory voltage matching is a challenging

issue for high-density 1S–1R artificial synapses,[11,12] we can con-
sider that our proposed ECM device with controllable operating
voltages is feasible for realizing complex neural networks.
Figure 2e presents the on/off current ratio of the ECM memris-
tor according to the Ag particle conditions. Here, while the on/off
ratio was improved with the increase in particle size and number,
at the same time, the device gradually transitioned from volatile
switching characteristics to a nonvolatile memory. This implies
that a practical ECM selector with a high on/off ratio can be
obtained by optimizing the interfacial particle distribution.

To explore the effect of ion injection on the growth of the
metallic nanofilament in the ECM memristor, four types of
lateral-type devices with different electrode thicknesses were pre-
pared (i.e., L-devices 1, 2, 3, and 4 with electrode thicknesses of
30, 80, 130, and 180 nm, respectively (see Figure 3a)). In all the
devices, the gap between the electrodes was 30 μm. In typical
ECM memristors, since the active electrode is thicker, more
metal ions are generated under an electric field.[34] Figure S6,
Supporting Information, exhibits the I–V curves of the devices.
In all cases except L-device 1 (which had insufficient metal ions),
volatile resistive switching phenomena were confirmed, and
L-device 2 showed the self-compliance characteristics due to
restricted ion injection. In addition, the Vth and Vhold values were
reduced as the electrode thickness and the resultant number of
generated ions were increased, which is consistent with the
results shown in Figure 2b–d. To analyze the filament structure,
the I–V curves of specific devices (L-devices 2, 3, and 4) at the
LRS were replotted into ln(I/V2)–1/V scale,[35,36] as shown in
Figure 3b. In all the graphs, a linear relationship with a negative
slope was observed, while the absolute slope value used for esti-
mating the barrier width was significantly smaller in L-device 4

Figure 3. Dynamics of the unstable filament growth in the ECM memristor with restricted ion injection. a) Four types of the lateral-type ECM memristor
with electrodes with different thicknesses (L-devices 1, 2, 3, and 4 with electrode thicknesses of 30, 80, 130, and 180 nm, respectively). b) The ln(I/V2)
versus 1/V curves of the lateral-type devices. This figure was replotted from in Figure S4, Supporting Information, which was measured at the compliance
current of 10�6 A. c) Schematics illustrating the energy band diagrams for the volatile ECM memristors with the different ion injections. d) Geometric
structures of the unstable filaments in the lateral-type devices, as observed via field-emission scanning electron microscopy.
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(about 5) than in L-device 2 (about 268). Such tendency was also
observed in our vertical-type devices (Device 1, Device 2, and
Device 3), as shown in Figure S7, Supporting Information. In
the LRS, the devices followed the tunneling conduction mecha-
nism, and the barrier width was effectively reduced by the
increase in the number and size of the Ag particles. This means
that the filament structure was controlled effectively by the den-
sity of the ion injection.[35,36] As shown in Figure 3c, in the ECM
memristors with limited ion injection, the unstable filament was
formed under the set process, which led to a tunneling current at
the LRS. Moreover, a thicker filament was obtained in the device
with greater ion injection, resulting in the reduction of the insu-
lating barrier width. We observed the active surface of the spe-
cific devices (L-devices 2, 3, and 4) to directly confirm the
unstable filament growth (see Figure 3d). Following a voltage
sweep for threshold resistive switching, each device was investi-
gated using field-emission scanning electron microscopy. In all
the devices, an unstable filament consisting of Ag nanoparticles
was confirmed, and the thinner filament was observed in the case
with the lower ion injection, which is accordance with the results
in Figure 3b. It should be noted that the lateral diffusion of the
metal atoms is more facilitated when the metallic filament in the
ECM memristors is thinner.[29,37]

We then realized the 1S–1R-structured artificial synapse by
stacking the two different ECM memristors (see Figure 4a).
The memristor with the interfacial Ag nanoparticles was utilized
as the selector and was connected serially to the typical SiOx-
based ECM device acting as a multilevel memory. In construct-
ing the synapse with a high on/off current ratio, the electrical
characteristics of the ECMmemory were first obtained, as shown

in Figure S8, Supporting Information. To satisfy the strict voltage
conditions, the interfacial particle distribution of the ECM selec-
tor was optimized using the same process as for Device 2 in
Figure 2. We inserted the Ag particles into the interfaces of
the top electrode/insulator and the bottom electrode/insulator,
for bipolar threshold switching in the selector (see Figure S9,
Supporting Information). As shown in Figure 4b, the developed
synapse cell was operated stably as a reversible nonvolatile mem-
ory with selective characteristics. At the positive voltage sweeps,
the device was transited from the HRS to the LRS, and the resis-
tance state of the device was switched back to the HRS under the
negative voltage conditions. The on/off current ratio between the
HRS and the LRS at the reading voltage of 0.7 V and selectivity of
the device were approximately 104 and 105, respectively, which
are considerably higher than the results obtained in previous
studies (see Table S2, Supporting Information).[23,38–43] Note that
the selectivity of the device was calculated by a ratio between the
LRS currents, at the reading voltage (0.7 V) and a half of the read-
ing voltage (0.35 V). Moreover, a current level of our synapse at
the LRS (about 10�5 A) was reduced to less than one-hundredth
of the typical memory (about 10�3 A as shown in Figure S8,
Supporting Information), due to the selector acting as an external
resistor for suppressing the overshoot phenomenon of the ECM
memory.[44] This implies that our developed cell is ideal for real-
izing highly integrated memory systems and neural networks
with high energy efficiency. In the theoretical simulation, the
crossbar array of our synapse cell exhibited a high integration
density larger than 5.7 Gbit, which is vastly superior to the mem-
ristors reported previously[23,38–43] (see Figure S10 and Table S2,
Supporting Information). Figure 4c presents the reproducibility

Figure 4. Development of the 1S–1R-structured artificial synapse. a) A microscopic image of the artificial synapse consisting of the two different ECM
memristors for a memory and a selector. Inset image presents the schematics of the developed synapse structure. b) Current–voltage curves of the
device. c) Distributions of the switching voltages of the device in the repeated cycle tests. d) Retention characteristics of the device. A reading voltage
(Vread) of 0.7 V was used. e) Electrical endurance performances of the device. A Vread of 0.7 V was utilized, and the cycle tests consisting of the voltage
sweeps were performed.
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of the resistive switching in the synapse cell. The variations in the
set and reset voltages were measured during 50 cycles, and the
attendant temporal changes were evaluated according to the ratio
of the standard deviation to the average, which was found to be
approximately 0.26 and 0.35, respectively. These results are com-
parable to those of typical ECM memristors.[44] Additionally,
we investigated the distribution of the switching voltages for
eight different cells, as shown in Figure S11, Supporting
Information. The dispersions of the switching voltages exhibited
slight fluctuations due to the stochastic formation of the metallic
filaments in the ECM memristor. However, the reliable growth
of the filament has been reported in the ECMmemristor with the
localized ion injection, suggesting that the reliability and the
device-to-device uniformity of our synapse can be facilely
enhanced.[24,45] Figure 4d,e shows the memory retention and
endurance performances of the device, respectively. We used
the ramped voltage stresses (instead of pulse voltage stresses)
in the endurance measurement, because the voltage sweeping
mode is effective to estimate the device conductance accu-
rately.[46] Note that, in realizing the artificial neural network
for offline learning systems, the endurance performance of
the synapse cell is less strict than that in spiking neural net-
work.[5] The memory states with selectivity were stably main-
tained for a duration of 104 s, and the device exhibited the
reproducible switching characteristics in the repeated 500 cycle
tests involving the set and reset voltage sweeps. Furthermore, the
reversible resistive switching behaviors were also confirmed in
several different cells in a single substrate (see Figure S12,
Supporting Information). This means that the developed device
can function as a stable artificial synapse for realizing the artifi-
cial neural networks. To further confirm the capability of our syn-
apse for practical applications, the transient response of the
device was measured at voltage pulses of 2.0 V (for the set pro-
cess) and �2.0 V (for the reset process), as shown in Figure S13,
Supporting Information. The switching times of the device were
approximately 27 and 72 μs for the set and reset processes,
respectively. In typical ECM memristors, the growth (or rupture)
of the metallic filaments is mainly governed by the voltage ampli-
tude, and thus, the switching speed of our synapse can be greatly
improved by increasing the amplitude of the pulse.[32,33] Another
essential property of the artificial synapse for realizing parallel
computation of neuromorphic electronics is the multilevel mem-
ory state of the device.[3,5,47] The multilevel conductance of the
developed device was thus investigated under the pulse condi-
tions (see Figure S14, Supporting Information). In typical
ECM memristors, the metallic filament formation and the resul-
tant resistive switching are achieved abruptly, and thus, the con-
ductance is changed nonlinearly under the repeated electric
stimuli with the constant amplitude.[47] To tune the device con-
ductance linearly, varying voltage pulses were used for the mea-
surement. In the potentiation process, the pulse amplitude was
increased from 2.1 to 2.5 V, while the pulse width was fixed at
20 μs. In contrast, in terms of depression, the amplitude of
the 20 μs voltage pulse was reduced from �2.2 to �2.6 V. The
device exhibited reliable multilevel memory states throughout
the repeated pulse operation. Moreover, each conductance state
was maintained stably (see Figure S15, Supporting Information).

For realizing various applications of neuromorphic computing
systems, such as artificial intelligence and pattern–recognition

systems, it is important to achieve analog vector–matrix multipli-
cation in the synapse arrays.[4–6] To verify the applicability of the
proposed 1S–1R synapse to the practical learning systems
directly, we developed a synapse array with a size of 4� 4, as
shown in Figure 5a. Then, our neural network based on
the 1S–1R synapse was trained in terms of Boolean logic oper-
ators, including AND, OR, NAND, and NOR (see Figure S16,
Supporting Information). Following the training processes, the
target weights were effectively updated to the synapse cells, as
shown in Figure 5b. The results indicated that the undesired
sneak current leading to write disturbance problems was sup-
pressed effectively in our developed array. Figure 5c shows
the configuration of the constructed neural network for
Boolean logic. A single layer was composed of four input neu-
rons and four output neurons connected by 16 synapses. In
our system, Va and Vb are two different logic inputs, while
IAND, IOR, INAND, and INOR denote the output currents for the
AND, OR, NAND, and NOR logic computations, respectively.
We applied 0.7 V for a logic input of “1” and 0.07 V for the input
of “0,” to the word lines, and measured the currents at the bit
lines for IAND, IOR, INAND, and INOR. The pulse width of the input
voltages was 100 ns. The obtained current for each bit line was
compared with a threshold value of 20 μA to determine the logic
output. In the case where the bit line current was lower (or
higher) than 20 μA, the output was determined as “0” (or “1”).
Figure 5d presents the logic operation of our simple neural net-
work according to the two binary inputs. In our system, the logic
computation of AND, OR, NAND, and NOR was reliably dem-
onstrated, which implies that our developed synapse array can
be utilized for practical applications pertaining to artificial intel-
ligence. Although the average computation energy for each logic
in the developed system consisting of the 26 kΩ sensing resistors
(see Figure S17, Supporting Information) was approximately
1.28 pJ, similar to that in CMOS counterparts,[48] our system con-
sumes zero standby energy with high computing speed.

To specifically explore the potential of our synapse array for
complex neuromorphic computing, a theoretical analysis was
conducted in terms of pattern recognition using the SPICE sim-
ulation. A dataset for the Fashion Modified National Institute of
Standards and Technology (MNIST)[49] was used in the recogni-
tion simulation, and a single-layer neural network which is com-
posed of the 784 input neurons for the images with 28� 28
pixels, and the 10 output neurons for the classes of fashion
images was constructed (see Figure 5e). Note that the Fashion
MNIST dataset consist of 70 000 gray scale images (60 000 learn-
ing images and 10 000 test images) for each class of fashion
images. The detailed neural network training processes were
as follows. The training process based on the non-negative
weights was performed in the 784� 10 synapses, and the prop-
erties of the synapse cell including the conductance memory
states were obtained in Figure S14, Supporting Information.
The software weights constrained as positive values are feasible
to be effectively transferred to the conductance of the hardware
synapse cell.[3] It should be noted that in the neural networks for
the Fashion MNIST pattern recognition, the operating perform-
ances of the software system based on the non-negative weights
are close to those of the system involving negative weights (see
Figure S18, Supporting Information). As the common condi-
tions in the software training based on TensorFlow (Google’s
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machine-learning framework), we adopted softmax activation
function for the output weights,[50] and utilized the adaptive
momentum estimation optimizer[51] and the sparse categorical
crossentropy loss function.[52] As shown in Figure 5f, after train-
ing, each cell weight was converted into the conductance of our
artificial synapse, and quantized to a specific level in certain
cases. In the hardware simulations, the quantized weight values
were directly implemented as resistor elements on the synapse
array. For inference of the arrays, the input voltage between 0 and
1 V was set, and the output current of each bit line was con-
firmed. In classifying the fashion images, our trained neural net-
work exhibited an accuracy of approximately 84%, which is
extremely close to that of the ideally simulated software systems
(see Figure 5g). Under the training processes, the recognition
accuracy of each system was improved with increasing the
epochs at the initial step; however it shows a tendency to saturate
after about 10 epochs owing to the convergent properties in the
neural networks[53] (see Figure S18, Supporting Information).

Moreover, when the 100 ns voltage pulse was utilized as the input
signals, our developed system with the sensing resistors of 1mΩ
consumed approximately 2.56 nJ in recognizing each fashion
image, being indicative of the high energy efficiency, which is
vastly superior to that of the von Neumann computing system.[54]

3. Conclusion

In conclusion, we implemented the crossbar arrays of an ECM-
based synapse for practical neuromorphic computing systems.
We developed the 1S–1R synapse with a high on/off ratio and
low operating current by utilizing the ECM memristors with
the systematically engineered ion injection. It was found that
the memory volatility was effectively controlled by the ion injec-
tion in addition to the various electrical properties of the
memristor, including its operating voltages, on/off ratio, and
self-compliance characteristics. In constructing the 1S–1R

Figure 5. Realization of the neural networks based on the developed synapse cell. a) A microscopic image of the developed synapse array and schematics
illustrating its application. b) Distributions of the synaptic weights in the synapse array after training for Boolean logic (AND, OR, NAND, and NOR)
operations. c) Diagram of the trained neural network for the logic operations. d) Parallel computation for AND, OR, NAND, and NOR utilizing the realized
synapse array. e) Schematic diagram of the neural network for recognizing a dataset of the Fashion Modified National Institute of Standards and
Technology. f ) Distributions of the synaptic weights in the ideal software system and the trained synapse arrays. g) Accuracy for recognizing the fashion
images, after training 50 epochs for the ideal software systems and the developed synapse-based neural network.
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structured artificial synapse, the ion injection in the ECM device
acting as a selector was optimized to achieve the voltage match-
ing with the memory device. Our developed synapse exhibited a
superior on/off ratio (about 104) and selectivity (about 105) with
controllable multilevel conductance, both of which are ideal for
highly integrated neuromorphic electronics. Moreover, the cross-
bar arrays of our synapse theoretically exhibited a high integra-
tion density of over 5.7 Gbit as well as the reliable parallel
computation of Boolean logic. In addition, the neural networks
incorporating our synapse array demonstrated good applicability
for realizing practical learning systems with high energy effi-
ciency. Our hardware-based neural networks effectively recog-
nized the complex fashion images with an accuracy of
approximately 84%, which is close to that of the ideal soft-
ware-based neural networks. The recognition process for each
complex image was achieved with the ultralow energy consump-
tion (about 2.56 nJ). This promising strategy for achieving highly
integrated neuromorphic electronics would provide a fundamen-
tal building block for developing the next-generation computing
systems linked to artificial intelligence.

4. Experimental Section
The geometrical profiles of the films were measured using an atomic

force microscope (XE-100, PSIA), while the electrical characteristics of all
devices were measured utilizing a semiconductor parameter analyzer
(4200-SCS, Keithley) integrated with an ultrafast I–V module (4225-
PMU, Keithley). In the electrical measurements of the vertical memristors
and the artificial synapse, the scanning voltage was applied to the top elec-
trode, and the bottom electrode was grounded. All the electrical measure-
ments were performed in an ambient air condition. The distribution of the
interfacial Ag nanoparticles in the devices and the Ag nanofilament struc-
ture in the lateral-type memristors were observed utilizing a field-emission
scanning electron microscopy instrument (S-4800, Hitachi).

In preparing the ECM memristors with the interfacial metallic particles
(Devices 1, 2, 3, and 4), an ITO-patterned glass substrate was cleaned
sequentially by ultrasonication in acetone, isopropyl alcohol, and deion-
ized water for 30min. As an insulating layer, silicon oxide (SiOx) of
200 nm thick was produced over the substrate via plasma-enhanced chem-
ical vapor deposition (PECVD) (PlasmaPro System100, Oxford). To form
the interfacial Ag particles for Device 1, Device 2, Device 3, and Device 4,
Ag films with thicknesses of 0.5, 1.0, 2.0, and 4.0 nm were deposited,
respectively, by the thermal evaporation at 0.1 Å s�1 under 10�6 Torr.
Each Ag film was baked at 300 °C for 1 h, to obtain the Ag nanoparticles.
For the top electrode, a gold film of 50 nm thick was thermally evaporated
at 2.0 Å s�1 under 10�6 Torr. The active area for each vertical-type device
was 0.5� 0.5 mm.

To fabricate the lateral-type ECM memristors (L-devices 1, 2, 3, and 4),
first, a glass substrate was cleaned sequentially via ultrasonication in ace-
tone, isopropyl alcohol, and deionized water for 30 min. For the insulator,
SiOx of 200 nm thickness was produced over the substrate via the PECVD
(PlasmaPro System100, Oxford). As the electrodes for L-devices 1, 2, 3,
and 4, Ag films with thicknesses of 30, 80, 130, and 180 nm were thermally
deposited on the oxide film, respectively, at 0.8 Å s�1 under 10�6 Torr. The
active area for each lateral-type device was 0.03� 0.03 mm.

In fabricating the artificial synapse, the ECM memristor with the inter-
facial Ag particles was first prepared as a selector, and the typical ECM
memory device was vertically stacked onto the prepared selector. An
ITO-patterned glass substrate was cleaned sequentially via ultrasonication
in acetone, isopropyl alcohol, and deionized water for 30min. Note that
the ITO pattern acted as a bottom electrode in the synapse. The bottom
interfacial particles were formed on the substrate by thermally evaporating
an Ag film with thickness of 1 nm at 0.1 Å s�1 under 10�6 Torr. The Ag film
was annealed at 300 °C for 1 h. As the insulator of the selector, SiOx of

200 nm thick was formed over the substrate using the PECVD
(PlasmaPro System100, Oxford). Then, the top interfacial particles were
produced on the oxide film by the same process as the bottom particles.
For the top electrode of the selector, and the bottom electrode of themem-
ory, a 50 nm thick gold layer was thermally evaporated on the top interfa-
cial particles, at the rate of 2.0 Å s�1 under 10�6 Torr. We formed the
memory insulator of a 200 nm SiOx film on the gold electrode by
PECVD (PlasmaPro System100, Oxford). As the top electrode of the syn-
apse, a silver layer with 50 nm thickness was thermally deposited at the
rate of 0.8 Å s�1 under 10�6 Torr. The active area of the 1S–1R synapse
was 0.5� 0.5 mm.
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