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Abstract—This article addresses the problem of state
estimation and simultaneous learning of the vehicle’s tire
model on autonomous vehicles. The problem is motivated
by the fact that lateral distance measurements are typically
available on modern vehicles while tire models are difficult
to identify and also vary with time. Tire forces are modeled
in the estimator using a neural network in which no a priori
assumptions on the type of model need to be made. A
neuro-adaptive observer that provides asymptotically sta-
ble estimation of the state vector and of the neural network
weights is developed. The developed observer is evaluated
using both MATLAB simulations with a low-order model as
well as with an unknown high-order model in the commer-
cial software CarSim. Cornering and lane change maneu-
vers are used to learn the tire model over an adequately
large range of slip angles. Performance with the low-order
vehicle model is excellent with near-perfect estimation of
states as well as the tire force nonlinear characteristics. The
performance with the unknown high-order CarSim model is
also found to be good with the tire model being estimated
correctly over the range of slip angles excited by the exe-
cuted vehicle maneuvers. The developed technology can
enable a new approach to obtaining tire models that are
otherwise difficult to identify in practice and depend on
empirical characterizations.

Index Terms—Autonomous vehicles, neural networks,
observers, tire force models, vehicle lateral dynamics.

I. INTRODUCTION

THIS WORK is motivated by the fact that tire force models
are most often represented empirically and are difficult to

identify in practice. Linear models are often used and suffice for
nominal nonaggressive operation on dry safe roads. However,
nonlinear models become necessary when electronic stability
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control or other active safety systems need to be utilized, or in the
case of slippery roads or aggressive maneuvers. Such nonlinear
tire models are represented empirically using the Pacejka Magic
Formula tire representation, the brush tire model, or the Dugoff
tire model [1]. The parameters of these imperfect models are
difficult to identify in practice. Even in the case where a tire
manufacturer has extensive test facilities to fully characterize
and represent a tire, the real-world characteristics will vary with
time due to both tire wear and also due to changes in pneumatic
tire pressure.

This article focuses on autonomous vehicles with automated
steering for lane keeping. On such vehicles, the lateral distance
with respect to the center of the lane and orientation with respect
to the lane markers are measured and are used for automated
steering, both to follow the lane and to perform automated lane
changes during autonomous driving. The technical objectives in
this article are defined as real-time estimation of the state vector
of the vehicle and simultaneous estimation of the tire force model
of the vehicle. The tire force function is represented using a neu-
ral network and the weights of the neural network are identified
in real time. Unlike traditional neural networks, backpropagation
is not utilized for training and no requirement to measure tire
forces is necessary even for training the neural network. Instead,
a neuro-adaptive observer is utilized to estimate both states and
tire forces and the only measurements needed are the lateral
feedback variables used in automated steering.

Previous researchers have developed a number of different
vehicle state estimation methods while trying to use affordable
sensors such as wheel speed sensors, inertial measurement units
(IMUs), and GPS. In the development of these vehicle state
estimation methods, various tire models are utilized. Lateral
velocity estimation using state observers [2] and sideslip an-
gle estimation using unknown input observer [3] have been
developed based on linear tire models (tire force is linearly
proportional to slip angle). Nonlinear observers [4], [5] have
been developed for slip angle estimation based on the brush tire
model. Slip angle estimation methods have also been developed
by using the EKF [6], [7], UKF [8], and fuzzy observers [9]
based on the Dugoff tire model. Kalman filter-based methods
(EKF, UKF, and Cubature Kalman filter) have been utilized for
vehicle state estimation including lateral velocity [10] and slip
angle estimation [11], [12] based on the Pacejka model. In all
of these state estimation papers, the tire characteristics such as
the tire model parameters and tire properties are assumed to be
known.
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For tire model identification, tire parameter estimation meth-
ods have been proposed [13]–[18]. Many researchers have fo-
cused on estimation of cornering stiffness for the linear tire
model [13]–[16]. However, the linear tire model is applicable
only under nominal driving conditions. Parameter estimation
methods for nonlinear tire model structures have also been
proposed based on the least squares method, but assume a known
model structure [17], [18].

As computer vision evolved, vision-based vehicle control
systems have been actively studied for autonomous driving cars.
For example, lane keeping control system has been developed
[19], [20] and lane lateral distance measurement methods have
been also proposed [21], [22]. Vehicle body slip angle estimation
based on vision systems has also been proposed [23]. Recently,
vision-based lateral position and heading angle estimation with
uneven time delay measurement has been studied [24].

In this article, we aim to develop simultaneous vehicle lateral
state and nonlinear tire force model estimation algorithms for au-
tonomous driving cars. Since autonomous driving cars typically
have on-board camera sensors, we first rewrite vehicle lateral
dynamics in terms of lateral error variables with respect to the
road, which can be measured from the vision system. Neural
network-based observers that can estimate system states and
learn unknown system dynamics simultaneously have been pre-
viously proposed for certain mathematical classes of nonlinear
systems [25]–[27]. Stability of the observers is guaranteed in the
formulation. Recently, a new neural observer has been proposed
based on a Lyapunov-based nonlinear design technique in the
conference paper [28]. Instead of the backpropagation approach,
both the observer gains for state estimation and for weight
adaptation are computed by solving a set of linear inequality
matrix (LMI) conditions. In this article, we utilize a neural
network-based observer modified from the conference paper
[28] to estimate both vehicle lateral states and the nonlinear tire
model. We first show the performance of the proposed algorithm
via MATLAB simulations with a low-order vehicle model and
then validate the algorithm using an unknown high-order model
from the commercial CarSim software.

II. VEHICLE DYNAMIC MODEL

A bicycle model of the vehicle with two degrees of freedom
(2-DOF) is considered to describe vehicle lateral dynamics, as
shown in Fig. 1. The vehicle lateral translation y is defined along
the body fixed lateral axis of the vehicle to the point O,which is
the instantaneous center of rotation of the vehicle. The vehicle
yaw angle ψ is defined with respect to the global X-axis. Using
Newton’s second law, the vehicle lateral dynamics are modeled
with the following equations:

m
(
ÿ + ψ̇vx

)
= Fyf + Fyr

Iz ψ̈ = lf Fyf − lrFyr (1)

where m is the total mass of the vehicle, Iz is the yaw moment
of inertia of the vehicle, vx is the longitudinal velocity of the
vehicle at the center of gravity (c.g.), lf and lr are the distances

Fig. 1. 2-DOF bicycle model of the vehicle.

from the c.g. to front and rear wheelbases, and Fyf and Fyr are
the lateral tire forces on front and rear tires.

Experimental results show that the lateral tire force of a tire
is a nonlinear function of slip angle and is linearly proportional
to the slip angle for small slip angles [29]. Based on this result,
we write each of the front and rear tire forces as combination
of a linear tire force model and an unknown nonlinear tire force
model

Fyf = 2Cfαf + fyf (αf )

Fyr = 2Crαr + fyr (αr) (2)

where Cf and Cr are the cornering stiffnesses of each front and
rear tire, αf and αr are the slip angles of front and rear wheels,
and fyf (αf ) and fyr(αr) are the unknown nonlinear front and
rear tire force models, respectively.

Slip angles can be obtained from the following relations:

αf = δ − ẏ + lf ψ̇

vx

αr = − ẏ − lrψ̇

vx
(3)

where δ is the steering angle of the front wheel of the vehicle.
Since we aim to develop algorithms to estimate both vehicle

states and tire force model for autonomous driving cars, we
rewrite the vehicle lateral dynamic model in terms of position
and orientation error with respect to the road: lateral position
error from center of lane e1 and orientation error of vehicle with
respect to the road e2. Consider a vehicle traveling with constant
longitudinal velocity vx on a road with instantaneous radius R.
Then, the desired yaw rate of the vehicle can be defined as

ψ̇des =
vx
R
. (4)

The following relations can be obtained for the position and
orientation error variables [1]:

ė1 = ẏ + vx (ψ − ψdes)

ė2 = ψ̇ − ψ̇des. (5)
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Using (2) and (5), we rewrite the lateral dynamic model (1) as

ë1 =

(−2Cf − 2Cr
mvx

)
ė1 +

(
2Cf + 2Cr

m

)
e2

+

(−2Cf lf + 2Crlr
mvx

)
ė2

+
2Cf
m

δ +

(−2Cf lf + 2Crlr
mvx

− vx

)
ψ̇des

+
fyf (αf ) + fyr(αr)

m

ë2 =

(−2Cf lf + 2Crlr
Izvx

)
ė1 +

(
2Cf lf − 2Crlr

Iz

)
e2

+

(
−2Cf l2f − 2Crl2r

Izvx

)
ė2

+

(
−2Cf l2f − 2Crl2r

Izvx

)
ψ̇des − ψ̈des

+
lffyf (αf )− lrfyr(αr)

Iz
(6)

Assume that the lateral position error from center of lane
and orientation error of vehicle with respect to the road can
be measured by vision system. Then, the state-space model of
the system with a state vector ξ = [ e1 ė1 e2 ė2 ]

T is given by

ξ̇ = Aξ +B1δ +B2ψ̇des +B3ψ̈des + Ff

z = Cξ (7)

where

A =

⎡
⎢⎢⎢⎣

0 1 0 0
0 −2Cf−2Cr

mvx

2Cf+2Cr

m
−2Cf lf+2Crlr

mvx
0 0 0 1

0 −2Cf lf+2Crlr
Izvx

2Cf lf−2Crlr
Iz

−2Cf l
2
f−2Crl

2
r

Izvx

⎤
⎥⎥⎥⎦

B1 =

⎡
⎢⎢⎣

0
2Cf

m
0

2Cf lf
Iz

⎤
⎥⎥⎦ , B2=

⎡
⎢⎢⎢⎣

0
−2Cf lf+2Crlr

mvx
− vx

0
−2Cf l

2
f−2Crl

2
r

Izvx

⎤
⎥⎥⎥⎦ , B3=

⎡
⎢⎢⎣

0
0
0

−1

⎤
⎥⎥⎦

F =

⎡
⎢⎢⎣

0 0
1
m

1
m

0 0
lf
Iz

− lr
Iz

⎤
⎥⎥⎦ , f =

[
fyf (αf )
fyr (αr)

]
, C =

[
1 0 0 0
0 0 1 0

]
.

(8)

Therefore, we develop an algorithm to estimate the state vari-
ables and the unknown nonlinear tire force using the above men-
tioned nonlinear vehicle model. Note that the above mentioned
model derivation differs from standard textbook representations
[1] where the road radius and, hence, ψ̇des are assumed constant.

III. VEHICLE LATERAL STATES AND NONLINEAR

TIRE MODEL ESTIMATION

A data-driven approach is proposed to estimate the nonlinear
tire force model and vehicle states. First, we consider a neural
approximator to deal with the unknown nonlinear tire force
term. Then, a neural network-based observer with the neural
approximator is utilized to estimate vehicle states and to learn
the weights of the neural approximator.

A. Neural Approximator

Based on the capability of the neural network to approximate
nonlinear functions [25], [30], the following approximator can
be used to represent the nonlinear tire force term f :

f =

⎡
⎢⎢⎢⎣
f1

f2
...
fr

⎤
⎥⎥⎥⎦ = γ

⎡
⎢⎢⎢⎢⎣

...
N∑
j=1

Wijσij (ξ, u) + εi (ξ, u)

...

⎤
⎥⎥⎥⎥⎦ (9)

for i = 1, 2, . . . , r where r is the number of nonlinear functions
(r = 2 since there are two unknown nonlinear functions fyf and
fyr), γ = diag(γ1, γ2, . . . , γr) is a matrix to scale the neural
approximator, N is the number of neurons utilized, Wij is
the adaptive weight in the output layer of the neural network,
which is unknown and is assumed to be constant, σij(ξ, u) is
the activation function and is chosen by the designer, u is the
input vector, and εi(ξ, u) is the approximation error, which is
bounded [30]. We assume the following conditions on the neural
approximator:

1) The weights are bounded as

‖Wij‖∞ ≤Wmax (10)

for all i = 1, 2, . . . , r and j = 1, 2, . . . , N .
2) The activation functions are uniformly bounded as

−∞ < σ− ij ≤ σij (ξ, u) ≤ σ̄ij <∞ (11)

and are differentiable Lipschitz continuous functions with a
bounded Jacobian

−∞ < apq ≤ ∂σij
∂ξq

(ξ, u) ≤ bpq <∞ (12)

for every ξ ∈ Rn, i = 1, 2, . . . , r and j = 1, 2, . . . , N where
p = j +N(i− 1), and q = 1, ...., n.

Front and rear slip angles can be computed from the estimated
states and inputs as

α̂f = δ +
− ˙̂e1+vxê2−lf ˙̂e2

vx
− lf ψ̇des

vx

α̂r =
− ˙̂e1+vxê2+lr ˙̂e2

vx
+ lrψ̇des

vx
.

(13)

Then, the estimated nonlinear tire force term can be written
using the activation functions as functions of slip angles

f̂ = γ

⎧⎪⎪⎨
⎪⎪⎩

N∑
j=1

Ŵ1jσ1j (α̂f )

N∑
j=1

Ŵ2jσ2j (α̂r)

⎫⎪⎪⎬
⎪⎪⎭ . (14)
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B. Neuro-Adaptive Observer

Using the neural approximator (14), a neural network-based
observer is utilized to estimate vehicle states and to learn the
weights of the neural approximator

˙̂
ξ = Aξ̂ + L

(
z − Cξ̂

)
+B1δ +B2ψ̇des +B3ψ̈des

+ Fγ

⎡
⎢⎢⎢⎢⎣

...
N∑

j = 1
Ŵijσij (α̂f , α̂r)

...

⎤
⎥⎥⎥⎥⎦

˙̂
W ij = Kij

(
z − Cξ̂

)
(15)

for i = 1, 2, . . . , r where L and Kij are observer gain matrices
to be computed.

Let the state estimation error be ξ̃ = ξ − ξ̂, and suppose the
neural approximator can model the unknown nonlinear functions
with ideal weights, i.e., εi(ξ, u) ∼= 0. Then, using (7), (9), and
(15), the state estimation error dynamics are derived as

˙̃
ξ = (A− LC) ξ̃

+ Fγ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

...
N∑
j=1

W̃ijσij

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ Fγ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

...
N∑
j=1

Ŵij σ̃ij

...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(16)

for i = 1, 2, . . . , r where W̃ij =Wij − Ŵij , σij =
σij (αf , αr), σ̂ij = σij (α̂f , α̂r), and σ̃ij = σij − σ̂ij . We
define w as the column-wise vectorization of Wij

w = [W11,W12, . . . ,W1N , . . . ,Wr1,Wr2, . . . ,WrN ]T .
(17)

Let the parameter estimation error be w̃ = w − ŵ. As a result,
the parameter estimation error dynamics can be written as

˙̃w = −KCξ̃ (18)

where K = [K11,K12, . . . ,K1N , . . . ,Kr1,Kr2, . . . ,KrN ]T .
Using the following notations:

Φ (σ) = diag (σ11, σ12, . . . , σ1N , . . . , σr1, σr2, . . . , σrN )

Ω̂ = diag
(
Ŵ11, Ŵ12, . . . , Ŵ1N , . . . , Ŵr1, Ŵr2, . . . , ŴrN

)
ς̃ = [σ̃11, σ̃12, . . . , σ̃1N , . . . , σ̃r1, σ̃r2, . . . , σ̃rN ]T (19)

andΓ = γ ⊗ 1TN (1N is a column vector ofN elements all set to
one, and ⊗ denotes the Kronecker product), the state estimation
error dynamics (16) can be represented in the compact form as

˙̃
ξ = (A− LC) ξ̃ +GΦ(σ) w̃ +GΩ̂ς̃ (20)

where G = FΓ. By introducing an augmented state vector

ẽ =
[
ξ̃T w̃T

]T
(21)

the estimation error dynamics become

˙̃e = (Ae (σ)− LeCe) ẽ+GeΩ̂ς̃ (22)

where

Ae (σ) =

[
A GΦ(σ)
0 0

]
, Le =

[
L
K

]
, Ge =

[
G
0

]

Ce =
[
C 0
]
. (23)

We can compute the observer gains by solving the following
set of LMIs that is constructed to ensure stability of the estima-
tion error dynamics (22).

Theorem 1. If there exist matrices P = PT > 0, and R of
appropriate dimensions, and fixed scalarsα > 0 and κ > 0 such
that[

Ξ PGe (WmaxI)

(WmaxI)
TGTe P − κ

κ+1I

]
≤ 0 ∀σ ∈ Δ0 (24)

where

Ξ = Ae (σ)
TP + PAe (σ)− CTe R

T −RCe

+ (1 + κ)NN T −M+ 2αP

M =

[
1
2

(HT
1 H2 +HT

2 H1
)

0
0 0

]

N =

[− 1
2

(HT
1 +HT

2

)
0

]

H1 =

⎡
⎢⎢⎢⎣
a11, a12, . . . , a1n

a21, a22, . . . , a2n
...
a(rN)1, a(rN)2, . . . , a(rN)n

⎤
⎥⎥⎥⎦

H2 =

⎡
⎢⎢⎢⎣
b11, b12, . . . , b1n

b21, b22, . . . , b2n
...
b(rN)1, b(rN)2, . . . , b(rN)n

⎤
⎥⎥⎥⎦ (25)

and

Δ0 = {σ = (σ11, . . . , σrN ) |σij
∈
{
σ− ij , σ̄ij

}
, i = 1, . . . , r and j = 1, . . . , N

}
. (26)

Then, the estimation error dynamics (22) with observer gain

Le = P−1 R (27)

is exponentially stable with a minimum convergence rate of α.
Proof: Theorem 1 is constructed by modification of the results

in the previous conference paper [28]. The plant model used in
this article is slightly different from the conference paper and
more applicable to real world systems (it does not require a
constant term involving the neural weights in the plant dynamic
equations). But the philosophy used in the derivation of the proof
remains the same. The Lyapunov function candidateV = ẽT P ẽ
is considered to analyze the stability and then the condition V̇ +
2αV ≤ 0 is applied for exponential stability to obtain the LMI
(24). Due to the strict 8-page limit of this article, we omit the
proof and instead cite the conference paper [28].
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Fig. 2. Comparison between the generated lateral tire force from
a lane change maneuver and the lateral tire force model in CarSim
simulation.

C. Lateral Tire Model Estimation

In this section, a practical problem associated with conver-
gence of the neural network weights will be discussed, and a
least squares-based algorithm proposed to deal with obtaining
better initial conditions for convergence.

First, the developed lateral dynamic model (7) is from a 2-
DOF bicycle model and assumes that the tire force depends on
only lateral slip angle variable in (2). However, the actual lateral
tire force in CarSim can be quite different from the tire force
computed from only the simple lateral tire model. Fig. 2 shows
a result from CarSim simulation during a vehicle lane change
maneuver. As shown in Fig. 2, the generated lateral tire force
versus its slip angle includes hysteresis and does not match the
simple lateral tire model. The mismatch is especially large when
the car just starts its lateral motion due to tire lag.

Second, it turns out that the force estimates can converge to
actual forces with different possible values of neural weights.
The converged values of weights depend on the choice of initial
conditions for the neural weights.

In order to obtain appropriate initial conditions for the neural
weights, a simple algorithm based on a least squares method is
proposed. The procedure is as follows.

Step 1: Store the dataset of estimated values of σ̂ and f̂
obtained from the neuro-adaptive observer for every sample.

Step 2: Set f̂ to zero when the slip angle is very small.
Step 3: Once a dataset using a vehicle lateral maneuver is

obtained, compute weights using a least squares method with
regularization [31]

ŵ0 =

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
ΓΦ1 (σ̂)
ΓΦ2 (σ̂)

...
ΓΦs (σ̂)

⎤
⎥⎥⎥⎦
T ⎡
⎢⎢⎢⎣
ΓΦ1 (σ̂)
ΓΦ2 (σ̂)

...
ΓΦs (σ̂)

⎤
⎥⎥⎥⎦+ ρI

⎞
⎟⎟⎟⎠

−1 ⎡
⎢⎢⎢⎣
ΓΦ1 (σ̂)
ΓΦ2 (σ̂)

...
ΓΦs (σ̂)

⎤
⎥⎥⎥⎦
T ⎡
⎢⎢⎢⎣
f̂ 1

f̂ 2

...
f̂s

⎤
⎥⎥⎥⎦

(28)

where ρ is a positive scalar, the superscript denotes each sample,
and s is the number of samples.

Step 4: Update the weights in real-time using ŵ0 as initial
conditions to the observer.

We set upper bounds of both front and rear slip angles to
be 0.5° for this initialization so as to avoid tire force regions
involving significant mismatch.

Finally, front and rear tire forces are calculated using the real-
time value of the estimated weights Ŵ ∗

ij

Fyf = 2Cfαf + γ1

N∑
j=1

Ŵ ∗
1jσ1j (αf )

Fyr = 2Crαr + γ2

N∑
j=1

Ŵ ∗
2jσ2j (αr) . (29)

It is found that no matter what the initial conditions of the
weights are, the estimated tire forces do always match the
actual forces well. However, using the least squares approach
for initialization helps weights converge to global rather than
locally optimum values.

IV. SIMULATION RESULTS

In order to validate the proposed algorithm for vehicle state
and lateral tire model estimation, we conduct simulation studies
using MATLAB/Simulink and CarSim. The CarSim software
incorporates a high-order vehicle model that includes both lat-
eral and longitudinal forces and further many other details of
other vehicle motions, as well as coupled lateral and longitudinal
tire forces. The vehicle model from CarSim chosen for the
simulation studies is a D-Class sedan with default parameters
(m = 1529.95 kg, Iz = 4607.47 kg-m2, lf = 1.13906 m, and
lr = 1.63716 m). A sampling time of 1 ms is utilized for all the
CarSim simulations. Intricate details of the high-order CarSim
model are unknown and are not utilized by the neuro-adaptive
observer. The speed of the vehicle is controlled to a desired
value using a PI controller and the desired speed is set to
30 m/s. Cornering and lane change maneuvers are considered in
the simulation studies.

For the neuro-adaptive observer, eight soft clipping functions
are considered (four activation functions are utilized for each
front and rear tire force estimation). The activation functions for
the front nonlinear tire model estimation are

σ1j (α̂f ) = α̂f +
1
λ
log

1 + e
−λ

(
α̂f−β−1j

)

1 + eλ(α̂f−β̄1j)
(30)

for j = 1, 2, 3, 4 where β
− 11 = β

− 12 = β
− 13 = 0.005, β

− 14 = 0.1,

β̄11 = 0.02, β̄12 = 0.05, β̄13 = 0.08, β̄14 = 0.1, and λ = 300.
The activation functions for the rear nonlinear tire model esti-
mation are

σ2j (α̂r) = α̂r +
1
λ
log

1 + e
−λ

(
α̂r−β−2j

)

1 + eλ(α̂r−β̄2j)
(31)

for j = 1, 2, 3, 4 where β
− 21 = β

− 22 = β
− 23 = 0.005, β

− 24 = 0.1,

β̄21 = 0.01, β̄22 = 0.03, β̄23 = 0.08, β̄24 = 0.1, and λ = 300.
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Fig. 3. Low-order vehicle model simulation results: desired vehicle
path for cornering maneuver, and steering input.

The values of β
−

and β̄ were selected to allow the activation

functions to cover the operating range sufficiently well. One of
the activation functions is set to be constant with equal lower
and upper bounds, i.e., β

−
= β̄, which helps the approximator

to learn the obtained data by also allowing for a bias term. The
parameter λ adjusts the corner sharpness of the function.

Observer gains are obtained by solving Theorem 1 withα = 2
, γ = diag(5000, 5000), Wmax = 50, and κ = 1

L =

⎡
⎢⎢⎣

7.4476 0.2230
35496.2923 −1403.4068

0.2687 4.3756
−1549.7253 15585.8620

⎤
⎥⎥⎦ × 103

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

22907.6171 17507.4461
50297.2733 38508.3831
76176.5389 58477.9673

183230.2756 140010.5853
12668.9462 −12684.5717
29281.1094 −29328.7527
67379.8128 −67667.3821

169016.7685 −169223.4162

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 104. (32)

The initial conditions of the system and observer are set to
zero. In each simulation study, the initial values of the weights of
the neural approximator are obtained by using the least squares-
based algorithm described earlier.

In this article, three simulation studies will be presented.

Study 1: MATLAB simulation with a low-order vehicle model
based on known cornering stiffness.

Study 2: CarSim simulation with a high-order vehicle model
based on unknown cornering stiffness.

Study 3: CarSim simulation with a high-order vehicle model in
the present of sensor measurement noise.

A. MATLAB Simulation With Low-Order Vehicle Model

Using MATLAB simulations with the low-order vehicle
model described in Section II, we first validate the proposed
algorithm with no higher order model uncertainty. A cornering
maneuver is considered—The vehicle is traveling on a road that
is initially straight and then becomes circular with a radius first
of 300 m and then 250 m. The desired path for the road is shown
in Fig. 3. Also, we assume that the vehicle is controlled by a
feedback steering controller and Fig. 3 shows the steering input
to follow the desired vehicle path. The value of both front and

Fig. 4. Low-order vehicle model simulation results: estimation of vehi-
cle state variables.

Fig. 5. Low-order vehicle model simulation results: front and rear slip
angle estimation.

Fig. 6. Low-order vehicle model simulation results: tire force estima-
tion (nonlinear portion of tire force model).

rear tire cornering stiffness is 102466.1678 N/rad and is assumed
to be known.

As shown in Fig. 4, the observer provides very good perfor-
mance on the vehicle state estimation. As a result, the slip angles
are accurately estimated by using (13), as shown in Fig. 5. Also,
Fig. 6 shows the results of the nonlinear tire force estimation
and the error is seen to be very small. Fig. 7(a) and (b) shows
the weight estimation. Weight adaptation can be seen in the
zoomed-in plots of Fig. 7(b). Finally, Fig. 8 shows the tire model
estimation result. The estimated lateral tire model is seen to
match the real values accurately over the range of slip angles
excited by the simulations.
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Fig. 7. Low-order vehicle model simulation results: estimation of neu-
ral weights. (a) All neural weights. (b) Enlarged view of ŵ14, ŵ22, ŵ23,
and ŵ24.

Fig. 8. Low-order vehicle model simulation results: tire force model
estimation (dotted blue box presents the range of slip angle excited).

B. Carsim Simulation Under Unknown Cornering
Stiffness

The proposed algorithm is also validated via simulations using
the CarSim software containing a high-order vehicle model.
Significant model mismatch exists since the observer is based
on just a simple bicycle model. So far, we have assumed that
the cornering stiffness for the linear portion of the tire model is
known. Next, we show that the proposed method can estimate
both vehicle states and the lateral tire model without knowing
the actual cornering stiffness. We assume that the value of both
front and rear tire cornering stiffnesses is 102466.1678 N/rad.
However, the actual cornering stiffness of the front and rear
tires are set to be 90211.1436 N/rad and 87945.9970 N/rad,
respectively. Lane change maneuvers are considered to learn
the CarSim tire model over an adequately large range of slip

Fig. 9. CarSim simulation results (unknown cornering stiffness): de-
sired vehicle path for lane change maneuvers, and steering input.

Fig. 10. CarSim simulation results (unknown cornering stiffness): es-
timation of vehicle state variables.

Fig. 11. CarSim simulation results (unknown cornering stiffness): front
and rear slip angle estimation.

angle. Fig. 9 shows the desired vehicle path and the steering
input to conduct the lane change maneuvers.

Since the unknown nonlinear function estimation compen-
sates for the linear term error due to the incorrect cornering
stiffness, the vehicle states and slip angles can be correctly
estimated, as shown in Figs. 10 and 11. Due to the linear term
compensation, the nonlinear tire force terms do not match, as
shown in Fig. 12. However, the total lateral tire model can be
obtained successfully by using (29) as shown in Fig. 13 and
Fig. 14 because the tire model is defined as the combination of
the linear tire model and the unknown nonlinear tire model in
(2). Furthermore, we can correctly find the cornering stiffness
from the estimated tire model: Ĉf = 89770.6981 N/rad and
Ĉr = 86991.2596 N/rad.
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Fig. 12. CarSim simulation results (unknown cornering stiffness): tire
force estimation (nonlinear portion of tire force model).

Fig. 13. CarSim simulation results (unknown cornering stiffness): es-
timation of neural weights.

Fig. 14. CarSim simulation results (unknown cornering stiffness): tire
model estimation (dotted blue box presents the range of slip angles
excited).

C. Carsim Simulation Under Sensor Noise

We validate the performance of the proposed algorithm
in the presence of sensor noise on measurements. Random
noise (uniformly distributed random signals with the interval
[−1 cm, 1 cm] and [−1◦, 1◦]) are added to both measurement
channels. The value of both front and rear tire cornering stiffness
is 102466.1678 N/rad and is assumed to be known. Lane change
maneuvers are considered, as shown in Fig 15.

As seen in Figs. 16 and 17, both vehicle states and slip angles
are estimated successfully in the presence of sensor noise. Also,
Fig. 18 shows the results of the nonlinear tire force estimation.

Fig. 15. CarSim simulation results (with sensor noise): desired vehicle
path for lane change maneuvers, and steering input.

Fig. 16. CarSim simulation results (with sensor noise): estimation of
vehicle state variables.

Fig. 17. CarSim simulation results (with sensor noise): front and rear
slip angle estimation.

Fig. 18. CarSim simulation results (with sensor noise): tire force esti-
mation (nonlinear portion of tire force model).

Authorized licensed use limited to: Chung-ang Univ. Downloaded on October 12,2023 at 05:34:04 UTC from IEEE Xplore.  Restrictions apply. 



JEON et al.: SIMULTANEOUS STATE ESTIMATION AND TIRE MODEL LEARNING FOR AUTONOMOUS VEHICLE APPLICATIONS 1949

We can see that the neuro-adaptive observer provides good
estimation results in spite of the measurement noise.

V. CONCLUSION

This article developed a neuro-adaptive observer that can
estimate both the real-time tire model as well as the states of an
autonomously steered vehicle. This article included formulation
of the dynamic model in terms of lateral error variables with
respect to the road and of the estimation problem, and design
of the observer gains using LMIs. Simulations using both a
low-order vehicle model and a high-order unknown model from
the commercial software CarSim were conducted with lateral
maneuvers including cornering and lane change maneuvers.
Simulation studies demonstrated that the developed observer
works very well and estimates both states and tire forces accu-
rately. The importance of the developed neuro-adaptive method
is that it can enable a new approach to obtaining tire models that
are otherwise very difficult to identify in practice.
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