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ABSTRACT
Accurate predictions of sea surface temperature (SST) are crucial due to
the significant impact of SST on the global ocean-atmospheric system
and its potential to trigger extreme weather events. Many existing
machine-learning-based SST predictions adapt the traditional iterative
point-wise prediction mechanism, whose predicting horizons and
accuracy are limited owing to the high sensitivity to cumulative errors
during iterative predictions. Therefore, this paper proposes a novel
granulation-based long short-term memory (LSTM)-random forest (RF)
combination model that can fully capture the feature dependencies
involved in the fluctuation of SST sequences, reduce the cumulative
error in the iteration process, and extend the prediction horizons, which
includes two sub-models (adaptive granulation model and hybrid
prediction model). They can restack the one-dimensional SST time-
series into multidimensional feature variables, and achieve a strong
forecasting ability. The analysis shows that the proposed model can
achieve more accurate prediction-hours in nearly all prediction ranges
from 1 to 125 h. The average prediction error of the proposed model in
25–125 h is 0.07 K, similar to that (0.067 K) in the first 24 h, which
exhibits a high generalization performance and robustness and isthus a
promising platform for the medium- and long-term forecasting of
hourly SSTs.
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1. Introduction

The sea surface temperature (SST), which is the water temperature at the interface between the
ocean and atmosphere, is a key variable in the global air–sea system (Cao et al. 2021). This variable
can be used to extract the ocean surface currents and location and strength of oceanic fronts, among
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other information valuable for fisheries and allied aquacultures (Takahashi and Kawamura 2005).
Furthermore, the SST plays an important role in the exchange of heat, moisture, momentum, and
gases at the air–sea interface. Variations in the SST can considerably influence the regional and
global climate and may even lead to extreme weather and climate events (e.g. droughts, heat
waves, typhoons, and floods) (Bentamy et al. 2017; Minnett et al. 2019; Xiao et al. 2019). Therefore,
future projections of the SST based on historical observations are of significance in the early warn-
ing of extreme events, study of climate dynamics, and planning of various offshore operations.

In general, the prediction of SST is challenging because of the large variations in the heat flux,
radiation, and wind patterns near the sea surface (Patil, Deo, and Ravichandran 2016). The SST has
been conventionally predicted using physics-based methods (i.e. numerical methods) or data-
driven methods. Representative examples of the former are coupled ocean–atmosphere general cir-
culation models and modular ocean models, which involve sophisticated mathematical models that
couple kinetic and thermal equations to capture SST variations based on physical conditions and
processes (Griffies and Greatbatch 2012; Noh et al. 2002). However, the results often involve uncer-
tainties because these models typically involve multiple physical hypotheses and require a large
amount of exogenous data input (Xu et al. 2020a). Because multiple parameters are simultaneously
predicted, it is challenging for these models to precisely tune a single parameter (Patil and Deo
2018). In addition, physics-based models are engineered to provide average information in a
large spatial area and are therefore better suited for obtaining predictions over large spatial regions
with coarse resolutions than those in a specific location (Patil, Deo, and Ravichandran 2016; Xiao
et al. 2019). In contrast, data-driven methods predict the SST by learning patterns and mining use-
ful information from historical data. These methods are less sophisticated than physics-based
numerical models and can be used to predict the SST in specific locations. Various types of
data-driven methods, ranging from traditional statistical approaches to machine learning tech-
niques, have been established. Traditional statistical approaches for SST forecasting include empiri-
cal canonical correlation analysis (Collins, Reason, and Tangang 2004; Tang et al. 2000), Markov
models (Xue and Leetmaa 2000), linear regression (Kug et al. 2004), and empirical orthogonal func-
tions (Neetu et al. 2011). Statistical approaches have excellent tractability in that they can address
multiscale patterns of variations in the response variables in a probabilistic manner without requir-
ing information regarding the physical mechanisms. Statistical approaches are especially advantages
when information regarding the physical mechanisms of real-world processes is inadequate. With
technological advancements, statistical approaches are being used to train artificial neural networks
(ANNs) to achieve more accurate prediction results (Tangang, Hsieh, and Tang 1997). Compared
with most linear statistical models, the nonlinear SST prediction model established using a multi-
layer neural network can more effectively identify the trend and patterns of SST variations and exhi-
bits a superior prediction performance (Aguilar-Martinez and Hsieh 2009; Wu, Hsieh, and Tang
2006). Variants of ANNs have been widely used to achieve excellent SST predictions, such as non-
linear autoregressive neural networks (Patil et al. 2013), wavelet neural networks (Patil and Deo
2017), ordinary feedforward neural networks (Aparna, D’Souza, and Arjun 2018), deep learning
neural networks (Sarkar, Janardhan, and Roy 2020) and a type of recurrent neural network
(RNN) named the long short-term memory (LSTM) network (Usharani 2022). Notably, although
RNNs are effective at time-series prediction, they cannot capture the long-term dependencies
involved in historical SSTs owing to the exploding and vanishing gradient problems. In contrast,
LSTMs can store information of long time periods owing to the recurrent structure and gating
mechanism and thus represent one of the most advanced prediction models for time-series-related
problems (Chao et al. 2018).

Despite the potential and widespread application of LSTMs in different tasks, the existing LSTM-
based methods, whose inputs pertain to single or multiple temporal dimension data, cannot gauge
the internal dependencies of periodic features, for example, in situations in which the SSTs exhibit
periodic characteristics (Shao et al. 2022; Yang et al. 2018; Yu et al. 2020). Bouktif et al. (2020) opti-
mized the LSTM model based on metaheuristic search algorithms, enabling it to learn long-term
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dependencies in the time series more accurately and improve the accuracy of predictions. However,
these methods have been rarely applied to SST prediction. Furthermore, several LSTM-based SST
predictions usually perform H-step ahead forecasting using the direct strategy and multiple-output
strategy (Broni-Bedaiko et al. 2019; Chao et al. 2018; Xu et al. 2020b; Zhang et al. 2017). In the direct
strategy, independent predictions are made for each horizon. Consequently, the predicted values
may represent a broken curve, leading to a low forecast accuracy (Ben Taieb et al. 2012). Moreover,
this strategy requires a considerable amount of calculation time because the number of prediction
models to be learned is as large as the size of the horizon. In the multiple-output strategy, a mul-
tiple-output forecasting model is learned from historical SST observations, and the predictions are
returned in one step by the forecasting model. Although this framework can eliminate the con-
ditional dependency assumption involved in the direct strategy, the prediction model structure is
consistent for all the horizons, which may result in a low forecast accuracy and reduced flexibility
of the prediction method. These problems can be effectively avoided using the recursive strategy, in
which predictions are produced iteratively by feeding back the output of the model as part of the
inputs. However, the performance of these frameworks is limited owing to the high sensitivity to
the cumulative errors during iterative predictions (Ben Taieb et al. 2012).

To address these gaps, this paper proposes a novel multiseries featural LSTM-RF combination
model based on granular computing. The proposed model can fully exploit the periodic character-
istics of SST sequences, reduce the iteration errors caused by the multi-step prediction process, and
extend the prediction horizons. Validation against observations and cross-comparisons with state-
of-the-art models were performed to demonstrate the reliability and suitability of the proposed pre-
diction method for medium- and long-term hourly SST forecasting.

2. Study area and data

The SSTs retrieved from the Advanced Himawari Imager (AHI) were used as the data source. The
AHI on the Himawari-8 geostationary meteorological satellite of Japan Meteorological Agency has
16 bands (3 visible (VIS) bands, 3 near-infrared (NIR) bands, and 10 infrared (IR) bands). Five of
the infrared bands are used for near real-time SST retrieval. The AHI provides full disk images of
the East Asia and Western Pacific regions as rapidly as every 10 min, with certain areas being
observed more frequently at 2.5 min intervals, if required. Hourly SSTs from 2015/07/07 to
2021/12/31 (56,880 h) with a spatial resolution of 2 km were extracted from the website https://
www.eorc.jaxa.jp/ptree/index.html (last access: 30 January 2022) and used for SST prediction.

Figure 1 shows the frequency of valid pixels in the hourly AHI SST data in 2021. Many missing
pixels were observed, which could be attributed to atmospheric influences (Cao et al. 2021). We
selected five pixels with few missing data during the study period (i.e. L1 to L5) as our study
locations, as shown in Figure 1. Because the raw data of these five pixels also had missing points
and outliers, we used the first-order difference method to eliminate outliers before establishing
the dataset and then used the Savitzky–Golay filter and singular spectrum analysis-multitaper
method (SSA-MTM) to reconstruct the missing values (Ghil et al. 2002; Vautard, Yiou, and Ghil
1992).

For each location, the first 80% of the prepared dataset (hourly SSTs from 2015/07/07 to 2020/
08/31) was selected as the training data, and the remaining 20% was used as the test data, which
covers the time period from 2020/09/01 to 2021/12/31. Furthermore, the 10% of the training dataset
was split to serve as the validation set.

3. Model development

Figure 2 shows the working mechanism of the proposed granulation-based LSTM-RF combination
model, which involves three stages. First, unequal-length temporal granules are generated by par-
titioning SSTs according to their semantic features. A template matching method is used to
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adaptively extract specific periodic features of the information granules and restack the one-dimen-
sional SSTs into multidimensional feature variables (Figure 2, Step 1). The extended feature vari-
ables are separately fed to the RF model and LSTM model, and their predictions are combined
using the error reciprocal method. The combined prediction is fed back as part of the input
sequence for the following prediction until the entire horizon has been predicted, and the resulting
combined value is the final prediction for each horizon (Figure 2, Step 2). The SSTs are obtained by
applying the degranulation process for these final predictions. The accuracy of the proposed pre-
diction model is evaluated through a comparison with other models, i.e. the single LSTM and
RF models, feedforward backpropagation neural network (BPNN) model, optimized support vector
regression (SVR) model, and hybrid forecast model of LSTM and RF using the averaging strategy
(A_LSTM-RF) (Figure 2, Step 3). Each step is described in the following subsections.

3.1. Formation of linguistic descriptors for data granules

3.1.1. Partitioning of the information granules
To granulate the original SST series X (X = {x1, x2, . . . , xn}) according to the semantic features of
the SSTs, the tendency feature of the data around xi must be identified. The first-order dynamic
X′ (X′ = {x′1, x

′
2 . . . , x

′
n−1}) and second-order dynamic X′′ (X′′ = {x′′1 , x

′′
2 . . . , x

′′
n−2}) of the SSTs,

which are obtained by calculating the sequences of differences, show the monotonicity and concav-
ity–convexity of the SST series, respectively.

x′i = xi+1 − xi (i [ [1, 2, . . . , n− 1] ) (1)

x′′i = x′i+1 − x′i (i [ [1, 2, . . . , n− 2] ) (2)

Figure 1. Frequency of valid pixels in the hourly AHI SST data from 01 January 2021 to 31 December 2021 and study locations.
The coordinates (latitude, longitude) of the five selected locations are as follows: L1 (21.756°S, 114.124°E), L2 (16.349°S, 121.572°
E), L3 (12.959°S, 127.104°E), L4 (0.458°S, 5.038°W), and L5 (23.316°N, 117.084°E).
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The monotonicity and concavity–convexity of the SST around xi can be identified by the signs of
x′i∗x′i+1 and x′′i ∗x′′i+1. Subsequently, the SSTs are partitioned at the data point at which the sign
changes. Specifically, given an SST series X = {x1, x2, . . . , xt , xt+1, . . . , xn}, if
x′t∗x′t+1 , 0< x′′t ∗x′′t+1 , 0, the monotonicity and/or concavity–convexity of the data point xt
change, and thus, the SST series X can be divided into {x1, x2, . . . , xt} and {xt+1, . . . , xn}. In
addition, considering that the noisy characteristic of SSTs or small variations in the concavity–
convexity may lead to dense partitioning, two constraints are added to each location in different
months to address these problems through data analysis and multiple experiments:
|t − 1| . u1 > |xt − x1| . u2, where u1 and u2 are the thresholds for each selected location in
different months. In this manner, the SST series X is granulated into information granules with var-
ious trend characteristics.

3.1.2. Feature restacking of the information granules
To reflect the trend characteristics of the constructed unequal-length information granules and
obtain an equalized representation, template matching is performed to describe the original gran-
ules and restack the one-dimensional SSTs of each selected location in the SST image into multi-
series featural structure data. Specifically, quarter-cycle sine waves are used as templates, with
each quarter-cycle sinusoid representing a typical combination of the concavity–convexity and

Figure 2. Visual representation of the proposed model. The cross-validation in Step 3 is based on the RMSE and (correlation
coefficient) R² values of predictions obtained using different approaches (I, II, III, IV, V, and VI represent the proposed LSTM-
RF, A_LSTM-RF, LSTM, RF, BPNN, and SVR methods, respectively). The color denotes the RMSE, and R2 is represented by symbols:
*** R2 < 0.985, ** 0.985 < R2< 0.99, * 0.99 < R2< 1.
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monotonicity. Subsequently, the template that has the same monotone and concave–convex prop-
erty is stretched with appropriate horizontal and vertical scales to match these unequal-length
granules to extract different tendency feature such as the amplitude (a), template type (I–IV)
and time-domain (d) characteristics (Figure 3(A) and (B)). Finally, a 3-D feature space represented
as (amplitude, template type, time domain) is used to describe the original granules. Considering
that the duration of granules presenting a straight-line segment (x′i < x′′i = 0) is typically short
and this phenomenon rarely occurs, separate templates are not added and the corresponding gran-
ules are joined with the previous one. The original SSTs can be approximated through the extracted
tendency feature of the information granules, as shown in Figure 3(B) and (C), where the value of
each approximation point can be calculated by stretching the corresponding matching points in the
templates. The stretching of the matching point can be obtained using the following equation:

x = asin
pi
2d

+ ∅
( )

+ b (3)

where x is the approximate value of the ith SST of the data granule, and b is the value of its starting
SST point. The parameter ∅ is determined by the type of matching template, e.g. the values of ∅ for
templates I, II, III and IV are −π/2, 0, π/2 and π, respectively. The parameters a and d denote the
amplitude and duration of the matching templates, respectively.

Notably, directly describing the original granules with the extracted tendency feature leads to
information redundancy, which serves to reduce the precision of subsequent prediction modeling
and increase the computational complexity. Furthermore, the analysis of unequal-length granules
illustrates that the data granule of the upward trend is typically first concave and then convex,
whereas the downward trend is first convex and then concave. Thus, we combine the adjacent
unequal-length granules with different concavities and convexities but the same monotonicity to
identify a new duration D and amplitude A, as shown in Figure 3(B), where the sign of A denotes

Figure 3. (A) Four quarter-period sinusoids used as templates. (B) Approximate SST values obtained through template matching,
and feature description of the information granules. (C) Original SSTs and their approximation through the combination of
stretched templates.
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the monotonicity of the granules. Subsequently, the 3-D feature space consisting of the amplitude,
template type, and time domain is replaced by a 4-D feature space ([A, D, R1, R2]) consisting of
the newly constructed amplitude (A), duration (D), curvature (R1), and fluctuation (R2) features. R1

and R2 can be calculated using the amplitude and duration of the original granules. An example of
this calculation is shown in Figure 3(B). Suppose ma and lb are the time of monotonicity division
and concavity–convexity division, respectively, that is, ma [ {i|x′i∗x′i+1 , 0} and
lb [ {i|x′′i ∗x′′i+1 , 0}. The 4-D feature space of the information granules between ma and ma+1

can be represented by [Ama
, Dma

, R1
ma
, R2

ma
], where Ama

= xma+1 − xma
and

Dma
= ma+1 −ma + 1. R1

ma
and R2

ma
can be calculated using Equations 4 and 5, respectively.

R1
ma

= lb −ma

ma+1 −ma
(4)

R2
ma

= |xlb − xma
|

|xma+1 − xma
| (5)

3.2. Construction of LSTM-RF combination model

3.2.1. LSTM deep neural network model
LSTM is an RNN that learns the long-term dependencies between samples in a sequence by updat-
ing the state based on both the input for the current time step and network states of the output in
the prior time step (Tsai, Kuo, and Tiwary 2020). LSTM involves repeating modules of neural net-
works, with each module composed of four interactive parts: a memory cell C, a forget gate ft , an
input gate it , and an output gate Ot , as shown in Figure 4.

As illustrated in the second repeating module in Figure 4, Xt is the input vector of the LSTM in
which the gates ft , it , and Ot and the candidate cell state C′

t are controlled by (Xt , ht−1 ). The cell
state Ct is updated using ft and it . Ot determines the amount of information propagated to the time
step t + 1. These gates consist of a sigmoid fully connected neural network layer and point-wise
multiplication operation. The working mechanism of these gates and information flow can be rep-
resented as follows:

ft = s(Wf ·[ht−1, Xt]+ bf ) (6)

it = s(Wi·[ht−1, Xt]+ bi) (7)

C′
t = tanh (Wc·[ht−1, Xt]+ bc) (8)

Ct = ft ⊙ Ct−1 + it ⊙ C′
t (9)

Ot = s(Wo·[ht−1, Xt]+ bo) (10)

ht = Ot ⊙ tanh (Ct) (11)

Figure 4. Structure of LSTM units.
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where the transformations s from the inputs to i, f , and O are based on sigmoid functions.W and b
contain the corresponding network weights and bias parameters, respectively. h represents the hid-
den states. The operation⊙ is the element-wise multiplication (Hadamard product), and tanh (l) is
the hyperbolic tangent function, which operates piecewise on each element of vector l.

The hyperparameters of an LSTM (e.g. the number of layers and number of neurons in each layer)
must be tuned to improve its performance. In this study, the validation set was used to tune the LSTM
hyperparameters via the Bayesian optimization method. We tested the performance associated with
different numbers (1–5) of LSTM layers combined with 1, 2, and 3 dense layers (i.e. the fully con-
nected layers). Considering the results, we selected a configuration with four layers (two LSTM layers
and two fully connected layers) with 128, 128, 64, and 1 neurons in them, as shown in Figure 5. Batch
normalization was introduced after each hidden layer in the network. The highest performance was
obtained for a mini-batch size of 32. Moreover, to reduce overfitting during training, the dropout
mechanism was applied to the inputs of the second LSTM layer and first fully connected layer, set
as 0.3 and 0.2, respectively. The mean square error (MSE) was used as the loss function of the
model. The Adam, RMSprop, AdaGrad, Nesterovs, stochastic gradient descent, andAdadelta optim-
ization schemes were tested, and the Adam scheme was adopted as the optimizer. The proposed
LSTM network was implemented using the Keras Python package on top of a TensorFlow backend.

In addition to the LSTM hyperparameters, the number of epochs and length of historical input
data (timestep) affect the prediction of the multiseries featural structure data. We analyzed the vari-
ation in the magnitude of the loss function with the number of epochs in the LSTMmodel for A,D,
R1, and R2 predictions at different locations and selected the number of epochs in which the loss
functions remained nearly constant (Table 1). The variations in the determination coefficient (R2),
mean absolute error, and root mean square error (RMSE) of the LSTM model for A, D, R1, and R2

predictions at different locations with the timestep were examined, and the optimal timestep (N) for
A, D, R1, and R2 predictions at different locations was selected. Table 1 summarizes the optimal
parameters.

3.2.2. RF ensemble learning model
Random forest regression (RFR) refers to an integrated learning algorithm that is useful for predic-
tion problems. This algorithm applies bootstrap aggregation (bagging) and random feature selection

Figure 5. Proposed LSTM network for predicting the feature variables.

Table 1. Optimal parameters for the LSTM model for A, D, R1, and R2 predictions at different locations.

Location

A D R1 R2

Epoch N Epoch N Epoch N Epoch N

L1 289 62 291 56 272 47 264 69
L2 277 91 244 66 231 66 281 34
L3 257 58 300 48 286 64 232 73
L4 287 72 223 45 297 55 207 51
L5 274 79 212 48 294 59 283 63
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to individual decision and/or regression trees to produce a final predictionwith reduced variance and
improved robustness (Breiman 2001; Hastie, Tibshirani, and Friedman 2009; Luo et al. 2021).

The RFR algorithm works by growing K different trees randomly, each built on a different subset
that is generated using the bootstrapped method from the training dataset. The process of growing a
decision tree starts at the root node of the tree, with the values of a single feature (predictor variable)
used to split the bootstrapped subset into two smaller subsets that are as homogeneous as possible
(i.e. sets of y (outcome variable) observations with the smallest variance among them). These smal-
ler subsets are further divided into progressively smaller sets of homogeneous observations until
either the number of data points in a node is smaller than S (i.e. the minimum number of data
points to split) or the variance between y in a node falls below a pre-specified parameter. To ensure
that the algorithm does not always choose the same feature when each split is performed, the feature
is selected from a different random subset with J features in each node. The average of all the tree
outcomes is used to assess the prediction.

The following hyperparameters must be tuned for the RF algorithm: number of regression trees
(K), minimum number of data points to be split (S), minimum number of data entries at a leaf node
(L), and number of randomly selected features to choose from at each node split (J). We exhaus-
tively evaluated the possible combinations of settings for predicting the multiseries featural struc-
ture data, using the grid search method combined with five-fold cross-validation. The combination
of hyperparameters that yield the highest predictive performance on the training data are retained
for each predicted variable. Table 2 presents the optimal hyperparameter settings.

To further enhance the prediction performance, we evaluated the importance of each historical
predictor in predicting the multiseries featural structure data. We sequentially fed predictors to the
RF according to their importance rankings, until the RF explanatory power (r2 between the predic-
tions and the true sources) in the out-of-bag (OOB; similar to drop-one bootstrapping) test did not
increases significantly, and the OOB error (MSE between the predictions and true sources) did not
decreases significantly. Different numbers (le) of historical predictors were selected as the input of
the final RF for predicting the four variables at five locations, as summarized in Table 2.

3.2.3. Combination of predictions from the LSTM and RF models
Previous studies have shown that hybrid prediction models tend to have smaller errors than single
models (Deng et al. 2021; Xiao et al. 2019). In general, a complex LSTM framework can effectively
model the long-term dependencies of SSTs but may be prone to overfitting. In contrast, the RF
model has a strong predictive ability and does not easily overfit. Moreover, both models have different
forecasting deviations. Therefore, to accurately predict the four variables (i.e. A, D, R1, and R2) for
all locations, we constructed a hybrid forecast model based on the LSTM and RF models. The error
reciprocal method shown in Equation (12) was used to combine predictions from the LSTM deep
neural network and RF models to construct the hybrid prediction model. This method assigns a
higher weight to the model with a higher accuracy, thereby increasing the overall prediction accuracy.

yi = vly
i
l + vry

i
r (12)

vl = 1r
1l + 1r

(13)

Table 2. Optimal hyperparameter setting for the RF model for A, D, R1, and R2 predictions at different locations.

A D R1 R2

K S L J Le K S L J Le K S L J Le K S L J Le

L1 500 2 1 6 36 500 3 5 7 46 369 4 7 6 44 429 6 3 6 38
L2 466 4 2 5 32 500 2 7 6 41 500 2 2 6 37 444 4 5 6 41
L3 500 2 7 6 38 500 4 6 6 36 424 6 6 6 35 500 2 7 6 35
L4 497 3 5 6 42 496 5 7 7 47 500 4 4 7 47 500 3 6 7 47
L5 486 2 7 5 32 384 2 8 6 38 500 5 8 8 73 488 2 7 6 39
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vr = 1l
1l + 1r

(14)

where yi is the final prediction of the feature variable to be predicted at different locations, and i
denotes the index of different variables to be predicted at different locations (i [ [1, 20]). yil and
yir are the predictions obtained based on the LSTM and RF models, respectively. v is the weight
coefficient. 1r and 1l are errors on the training samples of the LSTM and RF models, respectively.

The hybrid forecast model uses the iterative prediction scheme shown in Figure 6. The RF and
LSTM models are trained to learn the pattern and relationship between the yi at time t and input
sequence (X) using historical data. The future predictions from the two single models are obtained
based the learned patterns. Subsequently, their predictions on each horizon are combined using the
error reciprocal method to generate the final prediction. Next, the input sequence is updated using
the value as the latest element of the inputs, which is then used to forecast yi for the next step. This
process can be repeated to obtain k-steps-ahead predictions. In this study, we obtained 10-steps-
ahead forecasts for each of the four variables at five locations.

3.3. Degranulation of the obtained feature variables

The final predictions of the hybrid forecast model are multidimensional structure data of gran-
ules. The SSTs can be obtained by degranulating the final predictions. The method used for
degranulation relies on the templates used to describe the granules. In this study, we used quar-
ter-cycle sinusoids as templates, and therefore, the SSTs were determined using the sinusoidal
formula:

x = asin
pi
2d

+ ∅
( )

+ b (15)

Figure 6. Architecture of the proposed hybrid forecast model based on the LSTM and RF approaches for predicting yi .
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where x is the ith SST of the data granule, and b is the value of its starting SST point. The par-
ameter ∅ is determined by the type of matching template, e.g. concave increasing and decreas-
ing templates are used when ∅ is 0 and π/2, respectively. a and d denote the amplitude and
duration of the matching templates, respectively, which can be calculated using the final predic-
tion of the feature variable. More specifically, a and d can be obtained according to

. ① if A , 0> ∅ = p

2

( )
or (A . 0> ∅ = −p

2
), then a = AR2, d = DR1

. ② if (A , 0> ∅ = p) or (A . 0> ∅ = 0), then a = A(1− R2), d = D(1− R1).

4. Experimental results and discussion

4.1. Performance evaluation of the hybrid forecast model based on LSTM and RF

To investigate the performance of the proposed LSTM-RF combination model, we compared the
prediction performance of the proposed hybrid forecast model and RF, LSTM, SVR, BPNN, and
A_LSTM-RF models for the four variables using different statistical indicators and considering
different perspectives. The grid search method was used to obtain the optimal hyperparameters
of these algorithms. Predictions of the four variables at different prediction horizons were indepen-
dently obtained for the five selected locations. All six approaches performed well in the 1-step ahead
forecasting task of the four variables at five locations, as shown in Figure 7. The predictions
obtained using the proposed LSTM-RF, A_LSTM-RF, RF, and LSTM models were more consistent
with the actual values than those of the SVR and BPNN.

Figure 8 shows the statistical metrics for the 1-step-ahead forecasts of the test samples, obtained
using different approaches. The proposed LSTM-RF combination method, based on the error reci-
procal method, achieves the largest R² and lowest RMSE for the four variables at the five locations,

Figure 7. One-step-ahead prediction results of variables A, D, R1, and R2 on the testing samples using the proposed LSTM-RF
combination model and RF, LSTM, BPNN, SVR and A_LSTM-RF approaches at the five locations (L1–L5). LSTM-RF in all subsequent
figures represents the proposed model, unless otherwise indicated.
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which performs much better than the RF, LSTM, SVR, BPNN, and A_LSTM-RF approaches in the
1-step-ahead prediction task. The proposed model performs well for most samples, although it does
not guarantee the best accuracy for 1-step-ahead prediction for some samples. The SVRmodel exhi-
bits the worst performance among all the models. In addition, the predictive performance of the
LSTM was not always better than that of the RF model, i.e. the LSTM better predicted certain vari-
ables only at some locations, and the RF model achieved superior predictions at the other locations.
This difference in the performance was our motivation for combining the LSTM and RF models.
Although the A_LSTM-RF combined model also combines the advantages of the LSTM and RF
models, the larger error in the averaging process inevitably reduces the overall prediction accuracy.
Therefore, the prediction accuracy of this model was intermediate to those of the LSTM model and
RF model in the one-step ahead prediction task. The reciprocal error method assigned a larger
weight to the model with a smaller error, thereby achieving a prediction with a smaller error
and enhancing the prediction accuracy.

Figure 9 shows the RMSE of the predictions for different prediction horizons on the held-out
testing samples using the six methods. The RMSEs predicted by the proposed LSTM-RF and
A_LSTM-RF were better than those predicted by the LSTM, RF, BPNN, and SVR methods over
all prediction horizons for the different variables at five locations. The RMSEs associated with
the proposed LSTM-RF were smaller than or equal to those pertaining to the A_LSTM-RF over
all prediction horizons. Therefore, the hybrid forecast model based on LSTM and RF and using
the reciprocal error method strategy outperformed the LSTM-RF hybrid model using the averaging
strategy in short-term and medium-term feature variable prediction tasks. Furthermore, the predic-
tion performance of the proposed model in the 3–10-step ahead prediction tasks was higher than
that of the other four models (i.e. LSTM, RF, BPNN, and SVR). In other words, the proposed model
effectively reduced the accumulated errors in the iterative prediction process. Tables 3–6 present the

Figure 8. RMSE and correlation coefficients (R2) values for the one-step-ahead prediction of variables (A) A, (B) D, (C) R1, and (D)
R2 on the testing samples using different approaches (I, II, III, IV, V, and VI denote the proposed LSTM-RF, A_LSTM-RF, LSTM, RF,
BPNN, and SVR methods, respectively). The color and size of the square denote the RMSE (the blank white grids mean the smal-
lest RMSE values), and R2 values are represented by symbols: *** R2< 0.985, ** 0.985 < R2< 0.99, * 0.99 < R2< 1.
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Figure 9. RMSEs of predictions for different variables using the proposed LSTM-RF (I), A_LSTM-RF (II), LSTM (III), RF (IV), BPNN (V),
and SVR (VI) methods at five locations and different prediction horizons.

Table 4. Improvement percentages of the RMSE in variable D predicted by the proposed hybrid LSTM-RF model relative to that
predicted by individual LSTM and RF models for each prediction horizon.

Relative to Location 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step

LSTM L1 16.90 1.44 10.98 1.69 1.53 2.01 2.87 1.48 1.64 4.03
L2 1.15 1.87 17.96 12.87 1.54 2.38 2.28 1.63 0.39 0.16
L3 2.07 1.82 2.62 2.24 2.14 1.79 2.00 2.03 2.18 2.15
L4 2.60 0.93 2.02 1.63 7.61 1.16 1.43 3.34 1.65 1.63
L5 0.89 2.22 2.06 1.61 2.05 2.27 2.20 1.97 3.59 1.77

RF L1 19.13 4.37 18.30 12.86 8.30 3.34 3.22 2.79 1.64 1.28
L2 0.93 14.88 15.33 14.05 2.09 1.98 1.46 10.96 10.68 1.83
L3 1.61 2.80 2.74 2.85 2.72 2.43 2.63 2.31 2.44 2.42
L4 2.60 1.97 2.02 2.21 12.51 1.78 2.03 1.68 1.84 10.36
L5 1.73 1.71 2.29 1.92 1.74 11.91 2.20 2.24 2.26 2.31

Table 3. Improvement percentages of the RMSE in variable A predicted by the proposed hybrid LSTM-RF model relative to that
predicted by individual LSTM and RF models for each prediction horizon.

Relative to Location 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step

LSTM L1 1.89 5.42 9.40 8.82 8.96 7.03 7.15 6.79 7.01 6.36
L2 1.94 3.75 7.63 7.16 6.74 6.44 6.34 6.52 6.17 6.08
L3 1.48 6.66 9.03 7.66 6.93 6.65 8.58 6.26 6.17 5.58
L4 1.42 6.31 9.95 8.49 7.24 8.90 6.43 8.11 7.57 6.99
L5 1.13 4.33 9.26 8.22 7.74 7.08 7.15 7.05 7.10 7.60

RF L1 1.50 5.21 9.40 9.52 8.44 7.92 8.13 7.40 7.59 7.15
L2 4.13 6.33 9.55 8.56 8.17 8.17 7.79 7.61 9.52 7.02
L3 4.29 6.23 9.98 8.91 9.62 9.11 7.75 8.41 7.02 9.93
L4 2.76 5.65 10.22 9.17 8.60 8.59 8.58 9.20 8.25 8.18
L5 0.00 5.48 9.26 8.80 8.29 7.71 9.56 7.25 7.29 7.19
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improvement percentages of the proposed hybrid LSTM-RF model over the individual LSTM and
RFmodels in predicting the feature variables. The largest improvement relative to the LSTM and RF
for each prediction horizon is boldfaced. The RMSEs of the forecasts of proposed hybrid LSTM-RF
model were lower for nearly all locations and forecast horizons. In the 1−10 steps iterative predic-
tion processes, the maximum improvements of the proposed model for predicting variables A, D,
R1, and R2 relative to the LSTM were 9.95%, 17.96%, 27.88%, and 12.02%, respectively, with means
of 6.61%, 3.05%, 8.57%, and 6.51%. The corresponding values for the RF were 10.22%, 19.13%,
27.05%, and 16.76%, respectively, and the average improvements were 7.61%, 5.07%, 9.56%, and
6.71%.

4.2. Evaluation of the SST predictions

To demonstrate that the hybrid prediction model considering granular features can effectively
extend the prediction horizon, a series of comparative experiments were conducted in which
LSTM and RF were used to directly predict the SSTs. The parameters of these algorithms were
determined through a grid search. The proposed hybrid prediction model considering granular fea-
tures was established considering units of feature segments rather than individual SST values. Thus,
the proposed prediction method could obtain 120–130 h ahead predictions of SST at locations L1–
L5 after performing 10 steps of iterative prediction and degranulation. To fairly compare the SSTs
predicted by the LSTM and RF models and those predicted by the proposed method, the number of
iterations for both LSTM and RF was set to 130.

Figures 10–12 show the error statistics of the SST derived from three models according to the
testing samples at the five locations. The proposed method outperformed the LSTM and RF models
in the first 25 h of prediction (circles in Figures 10–12). The RMSEs and MAEs of SSTs predicted by
the proposed method in the first 25 h were less than or equal to those of the LSTM and RF models at

Table 5. Improvement percentages of the RMSE in variable R1 predicted by the proposed hybrid LSTM-RF model relative to that
predicted by individual LSTM and RF models for each prediction horizon.

Relative to Location 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step

LSTM L1 0.29 9.67 10.57 8.31 7.12 6.95 7.19 7.19 7.06 11.30
L2 7.98 4.37 15.32 7.57 27.88 6.94 20.41 6.44 11.31 6.06
L3 0.03 4.54 8.71 8.03 7.08 6.62 6.22 6.03 6.75 6.62
L4 2.11 5.05 8.64 7.89 6.80 6.63 6.75 11.98 6.64 16.26
L5 0.39 6.37 10.24 15.05 7.21 25.96 8.57 6.91 13.21 5.21

RF L1 4.07 7.12 10.63 8.81 7.35 23.92 7.24 7.92 8.12 17.59
L2 12.67 15.69 8.53 26.64 27.05 7.01 21.86 6.91 7.01 8.84
L3 0.83 4.32 8.71 8.45 8.29 7.51 7.21 6.64 7.33 7.41
L4 1.59 4.73 26.36 8.17 7.80 7.35 7.56 6.91 7.10 6.71
L5 2.58 6.55 10.56 7.77 8.06 6.96 10.56 10.23 13.54 5.21

Table 6. Improvement percentages of the RMSE in variable R2 predicted by the proposed hybrid LSTM-RF model relative to that
predicted by individual LSTM and RF models for each prediction horizon.

Relative to Location 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step

LSTM L1 5.41 4.08 8.00 8.24 7.06 7.28 7.45 6.54 5.20 10.68
L2 1.50 4.78 8.52 8.12 7.70 7.21 7.57 6.73 6.95 6.52
L3 3.46 4.55 9.75 7.52 7.11 6.82 6.71 6.87 6.53 6.44
L4 1.79 4.71 8.07 7.26 6.96 7.02 6.69 12.02 5.99 6.01
L5 0.54 5.97 8.43 7.14 6.44 6.19 5.99 5.84 5.75 5.18

RF L1 1.87 4.47 11.50 8.59 7.25 7.31 7.29 11.23 4.56 6.14
L2 1.89 5.00 8.52 7.69 6.48 6.30 6.46 6.12 8.05 5.71
L3 2.08 4.92 8.26 7.43 7.12 7.17 6.83 6.68 6.13 16.76
L4 3.46 4.54 7.96 7.49 7.08 6.79 6.69 6.84 6.51 6.42
L5 0.24 3.75 8.01 7.74 7.95 7.51 8.01 7.69 6.35 8.48
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all five locations. The correlation coefficients (R2) of SSTs predicted by the proposed method in the
first 25 h were greater than or equal to those of the LSTM and RF models at all five locations. With
the increase in the prediction horizon, the RMSE and MAE of the proposed method became con-
siderably lower than those of the LSTM and RF models and did not increase significantly. The cor-
relation coefficients of the proposed method were also higher than those of the LSTM and RF
models. Therefore, the proposed method outperformed the LSTM and RF models for all prediction
horizons at all five locations. In addition, the proposed method consumed less time, and the num-
ber of iterations required for prediction was lower for the same prediction horizon.

Figure 13 investigates the prediction performance of different methods based on the differ-
ences between the predicted and observed values (error distribution). The predictions obtained
using the proposed LSTM-RF model are closer to the actual values than those of the LSTM
and RF models, indicating that the proposed method exhibits the highest prediction accuracy
in each month at all five locations. To further assess the quality of SST predictions in different
month, we calculated statistical indicators of the proposed method’s SST predictions in different
months at all locations, as well as statistical values of historical SST observations for different
months (Figure 14). The statistical values of historical SST observations include the standard
deviation of the averaged diurnal variation of SST for different months and the standard deviation
of the diurnal variation of the amplitude of the diurnal cycle of SST. From Figure 14, it can be
observed that the proposed model exhibits strong prediction performance for various months
at all five locations, with a maximum RMSE and MAE of 0.3 and 0.19 K, respectively, and a mini-
mum R2 value of 0.98. The proposed method exhibits the highest prediction accuracy for location
L4 and the lowest prediction accuracy for location L5 in 125-hour ahead predictions of SST.

Figure 10. RMSE of SST predictions for different prediction horizons, obtained using the proposed LSTM-RF, LSTM and RF
approaches at the five locations. The inset donut plots display the relative magnitude of the total RMSE for 1–25 h ahead pre-
dictions using the different methods.
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Additionally, in terms of SST forecasts for different months, the proposed method exhibits the
lowest prediction accuracy for locations L1, L2, L3, L4, and L5 in the months of November,
November, October, September, and May, respectively. This discrepancy could be attributed to
the varying standard deviations of SST observations and the standard deviations of the amplitude
of the SST diurnal cycle at different locations. A smaller standard deviation suggests that the data-
set contains fewer outliers or extreme values. By reducing the influence of noisy or anomalous
data points, the model can focus on the main trends and patterns in the SST data, thereby enhan-
cing prediction accuracy.

To further evaluate the capability of the proposed model in predicting SST variations at all five
locations in different months, we conducted a comprehensive comparison of predictions and cor-
responding observations for all testing samples across prediction horizons ranging from 1 to
125 h. Figure 15 displays the results of this comparison. Due to space constraints, we randomly
selected a sample with lower prediction accuracy from all the test samples for presentation. The
LSTM and RF obtained accurate predictions in only the first 24–35 h owing to the accumulation
and propagation of iteration errors with the increasing prediction horizon. As the number of iter-
ations increased, the RF could not effectively follow the fluctuating trend of the SST observations
at L2, L4, and L5, resulting in inaccurate predictions. Although the RF could follow the trend of
SST observations better at L1 and L3, it could not track the amplitude and phase of the periodic
fluctuation, resulting in large deviations in the predicted values near the peak. Compared with the
RF, the LSTM was better at following fluctuation trends similar to real data; however, it could not
capture the amplitude and phase of the data fluctuations and thus did not exhibit a stable predic-
tion performance. Because the modeling process in this study focused on the main periodic

Figure 11. MAE of SST predictions for different prediction horizons, obtained using the proposed LSTM-RF, LSTM and RF
approaches at the five locations. The inset donut plots display the relative magnitude of the total MAE for 1–25 h ahead predic-
tions using the different methods.
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characteristics such as the fluctuation amplitude and duration, the forecasting results were closer
to the fluctuation trend and amplitude of real data at different time scales. Therefore, the pro-
posed approach achieved better forecasting results and was preferable for medium- and long-
term forecasting.

5. Conclusions

The SST is an important geophysical parameter that considerably influences the ocean systems, cli-
mate change, and precipitation distribution, and may trigger extreme weather events such as
droughts, typhoons, and floods. To achieve accurate long-term predictions of SST, this paper pro-
poses an adaptive granulation method that comprehensively considers the concavity–convexity and
monotonicity of the SST series to reconstruct the one-dimensional SSTs into multidimensional fea-
ture variables. Multiseries feature variable data are fed to the hybrid prediction model, and the fea-
ture-temporal pattern is used to obtain predictions.

We applied the proposed model to predict SST in various months at five locations with different
latitudes. The results demonstrated that the proposed model successfully captured the seasonal
information and exhibited high prediction accuracy for SST across different months at all five
locations. By comparing with the other five models including RF, LSTM, SVR, BPNN, and
A_LSTM-RF models, we found that the proposed method achieved more accurate predictions
across nearly all prediction horizons from 1 to 125 h, with minimal increase in prediction error
as the prediction horizon increases. The average prediction error of the proposed model within
the range of 25–125 h is 0.07 K, which is comparable to the error of 0.067 K observed within the
first 24 h. Overall, the proposed adaptive feature granulation-based prediction model that

Figure 12. Correlation coefficients (R2) of SST predictions for different prediction horizons, obtained using the proposed LSTM-RF,
LSTM and RF approaches at the five locations. The inset donut plots display the relative magnitude of the total R2 for 1–25 h
ahead predictions using the different methods.
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Figure 13. Prediction errors for all prediction horizons (1–125 h) using the proposed LSTM-RF, LSTM and RF methods at the five
locations.
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Figure 14. Values of RMSE, MAE and R2 of SST predictions for different months, obtained using the proposed LSTM-RF approach
at the five locations, as well as statistics of the SSTs for different months at the five locations. Std. dev. of DSST and td. dev. of
DASST denote the standard deviation of the averaged diurnal variation of SST for different months and the standard deviation of
the diurnal variation of the amplitude of the diurnal cycle of SST.

Figure 15. Prediction results using the proposed LSTM-RF, RF, and LSTM methods for the SST from 01 December to 07 December
2021 at five locations (L1–L5).
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hybridizes the LSTM and RFmodels exhibits strong robustness and generalization ability, making it
suitable for mid and long-term hourly SST forecasting. Notably, in this study, the multivariable
analysis approach based on individual SST sequences was used. This technique can mine the multi-
dimensional characteristic dependence involved in the time series and overcome the problem that
the LSTM and RF models based on the iterative strategy are highly sensitive to the errors accumu-
lated during iterative predictions. However, the variation in the SST resulting from the interaction
of multiple variables cannot be considered. In this context, the prediction performance of the pro-
posed model can be further enhanced by feeding it with meteorological factors with high spatial and
temporal resolutions. This site-specific SST prediction can be used to fill the missing values of SST
and aid in studying ocean dynamics, guiding fisheries decisions based on temperature preferences,
and supporting effective coastal resource management by monitoring climate impacts and mana-
ging coastal ecosystems.
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