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The automation of organic compound synthesis is pivotal for expediting the development of such compounds.
In addition, enhancing development efficiency can be achieved by incorporating autonomous functions along-
side automation. To achieve this, we developed an autonomous synthesis robot that harnesses the power of
artificial intelligence (AI) and robotic technology to establish optimal synthetic recipes. Given a target molecule,
our AI initially plans synthetic pathways and defines reaction conditions. It then iteratively refines these plans
using feedback from the experimental robot, gradually optimizing the recipe. The system performance was val-
idated by successfully determining synthetic recipes for three organic compounds, yielding that conversion
rates that outperform existing references. Notably, this autonomous system is designed around batch reactors,
making it accessible and valuable to chemists in standard laboratory settings, thereby streamlining research
endeavors.
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INTRODUCTION
The discovery of functional organic materials has led to the emer-
gence of various organic counterparts of electronic devices, such as
light-emitting diodes, complementary metal-oxide semiconductor
image sensors, and solar cells, with the ongoing challenge of im-
proving their properties. Traditionally, this endeavor has relied on
a time-consuming and inefficient trial-and-error approach involv-
ing repetitive cycles of molecular design, synthesis, and characteri-
zation processes. Recognizing the need for innovation in this
methodology, notable efforts spanning decades have aimed to
revamp the approach. However, it is time-consuming and ineffi-
cient; thus, efforts have been dedicated for decades to innovate
this methodology. In the realm of molecular design, the advent of
high-throughput computational screening, supported by large-scale
first-principles simulations and machine learning, marked a trans-
formative shift aimed at reducing reliance on human knowledge
and intuition and minimizing the likelihood of unexpected discov-
eries (1–4). The drive to streamline laborious experiments gained
momentum with the onset of the electronics era, ushering in
precise and accessible control over unit operations, such as dispens-
ing, reactions, sample preparation (sample-prep.), work-up, purifi-
cation, and analysis (5–7). Ultimately, the aspiration for
comprehensive laboratory automation initially found its roots in

the life sciences field during the 1980s (8), and substantial progress
has been made over the past few decades (9–13). This trend toward
automation has also manifested itself in the field of chemistry.

The advancement of artificial intelligence (AI) technologies in
the 2010s, coupled with the availability of large-scale datasets,
gave rise to the concept of robot chemists, where AI serves as the
cognitive brain and the robot acts as the physical body, enabling au-
tonomous chemical research. Challenges have persisted in the de-
velopment of organic molecules using universal synthetic
platforms, particularly in fields such as pharmaceuticals and
biology (14, 15). Notably, there has been a recent surge in the adop-
tion of flow-based systems (16–21) due to their cost effectiveness
and the ease with which processes can be controlled through con-
figurable fluidic circuits with valves and pumps (8, 22). These
systems offer enhanced heat and mass transfer, allow for harsh re-
action conditions in terms of temperature and pressure, and facili-
tate online analytical monitoring. However, flow chemistry faces
limitations in handling poorly soluble reagents, lacks dedicated da-
tabases for automated synthesis planning, and typically lacks trans-
latability between flow and batch chemistries (8). Innovative hybrid
systems have been proposed (23–26) combining round-bottomed
flasks for batch reactions and flow systems for chemical transport.
Nevertheless, they encounter challenges in handling solid reagents
containing metallic elements used in electronics applications.
Hence, batch-type synthesis remains practical for chemists,
despite its larger footprint and higher cost, due to its status as a stan-
dard protocol in mass production and development. While there
have been some instances of bio-applications (10, 27), constructing
a batch-type automated system by integrating various hardware and
software components is complex, resulting in only a limited number
of studies with restricted capabilities (12, 28–31).

In pursuit of a versatile and intelligent platform for molecule
synthesis, this study introduces an AI-driven robotic chemist,
capable of autonomously performing tasks spanning from synthetic
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planning to experiments conducted in batch reactors, capitalizing
on the collaborative potential of AI and robots. This platform is
aptly named the “Synbot” (synthesis robot). The Synbot comprises
three distinct layers: an AI software (S/W) layer, a robot S/W layer,
and a robot layer (Fig. 1A). Its primary objective is to synthesize
target substances while actively seeking optimal conditions. The
AI S/W layer spearheads the synthesis planning process, equipped
with the retrosynthesis module, the design of experiments (DoE),
and optimization module, and steers the direction of experiments
using the decision-making module. This layer adopts a blackboard
architecture, enabling individual modules to access a shared data-
base, facilitating communication and collaborative problem
solving. Once the synthesis recipe is relayed from the AI S/W
layer, the robot S/W layer takes charge, translating it into actionable
commands for the robots through the recipe generationmodule and
the translation module. Subsequently, the robot layer operates
under the supervision of the online scheduling module (Fig. 1B).

The robot layer modularizes the various functions of the synthetic
laboratory and systematically executes the planned recipes, contin-
uously updating the database until the predefined goals are met. The
Synbot encompasses essential modules, including pantry, dispens-
ing, reaction, sample preparation, analysis, and transfer-robot
modules, with an overall footprint measuring 9.35 m by 6.65 m.
This comprehensive integration of AI and robotics represents a sig-
nificant step toward achieving a versatile and autonomous smart
synthesis platform for molecules.

Autonomous workflow of the Synbot
The procedure for the autonomous synthesis by the Synbot is illus-
trated in Fig. 2. According to the target molecule and task given by a
user, the AI S/W layer commences synthesis planning (i) and com-
pletes the recipe repository with the initial reaction paths and con-
ditions (ii). When the robot S/W layer determines that one of the
reactors is available, it requests a new synthesis recipe to the AI S/

Fig. 1. AI-driven robotic chemist (Synbot). (A) Structure and working concept of the Synbot comprising AI S/W, robot S/W, and robot layers. (B) Layout and configura-
tion of the robot layer comprising six modules: pantry, dispensing, reaction, sample-prep., analysis, and transfer-robot.
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W layer and receives the highest-ranked recipe in the recipe repos-
itory (iii and iv). After translating the recipe into detailed robot
commands (v), the online scheduler dispatches them to the robot
layer (vi) when the relevant robots are prepared for execution.
When analyses during the reaction are completed in the robot
layer, the results are delivered to the database of the AI S/W layer
(vii). The decision-making module determines whether to continue
with the current recipe, to try another recipe, or to switch to a new
synthetic path. The current recipe continues if the decision-making
module determines that the reaction requires more time. If the de-
cision-making module evaluates that the current recipe is not suit-
able to meet the target, it issues a “Withdraw” signal to the robot S/
W layer to halt the current reaction condition and commence a new
one. Furthermore, a “Sweep” signal is addressed to the robot S/W to
stop all recipes belonging to the current synthetic path when the de-
cision-making module concludes that another synthetic route
should be attempted. The DoE and optimization module update
its AI model, if the current recipe ends normally, and revise the
recipe repository. Thereafter, the entire procedure repeats until
the synthetic objective is satisfied.

The target task of the Synbot is currently focused on the maxi-
mization of the reaction yield. However, it can be extended to other
objectives, such as the minimization of synthetic cost or the optimi-
zation of reaction kinetics, if necessary. Furthermore, in addition to
the above autonomous mode, it can be operated in a semi-autono-
mous mode that determines optimal conditions using only the
Bayesian optimization (BO) algorithm for areas not covered by
deep learning models and in an automation mode that only passive-
ly performs user-specified experiments.

AI S/W layer
Competent synthetic planning can save time and cost when obtain-
ing a product by determining suitable combinations of starting ma-
terials and reaction conditions. The design of synthetic pathways
and determination of suitable reaction conditions for a target mol-
ecule are traditionally conducted on the basis of chemists’ knowl-
edge and experience. However, advancements in high-
performance computing and AI have facilitated computer-assisted
synthetic planning. While precision and validity may not yet meet
the expectations of researchers, particularly for newly discovered
materials, computer-assisted planning reveals implicit information

from a vast body of previous studies and rapidly suggests feasible
conditions. Consequently, a computer-assisted approach proves in-
dispensable for an autonomous synthetic platform For the Synbot, a
collaborative retrosynthesis approach is formulated by combining
the template-based model (32) and the template-free tied-two-
way transformer (33) to increase the viability of the proposed syn-
thetic routes, which increases the top 1 prediction accuracy by 4.5 to
7.0%. When the synthesis path is determined by the retrosynthesis
module, suitable reaction conditions are suggested by the DoE and
optimization module (34) in the predefined search space (see Sup-
plementary Text). If the target synthesis is within the material data-
base in the AI S/W layer, then message-passing neural networks
(MPNNs) (35) can steer the optimization process readily based
on previous knowledge. However, if the task is rare, then fresh or
peculiar access is crucial for reaching a solution. To address both
these cases, a hybrid-type dynamic optimization (HDO) model,
which associates MPNNs in conjunction with BO (34), is imple-
mented to coordinate exploitation and exploration harmoniously.
Various deep neural network models of the Synbot were built on
the basis of the commercial Reaxys DB (Elsevier, Aalborg,
Denmark). Details of the AI S/W layer are provided in Supplemen-
tary Text.

Robot S/W layer
The synthetic recipes predicted by the AI S/W layers are abstract
and cannot drive the robot; thus, they are transformed into more
definite robot commands in two steps by the recipe generation
and translation modules in the robot S/W layer. First, the recipe
generation module produces quantified action sequences that
reflect the molecular weight, purity, and concentration of the chem-
icals. Subsequently, the recipe translation module converts the
action sequences into robot commands using concrete parameters
for hardware control. The action sequences are independent of H/
W configurations and are human-readable; however, the robot
commands are specific to the Synbot. The online scheduling
module monitors the robots’ work status in real-time and executes
the commands in order (see Supplementary Text).

Robot layer
The robot layer executes the commands received. The chemical con-
tainers of reactants and reagents, which are stored in five types of

Fig. 2. Workflow of autonomous synthesis for a target molecule and task.
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pantries (acid, base, organic, refrigeration, and solvent), are trans-
ferred to the dispensing module by the pantry robot, and subse-
quently, the chemicals are dispensed into glass reaction vials, as
specified in the recipes. The vials were delivered to the reaction
module and subjected to specific temperatures and stirring condi-
tions for the chemical reaction. The reaction status is monitored via
repetitive sampling of a small amount of the reaction solution (20 to
25 μm). The sampled solutions are then moved to the sample-prep.
module and injected into a liquid chromatography–mass spectrom-
eter (LC-MS; TSQ Quantis; Thermo Fisher Scientific, Waltham,
MA). The sample-prep. module is responsible for preprocessing
the sampled reaction solutions, such as dilution, mixing, and filtra-
tion of solid particles, and the final injection into the LC-MS. Each
module, with the exception of the analysis module, has its own
robot to handle operations, and the transfer-robot module relays
the entire process by transporting the reaction and sample vials
between the different modules.

We engineered the system to be robust against variations in the
surrounding environment, ensuring stable operation and reliable
experimental outcomes. The Synbot laboratory was under the
control of a thermo-hygrostat, maintaining a temperature of ≤24°
C and a relative humidity of ≤45%, thus ensuring a consistent reac-
tion environment. In addition, the interior of the pantry and dis-
pensing modules was continuously supplied with nitrogen gas to
prolong the shelf life of the chemicals. The dispensing module
was equipped with several devices for the accurate mixing of the re-
action solutions. This module included a capper, dispenser for
powders and solvents, dispenser for liquid chemicals, ionizer to
remove static electricity, and other supporting devices. In automat-
ed systems focused on optimizing synthetic recipes, a significant
portion of the experimental time is dedicated to the actual chemical
reactions. Therefore, if the other devices remain idle during this
phase, then it can lead to reduced overall system utilization. To
prevent this, the Synbot’s reactor features six reaction slots, allowing
simultaneous and independent control of multiple reactions. In ad-
dition, to avoid excessive pressure increase and solvent loss during
the reaction process, a condensing mechanism and custom-built
cap were applied to the reaction vial. Although LC-MS is primarily
used to determine the conversion yield, it can also be used to deter-
mine the reaction kinetics. This versatility enables the Synbot to be
applied to various tasks, including the mitigation of side reactions,
elucidating reaction mechanisms, and developing previously
unknown synthesis methods. Tomaintain a contamination-free op-
eration, the Synbot extensively uses disposable glassware and
devices. Further details can be found in Supplementary Text.

Reproducibility of the Synbot
Various factors, such as the accuracy of dispensing, consistency of
the environment and chemicals, uniformity of the reaction temper-
ature, and mixing, can influence the chemical reaction. If these
factors are uncontrollable, then the reliability of the synthesis
results may decrease, resulting in inaccurate outcomes. Further-
more, the generated data can negatively affect the chemical database
that could otherwise have been used for machine learning. In this
regard, the experimental reproducibility of the Synbot in terms of
dispensing and conversion yield was examined for three typical ar-
omatic coupling reactions (Suzuki coupling, Buchwald reaction,
and Ullmann reaction; Fig. 3 and Supplementary Text).

Identical experiments were conducted 12 times to assess the re-
producibility of each reaction scheme. As summarized in table S7,
the chemical dispensing is carried out precisely with mean absolute
errors ≤ 0.73 mg and coefficients of variance (CVs) ≤ 2.55%. In the
case of the conversion yield, which reflects the consistency of all
process variables including dispensing, reaction, preprocessing,
and analysis, the CV values were less than 5% throughout the mon-
itoring time. Moreover, if it is limited only to the latter part of the
reaction stage, where the conversion yield converges, the CV values
decrease to less than 2.5%. These results validate the performance of
the Synbot and can serve as a basis for the Synbot to be used as a
common synthesis platform.

Autonomous synthesis of the Synbot
The performance of the autonomous synthesis of the Synbot was
investigated using three molecules [4-(2,3-dimethoxyphenyl)-1H-
pyrrolo[2,3-b]pyridine, M1; N-(4-methoxyphenyl)-N-phenylpyri-
midin-5-amine, M2; and N,N-diphenylquinoxalin-2-amine, M3],
which were selected from the literature (36–38) and reported to
have isolation yields ranging from 30 to 50%. In advance, the infor-
mation regarding the target molecules was excluded from the AI
training datasets. The reaction conditions reported in the literature
were reproduced on the Synbot to obtain the reference conversion
yields. The results of the autonomous synthesis of the target prod-
ucts are summarized in Figs. 4 to 6 and tables S14 to S17.

RESULTS
Synthesis of M1
The reference Suzuki coupling reaction for M1 (M1-3 in Fig. 4A)
(36) is predicted as the third priority by the retrosynthesis model,
while the same synthetic routes as those found in the literature
(M2-1 in Fig. 5A and M3-1 in Fig. 6A) (37, 38) are proposed as
the first-ranked options forM2 andM3. The reference reaction con-
dition for M1-3 revealed a conversion yield of 86.5% on the Synbot,
which is higher than the reported isolation yield of 37.7%. This dis-
crepancy could potentially be attributed to variations in the purifi-
cation step. However, it is important to acknowledge that even with
the same recipe, differences in the experimental apparatus, raw ma-
terials, and environmental conditions can lead to distinct outcomes
due to variations in mechanical and chemical characteristics. There-
fore, a target conversion yield of 91.5%, which is 5% higher than that
of the reference, was set for M1 synthesis.

Autonomous synthesis initially follows the reaction scheme M1-
1, as described in Fig. 4B and table S14. Although the target yield
was as high as 91.5%, a synthetic condition with a conversion yield
of 100% was found in the first trial within the search space of 2722
cases. The preference of scheme M1-1 over M1-3 is readily predict-
able because bromine substituents are generally more reactive than
chlorine substituents. However, to confirm this, an experiment for
theM1-3 reaction was also conducted, as shown in Fig. 4C and table
S15, and a more superior condition than the reference was obtained
in the ninth trial. During this process, the Synbot learned that the
tetrahydrofuran/water mixture solvent is not favorable and expand-
ed the candidate solvents to include a toluene/ethanol/water
mixture and N,N0-dimethylformamide. Furthermore, it explored
different ligands and catalysts beyond Pd(PPh3)4, ultimately achiev-
ing perfect conversion using the combination of Pd2(dba)3 and
BrettPhos combination. After the ninth trial, the search was
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continued arbitrarily to further investigate the impact of different
reagents, revealing that palladium catalyst sources with dibenzilide-
neacetone, BrettPhos, nonstrong bases, and toluene/ethanol/water
were the optimal conditions for the reaction.

To exemplify the power of the AI model, let us delve into the
Suzuki coupling reaction case, denoted as M1-3. In this case,
conventional catalyst and base combinations, specifically Pd
(PPh3) 4 and K2CO3, yielded relatively lower conversion rates
within our mild temperature setup. However, under the same
temperature conditions, we discovered that the less commonly
used reagent combination comprising Pd2(dba)3, BrettPhos, and
KOAc achieved complete reaction conversion. Notably, historical
data in Reaxys DB reveal that the base and catalyst ligand we used
in this case are used at only about 1% of the frequency compared to
Pd(PPh3)4 or K2CO3.

Synthesis of M2
A common problem encountered in applying AI to molecular syn-
thesis is the scarcity of training data, a limitation driven by the vast-
ness of the chemical space and the high cost associated with
experimental data collection. In such scenarios, it becomes crucial
to effectively balance both exploitation and exploration strategies.
The synthetic task for M2 belongs to this category. A total of
158,609 (19.5%) of the 814,687 data used for the training of the pre-
diction model of reaction conditions are Suzuki coupling–related
data, while only 17,705 data (2.2%) belong to Buchwald amination
(see Supplementary Text). Consequently, it is anticipated that dis-
covering suitable conditions for Buchwald amination would pose a
more significant challenge compared to Suzuki coupling when
relying on the HDO model for exploitation.

The conversion yield of the reference M2 recipe (37) was only
15.0% for the Synbot (Fig. 5B and table S16). However, the yield
was quantified using LS-MS (as described in eq. S1 in Supplemen-
tary Text), which can vary depending on the material’s absorbance
properties. Therefore, the target conversion yield was set at 70.0%,
approximately twice the reported isolation yield. For the M2-1
scheme, most recipes initially exhibited insufficient reactivity.
Over time, new recipes were explored, primarily focusing on cata-
lysts and solvents. Eventually, a combination of two types of

palladium dibenzylideneacetone (dba) catalysts, Pd(dba)2 and Pd2-
(dba)3, APhos ligand, NaOtBu base, and toluene solvent was discov-
ered, resulting in a 100.0% reaction conversion at the 36th and 37th
tryouts. Autonomous synthesis continued to elucidate the reaction
characteristics in greater detail, leading to more frequent proposals
of high-yield reaction conditions. Through these endeavors, it
became evident that bulky electron-rich dialkylbiaryl phosphine
ligands are less suitable for the reaction compared to simpler mono-
dentate or bidentate ligands such as PtBu3, APhos, and XantPhos.

Synthesis of M3
The synthesis of M3 was classified as the N-arylation of Buchwald
amination, as shown in Fig. 6A. However, the ligand specified in the
reference literature, 2-[1,3-bis(dicyclohexylphosphanyl)-1H-inden-
2-yl]-N,N-dimethylaniline, was not accessible. Consequently,
XPhos was chosen as an alternative since it has been previously re-
ported to induce rapid conversion and excellent yields, similar to
the reference ligand in the same literature (38). The conversion
yield of this modified reference condition on the Synbot was
50.9%; however, the target yield was 80.0%, considerably higher
than the reported isolation yield of 45.0%.

Unlike the commonly used strong bases, such as NaOtBu, the
Synbot identified high conversion conditions using the milder
base of Cs2CO3 (Fig. 6B and table S17). The initial three groups sug-
gested by theMPNNmodel failed to yield good results; however, the
subsequent three recipes from the maximin Latin hypercube sam-
pling (see Supplementary Text) exhibit the possibility of yielding
good results. Although no clear improvement was observed until
the 33rd run, the frequency of recipes with conversion yields
higher than 50% gradually increased as the experiment progressed.
Last, the Synbot obtained the target conversion yield in the 42nd
trial using Pd(OAc)2 and XantPhos ligands. A closer observation
indicates that a strong base, NaOH, can accelerate kinetics such as
NaOtBu in the reference recipe, while Cs2CO3 results in a higher
yield. Some differences were observed compared to the case of
M2. First, the excellent recipes for M2 use the strong base
NaOtBu, while that for M3 uses Cs2CO3. In addition, in contrast
to M2 synthesis, palladium acetate performs better in M3 synthesis
than palladium catalysts prepared with dba. The specificity of these

Fig. 3. Experiments to validate reproducibility of the Synbot. (A) Three reaction schemes. (B) Conversion yield variations with time. Each number in the data point
indicates the SD obtained from 12 repetitions. THF, tetrahydrofuran; DMF, N,N0-dimethylformamide.
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reagents may be attributed to the characteristics of the reactants,
quinoxaline versus pyrimidine or pure diphenylamine versus
methoxy diphenylamine, with slightly different electronic struc-
tures. Although further investigation into these nuances falls
beyond the scope of this work, it underscores the importance of
recipe search in enhancing reaction efficiency and understanding
reaction mechanisms. In this context, the utility of the Synbot can
be further amplified.

To compare reference results, we conducted additional syntheses
of M3 using NaOtBu, as recommended in the reference paper (38),
in conjunction with three different ligands: tri-tert-butyl phosphine
(PtBu3), Xphos, and Xantphos as summarized in table S18. Intrigu-
ingly, we observed that the reactions halted within just 4 hours,
yielding approximately 65 to 70% conversion rates for the Xphos
and Xantphos cases and a mere 5% conversion rates for the PtBu3
cases. While our optimal recipe exhibited a slower reaction rate, it
ultimately yielded higher conversion rate.

Fig. 4. Autonomous synthesis of M1 [4-(2,3-dimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine]. (A) Synthetic schemes designed by AI. (B) Conversion yield with time for
the reaction scheme M1-1. (C) Conversion yield with time for the reaction scheme M1-3.

Fig. 5. Autonomous synthesis of M2 [N-(4-methoxyphenyl)-N-phenylpyrimidin-5-amine]. (A) Synthetic schemes designed by AI. (B) Conversion yield with time for
the reaction scheme M2-1.
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DISCUSSION
The customized Synbot exhibited its exceptional capabilities by
consistently delivering competitive synthetic recipes with yields
on par with or surpassing known references. This achievement
was made possible through a closed-loop feedback mechanism
between the robotic system and AI. The MPNN model effectively
determined solutions for well-established Suzuki coupling reactions
(M1) in a relatively straightforward, data-driven manner. Converse-
ly, for M2 and M3, the MPNNs faced challenges in individually
identifying favorable conditions but succeeded in finding solutions
through collaboration with BO. The goals were achieved in all cases,
with fewer than 1% of trials from the total search space, highlighting
the efficiency of HDO in chemical research compared to traditional
methods reliant on human expertise and knowledge. The Synbot
uses not only its high-throughput experimentation capabilities
but also its real-time recipe design strategy guided by AI models.
This stands as a testament to the Synbot’s effectiveness in accelerat-
ing the discovery and optimization of chemical processes.

The Synbot’s ability to monitor kinetics during synthesis has the
potential to enhance synthesis quality while reducing research costs.
In manual experiments, the periodic inspection of reaction progress
can be labor intensive, leading to reactions often proceeding for ex-
cessive durations, resulting in yield losses due to side reactions or
unnecessary time wastage. The automatic analysis capabilities of
the Synbot naturally address this issue. Although LC-MS provides
precise quantification, its relatively lengthy and complex prepro-
cessing is a drawback. Therefore, integrating simpler yet somewhat
qualitative techniques, such as thin-layer chromatography, could
enhance overall efficiency.

Depending on the total reaction time, the Synbot can conduct an
average of 12 reactions within 24 hours, encompassing dispensing
and analysis. Assuming a researcher can perform two experiments
of this type per day, the Synbot exhibits at least sixfold increase in

efficiency compared to human counterparts. This efficiency is
further amplified when considering automatic synthetic planning
and optimization. While the Synbot currently requires periodic
human intervention to replenish chemicals, consumables like
vials and filters, and dispose of waste, these challenges can be ad-
dressed by expanding pantry capacity, introducing automatic
feeding robots, and implementing continuous waste-discharging
mechanisms.

Efficiently assessing the properties and synthetic feasibility of
materials in the early stages of development is crucial for screening
potential candidates and identifying underlying issues. In this
regard, the Synbot offers multiple contributions. Automated syn-
thetic planning and decision-making guide robots empower
robots to explore chemical spaces efficiently with minimal resourc-
es, enabling research even for individuals lacking extensive chemical
knowledge. Accurate robot operation produces reliable experimen-
tal results, forming the basis for a high-quality DB that can be used
in future studies. In addition, the Synbot provides access to numer-
ous negative data, which are often challenging to find in typical re-
search papers, and rich metadata for detailed causal analysis.
Moreover, the batch-type reaction format aligns well with conven-
tional synthesis practices, making it highly practical for chemists.
The Synbot can accelerate the time to market for novel materials,
granting researchers more time to focus on creative research activ-
ities beyond the realm of AI and robotics.

Existing chemistry DBs suffer from insufficient data and imbal-
ance data distribution compared within the vast chemical space,
leading to subpar AI performance compared to general machine
learning applications like language translation or image recogni-
tion. This issue can be overcome by accelerating data accumulation
through an automation platform such as the Synbot. However, en-
suring compatibility of experimental results across different systems
is paramount. Even batch-type reactors may exhibit variations in

Fig. 6. Autonomous synthesis ofM3 (N,N-diphenylquinoxalin-2-amine). (A) Synthetic schemes designed by AI. (B) Conversion yield with time for the reaction scheme
M3-1.
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heating, cooling, andmixing characteristics, potentially causing dis-
crepancies in experimental outcomes. In this respect, global stand-
ardization of experimental devices becomes imperative. Now, the
Synbot is undergoing upgrades to transform to amultistep synthesis
platform, including work-up and purification steps, aiming to serve
as a versatile, general-purpose platform.

MATERIALS AND METHODS
Preparation of reagents
All reagents and starting materials were purchased from Sigma-
Aldrich (Burlington, MA, USA), Tokyo Chemical Industry
(Tokyo, Japan), and Daejung Chemicals (Siheung, Republic of
Korea) and were meticulously prepared before storage in our labo-
ratory’s pantries. Solid chemicals exceeding a size of 1 mmwere ini-
tially subjected to grinding and sieving through a 500-μm-aperture
metal sieve (TS-F0500; Glenammer, Ayrshire, UK). Subsequently,
these materials were securely stored in designated chemical contain-
ers (QH010-CNMW; Mettler-Toledo, Greifensee, Switzerland),
equipped with powder dispensers for convenient access. The
various reaction solvents were transferred to 1-liter bottles, while
nonsolvent liquid materials were carefully housed within in-house
syringes. All these containers, both for chemicals and solvents, were
systematically arranged in designated slots within our pantry.

Reaction condition for autonomous synthesis
The autonomous synthesis process was executed to derive optimal
reaction recipes achieving the desired target yields. This process in-
volved navigating a four-dimensional space defined by the catalyst,
ligand, base, and solvent parameters. The reaction temperature was
set as a constant, contingent on the specific solvent type [for de-
tailed temperature settings, refer to Supplementary Text (35, 39–
44)]. In all cases, the equivalent ratios of reactant 2, catalyst, and
base to reactant 1 were determined from relevant literature (36–
38). However, it is worth noting that due to the unavailability of
equivalent ratios for the ligands in M1-1 and M1-3, ligands with
twice the equivalent ratios of the catalysts were used. Concentra-
tions for each reaction were established following established liter-
ature protocols. For comprehensive information regarding the
Synbot system and the experimental procedures, please consult
the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Technical descriptions of the Synbot
Procedure and results of experiments
Figs. S1 to S20
Tables S1 to S18
Legend for movie S1
Legend for data S1

Other Supplementary Material for this
manuscript includes the following:
Movie S1
Data S1
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