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Simple Summary: Cardiovascular disease is a major global health concern. Early detection is vital,
with phonocardiograms (PCGs) offering valuable heart sound data, including murmurs. Research
automating PCG analysis is growing, addressing challenges like the 2022 PhysioNet Challenge.
Our innovation, the MCHeart system, focuses on irregular heart murmurs, combining S1/S2 fea-
tures, smoothing, and a residual LCNN architecture with multi-head self-attention for enhanced
feature extraction.

Abstract: In this study, we constructed a model to predict abnormal cardiac sounds using a diverse
set of auscultation data collected from various auscultation positions. Abnormal heart sounds were
identified by extracting features such as peak intervals and noise characteristics during systole and
diastole. Instead of using raw signal data, we transformed them into log-mel 2D spectrograms, which
were employed as input variables for the CNN model. The advancement of our model involves inte-
grating a deep learning architecture with feature extraction techniques based on existing knowledge
of cardiac data. Specifically, we propose a multi-channel-based heart signal processing (MCHeart)
scheme, which incorporates our proposed features into the deep learning model. Additionally, we
introduce the ReLCNN model by applying residual blocks and MHA mechanisms to the LCNN
architecture. By adding murmur features with a smoothing function and training the ReLCNN
model, the weighted accuracy of the model increased from 79.6% to 83.6%, showing a performance
improvement of approximately 4% point compared to the LCNN baseline model.

Keywords: heart murmur detection; biological signals; feature extraction; smart healthcare; light
CNN; multiple attention network; deep learning

1. Introduction

Cardiovascular disease is a major health issue and a leading cause of death worldwide.
Despite advances in medical technology, statistics showing high mortality rates from
heart disease indicate that it remains a formidable threat to our health. Early detection of
symptoms of cardiovascular disease is cost-effective, as it makes treatment easier and more
efficient [1]. The health of the heart can be assessed by obtaining information on cardiac
disorders through electrocardiograms (ECGs) and phonocardiograms (PCGs). While ECGs
provide information about the electrical signals around the heart, PCGs provide information
about the acoustic signals produced by the vibrations of heartbeats. Together, these tests
help doctors diagnose a wide range of heart conditions. PCGs especially are a cheap
and simple non-invasive test that pose no burden on people visiting hospitals for disease
prevention. Additionally, PCGs provide important information for diagnosing cardiac
diseases [2]. PCGs may include a range of sounds beyond the normal heart sounds,
including heart murmurs. Murmurs, which can occur both inside and outside the heart, are
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typically caused by turbulent blood flow and can be either benign or abnormal/pathological
in nature [2]. To accurately judge murmurs from recorded heart sounds, an expert with
much clinical experience with various types of murmurs is required.

However, the interpretation of cardiovascular diseases can be somewhat subjective,
as it may lead to clinical disagreements among medical practitioners based on years of
experience and expertise, resulting in a lack of objectivity [3–5]. In recent years, there
has been a growing trend in research of using PCG data to automatically detect heart
diseases. Pedro et al. (2020) [6] applied an empirical wavelet transform to PCG signal
data for preprocessing and then used different machine learning models for classification,
including the support vector machine and k-nearest neighbor models. Banerjee and Majhi
(2020) [7] proposed a deep learning model for noise detection using mel-frequency cepstral
coefficient features. Boulares et al. (2021) [8] also proposed a heart disease recognition
model using unsupervised and supervised learning methods based on convolutional neural
networks (CNNs).

The theme of the George B. Moody PhysioNet Challenge for 2022 was Heart Murmur
Detection from PCG Recordings [9]. The competition aimed to identify the presence or ab-
sence of murmurs and normal vs. abnormal clinical outcomes from heart sound recordings
collected from multiple auscultation locations using a digital stethoscope. The competition
is beneficial because congenital and acquired heart diseases affect many children in un-
derprivileged countries where early diagnosis is difficult due to the lack of infrastructure
and cardiology specialists. The Challenge required participants to design and implement a
working open-source algorithm that can determine the presence of murmurs and identify
the clinical outcomes from recordings and demographic data. A total of 87 teams submitted
779 algorithms during the Challenge. Lu et al. (2022) [10] used a lightweight CNN and
a random forest model to detect heart murmurs and classify clinical outcomes, achiev-
ing 1st and 10th place in the challenge tasks for murmur detection and clinical outcome
classification, respectively. McDonald et al. (2022) [11] used a recurrent neural network
and hidden semi-Markov model approach to detect heart murmurs in PCG recordings,
applying multiple hidden semi-Markov models to produce multiple segmentations of
the signal and compare their confidence and then classifying murmurs and producingro-
bust segmentations. This model ranked second in the murmur detection task. Lee et al.
(2022) [12] proposed a deep learning-based model using a log-mel spectrogram and light
CNN (LCNN) to identify heart murmurs from a PCG.

Most existing models use only spectrogram features extracted from raw data to capture
time–frequency characteristics. However, in addition to the spectrogram features, we
utilize background knowledge about heart signals. Through this knowledge, we can divide
the heart sounds into S1 and S2 components and their complements (S1 and S2 are the
two distinct sounds produced by the heart during each heartbeat). Inspired by irregular
heart murmurs, we propose a multi-channel-based heart signal processing (MCHeart)
system, a heart murmur detection system that addresses irregular heart murmurs using
the following three components: (1) We focus on utilizing additional feature information
from the cardiac activity sounds, such as S1 and S2, derived from PCG data. By extracting
cardiac activity sound features and applying mel spectrograms, we obtain richer temporal
and frequency domain characteristics. (2) A smoothing function is applied to minimize
the noise or irregularity of the heart sound signal. (3) Additionally, we introduce the
residual LCNN (ReLCNN) architecture by incorporating residual blocks and multi-head
self-attention (MHA) into the model proposed by Lee et al. (2022) [12]. The baseline model
proposed by Lee et al. (2022) [12] (CAU_UMN team) achieved notable rankings in the
PhysioNet Challenge 2022. In both the murmur detection and clinical outcome detection
categories, this model secured the fifth position among a total of 87 participating teams [9].
We aimed to further enhance this model with our own insights.

Utilizing the ReLCNN model resulted in an enhancement of weighted accuracy from
79.6% to 80.5%. Upon incorporation of S1 and S2 components into the ReLCNN model,
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the weighted accuracy further improved to 82.0%. Moreover, the application of a smoothing
function led to an increased accuracy of 83.7%.

2. Methods

The overview of the ReLCNN model proposed in this study is shown in Figure 1.
As shown in the feature extraction section in the figure, various preprocessing features, such
as peak intervals, S1 and S2, murmurs, and envelopes, in addition to the commonly used
spectrogram feature, are employed with the raw PCG audio signal. For data augmentation,
we used mixup and cutout techniques [13,14]. For the model, we employed the ReLCNN
architecture, which is an extension of the LCNN model proposed by Lee et al. (2022) [12]
with the addition of residual connections and MHA.

We describe the features extracted using PCG data in Section 2.1 and the models
trained to detect murmur abnormalities in Section 2.2.

Figure 1. Overview of the proposed approach. We show how peak intervals, boundaries, signal
envelopes, and log-mel spectrograms are extracted from phonocardiogram (PCG) raw audio data and
combined with models to predict murmur (abbreviations: PCG = phonocardiogram; S1 and S2 = the
two distinct sounds produced by the heart during each heartbeat; LCNN = light convolutional neural
network; FC = fully connected).

2.1. Feature Extraction from PCGs

We hypothesized that the accuracy of murmur detection models that can determine
the current state of the heart will increase as the feature information in phonocardiography
becomes more diverse. We conducted research using four features: spectrograms, S1 and S2,
the complements of S1 and S2, and envelopes. We transformed the one-dimensional PCG
data into a two-dimensional spectrogram and used it as input to the CNN. Spectrograms
provide important diagnostic information related to the cardiac state that is not clearly
visible in the temporal domain of one-dimensional data by visually representing the
frequency and temporal components of the signal, thereby improving the accuracy of
prediction algorithms.

2.1.1. Log-Mel Spectrogram

The log-mel spectrogram is a feature extraction technique that takes into account
human auditory characteristics. It performs a short-time Fourier transform (STFT) and
applies mel-scale filters to obtain the power for each frequency band, which is then con-
verted to a logarithmic scale. In order to determine what information is present in the
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original signal, the signal must be decomposed into its frequency components using a
Fourier transform. However, applying a Fourier transform to the entire signal would
result in the loss of temporal information and only frequency information would remain.
Therefore, to preserve the temporal information, the signal needs to be divided into short
time intervals, which is known as the STFT. The number of data points sampled per second
in the signal data is called the “sampling rate”, and the process of dividing time units into
short intervals is called “framing”. To preserve the time information, the signal is divided
into small pieces, with the size of each piece referred to as the “window size”. However,
since the window is defined with the edges cut off, the result is similar to the sound being
truncated. Therefore, to end naturally, a Hamming window is applied to each frame to give
weight to the center where more information can be seen. However, since the application of
the Hamming window results in the loss of information at the end of the frame, a Fourier
transform needs to be applied with overlapping frames to prevent the loss of information
at the edge of the frame. The degree to which certain intervals overlap is called the “hop
length”, and the STFT spectrogram is generated based on the window size and hop length.
The mel spectrogram [15] is calculated by converting the power for each frequency band of
the generated STFT spectrogram to the mel scale using Equation (1),

Mel( f ) = 2595 log10

(
1 +

f
700

)
(1)

LogMel( f ) = 10 log10

(
Mel( f )

re f

)
(2)

where f represents frequency. The log-mel spectrogram is obtained by taking the logarithm
of the power of the mel spectrogram and converting it to dB using Equation (2), and re f is
a reference value that Mel( f ) is relatively scaled to.

2.1.2. Peak Interval

Peaks refer to the areas in a signal where the amplitude or energy is high. This is an
important clue for inferring the characteristics of sound. In this paper, the peak interval
is defined as the distance between peaks in the PCG signal. Numerous medical studies
and previous PhysioNet competitions have utilized the R-R interval, which represents the
distance between peaks in an ECG signal, as a tool for evaluating anomalies in cardiac
disease [16–18]. Since the R-R interval in an ECG effectively represents heart rate variability
(HRV) [17,18], an additional function is required for PCGs to express HRV. Thus, the “peak
interval”, which corresponds to the R-R interval, was devised for representing HRV in
PCG signals.

Patients have heart murmurs between systole and diastole, which generate waveforms
corresponding to the noise. Therefore, we hypothesized that patients with heart disease
would have more peaks due to abnormal heart murmurs between systole and diastole.
More peaks result in shorter peak intervals. To confirm this hypothesis, we compared
the average peak interval between subjects with murmurs and those without murmurs
in the PhysioNet Challenge 2022 dataset. We found that the interval was approximately
49% longer in the absence of murmurs, as illustrated in Figure 2. Patients with murmurs
exhibited a higher number of peaks during the same time period compared to those without
murmurs. Peak detection can be easily performed on raw audio using the “ecg_peaks”
function from the Python library “Neurokit2” [19]. Although we intended to use the peak
interval value as a sequence, it was difficult to calculate the exact peak interval due to noise,
so we used the average peak interval instead of the sequence form.

2.1.3. Boundary Detection for Fundamental Heart Sounds and Heart Murmurs

The heart sound is a mechanical activity signal of the heart. The sound produced by
the fundamental heart sounds (FHSs) consists of two components, S1 and S2, as illustrated
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in Figure 3. S1 and S2 are the most basic heart sounds, while heart murmurs are sounds
occurring during both systole and diastole. The presence of heart murmurs can be indicative
of cardiac issues, although they may also be occasionally heard in healthy children and
young adults (Akkarapol et al., 2012 [20]). FHSs and heart murmurs are essential elements
when analyzing PCG signals to diagnose various heart diseases. However, in the PhysioNet
Challenge 2022 dataset, FHS information is not provided, resulting in the lack of crucial
characteristic information to judge the heart’s condition. To improve the performance
of the model in automatically identifying heart diseases, FHS feature information would
be necessary. Therefore, we referred to the time–frequency-domain approach proposed
by Ghosh and Ponnalagu (2019) [21] for automated FHS detection using PCG signals.
The boundaries of the heart cycle, S1, S2, and the boundaries of systole and diastole
murmurs contained in the extracted heart cycle were detected. We then applied a log-
mel spectrogram to each detected boundary signal to extract spectrogram features for
identifying heart diseases.

Figure 2. Absence vs. presence of heart murmur.

Figure 3. Fundamental heart sounds and heart murmurs.

The process of detecting FHS boundaries and applying spectrograms was performed
in six steps: (1) amplitude normalization, (2) applying a Butterworth low-pass filter, (3) cre-
ating a PCG signal envelope, (4) selecting a threshold, (5) detecting boundaries, and
(6) applying a log-mel spectrogram. This process is demonstrated in Figure 4.

First, according to Ghosh et al. (2019) [21], HRV signals vary in amplitude depending
on patient factors such as physiology, gender, and age, making it difficult to predict the
dynamic range of the signal. Therefore, normalization was applied to the HRV signal
data to transform the range of amplitudes to between −1 and 1. The signal data were
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normalized according to Equation (3) below, where i = 1, 2, 3, 4, . . . , N, and N represents
the total number of samples. Nsi represents the normalized signal.

Nsi =
si
|si|max

(3)

Figure 4. Our proposed heart feature extraction framework. This framework consists of a total of six
stages visually depicting how the original PCG signal transforms through each stage.
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Second, to eliminate high-frequency components, we preprocessed the normalized
signal using a low-pass Butterworth filter with a 150 Hz cutoff frequency [21]. This
cutoff frequency, a hyperparameter, was selected after considering the trade-off between
effectively reducing high-frequency noise and preserving vital cardiac sound information.
Ghosh et al. (2019) [21] applied the Stockwell transform to remove heart murmurs. In this
study, heart murmur information was an important factor for classifying normal and
abnormal heart sounds. Therefore, the Stockwell transform was not performed.

Third, since the sampling frequency of the PCG signal is 4000 Hz, the variation of
the frequency amplitude in the time domain is fast. Rapid-amplitude variation makes it
difficult to detect the onset and end of the heart sounds S1 and S2. Therefore, it is necessary
to detect the envelope of the PCG signal to minimize this variation [22]. The envelope was
extracted using the signal.hilbert function of the scipy library. The graphical representation
of the extracted envelope is shown in step three in Figure 4. Since the PCG signal is
almost symmetric around the horizontal axis of zero, we considered only the positive part
of the signal for computational efficiency. Fourthly, in order to automatically detect the
boundaries of cardiac sound activity, the threshold needs to be determined. Therefore,
selecting an appropriate threshold value (Thsh) is one of the most important tasks. In this
study, Equation (4) was used to find an appropriate threshold value, Thsh.

Thsh =
1
N ∑ Eni +

1
N ∑(Eni − µ)2 (4)

where N represents the total number of samples. Eni is the signal envelope. The fourth
step in Figure 4 shows the FHS boundary detection, represented by red dashed lines, based
on the calculated threshold value.

Fifth, the boundary detection was separated using the previously calculated Thsh,
which represents the detection of S1 and S2, as well as the boundaries of the systole
and diastole. In Figure 4, step five involves the process of separating the FHS boundary
(represented by the red dashed lines) based on the threshold calculated in step four. The FHS
boundary values of 1 correspond to the normal heart sounds (namely, S1 and S2), while
values of 0 represent features associated with noise occurring during systole and diastole.
Sixth, the log-mel spectrogram was applied to the two separated signal envelope features.
Step six in Figure 4 shows the log-mel spectrogram of the separated boundaries. The 2D
image of the log-mel spectrogram was used as the input for the experimental model.

Figure 5 shows new features considered in this study. The first and second columns
represent the spectrograms of S1 and S2 and of systolic and diastolic murmurs, respectively,
obtained from step six shown in Figure 4. The third column shows the log-mel spectrogram
features extracted from the envelope feature in step three shown in Figure 4.

2.1.4. Application of Smoothing Method

Smoothing is a signal processing technique used to reduce noise and random irregu-
larities in a signal, aiming to make it smoother [23]. For example, in the context of stock
price data, smoothing by noise removal facilitates the identification of trends. In practice,
the moving-average filter is commonly employed to achieve signal smoothing, calculating
the average for data points within a specified time window to create a smoother representa-
tion; it is often used for trend or pattern analysis.

The right column of Figure 5 shows the log-mel spectrograms applied after the smooth-
ing method. We performed signal smoothing using a moving-average filter. The moving-
average filter is represented by the window array, which contains 1s and is divided by the
window size to normalize the filter. Let x[n] be the input signal and w[m] be a moving-
average filter window of size N, where m = 0, 1,· · ·, N−1. The smoothed signal y[n] at
index n is given by the convolution operation:

y[n] =
m=0

∑
N−1

x[n−m]w[m]. (5)
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Figure 5. Spectrogram images of proposed multi-channel features.

2.2. Residual LCNN (ReLCNN) Model

In this study, we employed the system proposed by Lee et al. (2022) [12] as the
underlying framework. Lee et al. (2022) [12] applied an LCNN model to PCG data. We
propose a modified version of the LCNN model called ReLCNN, which incorporates
residual blocks, activation functions, and multi-head self-attention mechanisms. The multi-
head self-attention mechanisms were adopted from the winning architecture of the 2021
PhysioNet Challenge [24].

The LCNN model is a CNN-based model. It is widely used in the speech domain and
has already demonstrated good performance in various speech competitions, including
ASVspoof 2017, 2019, and 2021 [25,26]. The LCNN framework, proposed by Xiang et al.
(2018) [27], consists of three models: LCNN-4, LCNN-9, and LCNN-29. In this study, we
modified the LCNN-9 model. The LCNN-9 model comprises five convolutional layers and
four network-in-network (NIN) layers. The NIN layer, introduced by Lin et al. (2014) [28]
for classification tasks, offers a novel deep neural network architecture. The LCNN-9
model integrates max-feature-map (MFM) layers into the NIN layers to perform feature
selection between convolutional layers and reduces the number of parameters by utilizing
max pooling.

In this study, the ReLCNN model proposed is a modified version compared to the
LCNN-9 model. It includes deeper layers and selectively employs batch normalization
along with the Swish activation function. The model architecture presented in this pa-
per is depicted in Figure 6. The model employs convolutional filters with sizes of 32, 32,
48, 48, 64, 64, 32, 32, and 32. The kernel size for the first convolutional layer is set to 5,
while the remaining convolutional layers have kernel sizes of 1 or 3. The LCNN block,
which constructs the LCNN model, is depicted in Figure 7a and consists of five param-
eters ( f , k, m, b, a). f and k represent the parameters for the filter and kernel sizes of the
convolutional layer, respectively. m indicates the usage of max pooling, b represents the
usage of batch normalization, and a denotes the usage of the Swish activation function.
The dotted boxes within the LCNN block represent optional applications, indicating that
the corresponding parameter is selectively applied when it is set to 1.
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Figure 6. Proposed model architecture.

Figure 7. Model blocks. (a) LCNN block architecture. It has a convolutional layer with max-
feature-map activation. Next, max pooling, batch normalization, and Swish activation are applied
sequentially. (b) Residual block. The input feature map is added to the output feature map as a
residual connection.

2.2.1. Residual Block

In the case of CNNs, as the depth of the layers increases, the problem of vanishing gra-
dients arises. This means that, as the depth of the network increases, the information from
the hidden layers closer to the input tends to fade away, leading to difficulties in effective
learning. To overcome this issue of vanishing gradients, He et al. (2016) [29] proposed the
residual neural network architecture. The residual neural network architecture consists
of multiple residual blocks stacked together. A residual block incorporates a simple yet
effective idea, taking the output F(x) after it passes through several layers and directly
adding it to the input value x. This approach aids in better convergence during training.
The fundamental structure of a residual block is illustrated in Figure 7b. In cases where
the input and output dimensions differ, max pooling or 1 × 1 convolution is added to the
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residual connection for adjustment purposes. Our model has three residual connections, as
in shown Figure 6.

2.2.2. Activation Function

Activation functions play a significant role in the classification performance of deep
neural networks [30,31]. Currently, the rectified linear unit (ReLU) activation function
is widely favored for its effectiveness in optimizing models when dealing with positive
inputs [32]. The formula for the ReLU activation function is provided in Equation (6).
However, a problem arises when the activation value is 0, as it leads to a situation where all
neuron outputs become 0 in the subsequent layer, causing a halt in updates and learning.
To overcome this limitation, the Swish activation function was proposed [30]. It is a simple
formula that multiplies the input x by the sigmoid function, as shown in Equation (7).

ReLU(x) = max(0, x) (6)

Swish(x) = x · Sigmoid(βx) (7)

Sigmoid(z) = (1 + exp(−z))−1 (8)

In the Swish activation function, β represents the trainable parameter and x denotes
the input data, while the sigmoid function is defined as shown in Equation (8). According
to experimental results, when training deep layers, Swish demonstrates superior image
classification performance compared to ReLU owing to its ability to preserve gradients
effectively [30,31]. Additionally, Jinsakul et al. (2019) improved the performance of the
initial colorectal cancer screening system by modifying the activation function to Swish in
the Xception model [33]. In this study, we utilized the Swish activation function at the end
of the LCNN block, as depicted in Figure 7a.

2.2.3. Multi-Head Self-Attention

MHA is a fundamental concept in architectures that finds wide applications in sequen-
tial models [34]. In this study, we employed MHA where the query, key, and value vectors
are input identically to allow the learning of weights on more important parts of the output
information. This approach was also utilized by the team that achieved first place in the
2021 PhysioNet Challenge [24].

The idea behind MHA is to use multiple sets of query, key, and value transformations
to capture different aspects of the input feature map, enabling the model to focus on
different patterns and relationships. By attending to relevant parts of the input feature
map, the model can better extract meaningful features and improve overall performance in
various tasks.

3. Experiments
3.1. Dataset

The data used in this paper were from a dataset provided by the George B. Moody
PhysioNet Challenge 2022 [9,35]. The organizers of the competition possessed data from
1568 pediatric subjects; however, after the conclusion of the competition, only 942 subjects’
training data were made available, while the validation and test data remained undisclosed.
The publicly accessible dataset comprises 3163 PCG signal data samples collected from the
942 patients with a 4000 Hz sampling rate. We received multiple PCG data samples for
each patient based on different auscultation locations.

It is important to note that the number of PCG recordings for each patient varies, as do
the auscultation locations from which the data were collected. For instance, for patient
A, two PCG recordings were collected when auscultating at the aortic valve (AV) and
pulmonic valve (PV) locations. On the other hand, patient B underwent auscultation at
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the AV, PV, tricuspid valve (TV), and mitral valve (MV) locations, resulting in four PCG
data recordings. The auscultation locations include the AV, PV, TV, MV, and others (Phc).
We excluded the “others” category, which represents non-specific locations, as shown
in Figure 8. The four specific locations are known for being effective in the detection of
valvular sounds.

Figure 8. The auscultation locations: aortic valve (AV), pulmonic valve (PV), tricuspid valve (TV),
and mitral valve (MV).

The files provided by the competition are of four types (wav, hea, tsv, txt), and their
descriptions are as follows:

• wav: an audio recording file containing heart sounds corresponding to each ausculta-
tion location;

• hea: a header file providing descriptions and metadata for the corresponding wav files;
• tsv: a tab-separated values file containing information on the start and end positions

of heart sounds S1 and S2 for each auscultation location;
• txt: a patient-specific description file, including demographic information (gender, age

group, height, weight, pregnancy status), noise characteristics (timing, shape, pitch,
grading, quality, etc.), and heart murmur labels.

The validation and test datasets consisted of wav audio files with recorded heart
sounds and txt text files containing only demographic information. Therefore, any other
data beyond demographic information and heart sound recordings were unavailable.
Table 1 presents the distribution of heart murmur labels in the training dataset. Among the
patients, 695 (73.78%) had no heart murmurs (absent), 179 (19%) had a heart murmur
(present), and 68 (7.22%) had an unknown heart murmur status. Furthermore, for the
179 patients with a heart murmur, the distribution of the most audible auscultation locations
was found to vary across the PV, TV, MV, and AV locations.

As the competition organizers did not provide separate validation and test datasets,
we performed direct data splitting using the training dataset for validation purposes.
Assuming that the validation data would be composed with a similar ratio of heart murmur
labels as the training dataset, we conducted stratified sampling based on the proportion of
heart murmur labels. In this paper, we randomly split the training data into an 8:2 ratio for
training (80%) and validation (20%) purposes.

3.2. Data Augmentation

Data augmentation techniques are employed to generate diverse new samples from
existing datasets. These techniques have been used in CNNs to prevent overfitting and
improve the generalization performance, thus creating robust models. Given the limited
availability of training data in this study, it was crucial to robustly train the model by
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incorporating a more diverse dataset. Therefore, for audio classification, we applied two
widely used techniques, Cutout [14] and Mixup [13], to augment and introduce disturbance
to the spectrogram features.

Table 1. Description of training set for PhysioNet Challenge 2022.

Classification Label Count (%)

Murmur
Absent 695 (73.78%)
Present 179 (19.00%)

PV 62 (6.58%)
TV 56 (5.94%)
MV 42 (4.46%)
AV 19 (2.02%)

Unknown 68 (7.22%)

Total 942

Firstly, Mixup [13] randomly samples two different samples according to weights
obtained from the beta distribution and blends them to create a new image. The formula
for Mixup is as follows:

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj,

where the parameter λ is extracted from a β(α, α) distribution, taking values between 0
and 1 (λ∈ [0, 1]), while α can take values between 0 and infinity (α∈(0, ∞)). Here, xi and xj
represent different input data and yi and yj correspond to their respective one-hot-encoding
values. The augmented data x̃ and ỹ are generated by mixing the two data samples based
on the λ value extracted from the β(α, α) distribution. We set the α value to 0.5.

Cutout [14] randomly masks contiguous portions of the input image by setting them
to zero, creating a new image. This approach helps the model focus on the overall context
of the image rather than concentrating on specific features, making it more robust to noisy
images. As PCG data contain significant noise, applying data augmentation techniques to
the spectrogram images helps prevent overfitting and improve generalization performance.
This ensures that the model considers a broader image context when making predictions,
leading to a more robust model.

3.3. Implementation Details

In this study, we conducted optimization through a hyperparameter search. Table 2
provides a comprehensive list of explored hyperparameters along with the selected values.
The log-mel spectrogram was chosen as it demonstrated the highest performance among
the spectrogram options. The “trim” is a hyperparameter that determines how much of the
original signal to trim from the beginning and the end. When listening to the PCG sound
data directly, it was initially hypothesized that the front and back portions might be less
important and that trimming these portions from the signal would improve performance.
However, in practice, it was observed that the model achieved higher performance when the
data were not trimmed. As the sampling frequency of the heart sound data was 4000, a value
of 4000 means trimming 1 s of data, while a value of 0 means no trimming. The parameter
“sample sec” controls the duration of the PCG samples accepted by the model, and it was
found that setting it to 50 s resulted in the best performance. The parameter “n mels” was
utilized when computing the mel spectrogram of a signal, and it determines the resolution
and frequency bands of the mel spectrogram. In our study, the best performance was
achieved when applying 140. When training deep learning models with limited data,
the risk of overfitting is significant. To mitigate overfitting, various data augmentation
techniques were employed to strengthen the model. Ultimately, the combination of mixup
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and cutout data augmentation techniques yielded the best results among the four data
augmentation methods (mixup [13], cutout [14], FFM [36], and specaug [37]). In the context
of training models with imbalanced data, the influence of majority classes often leads to
a high false-negative rate. To address this issue, we applied cost-sensitive learning (CSL)
during model training. Class weights were experimentally determined through a grid
search ranging from 2 to 6, and the final selected value was 3. In terms of model selection,
both LCNN and ResMax [38,39] architectures were considered, and while showing similar
performance, the simpler structure of LCNN led us to choose it for our study. The given
PCG data had three labels for the noise categories: “present”, “absent”, and “unknown”.
To address the presence of the “unknown” category, which lies between “present” and
“absent’,’ we developed a binary classification model. The “unknown” class was identified
based on thresholds that maximize the weighted accuracy of the training data.

Table 2. Random search for hyperparameter optimization.

Hyperparameter Selection Value/Method

Spectrogram Log-mel spectrogram CQT, STFT, log-mel spectrogram
Trim 0 0, 2000, 4000
Sample sec 50 10, 20, 30, 40, 50
n mels 140 100, 120, 140
Data augmentation mixup, cutout mixup, cutout, FFM, specaug
Cost-sensitive learning (weight) 3 2, 3, 4, 5, 6
Model LCNN LCNN, ResMax
Inference argmax argmax, mean
Number of output neurons 2 2, 3

The sampling frequency was set to 4000 Hz, and the spectrogram was generated with
a window size of 512 and a hop length of 256. The mel spectrogram was extracted using
the librosa package in Python. Data augmentation techniques—namely, mixup with a
coefficient of 0.7 and cutout with a coefficient of 0.8—were applied. “Cutoff” and “order”
are arguments required for the butter_lowpass_filter function. We used a cutoff value of 150,
and an order value of 2. The number of epochs for all models was set to 100, and the batch
size was set to 64. The categorical cross-entropy was used as the loss function to minimize
the loss during the training process, and the Adam optimizer was employed. The learning
rate was adjusted using a sigmoid decay function with a learning rate scheduler. The initial
learning rate was set to 1× 10−3, and it gradually decreased to 1× 10−5 according to
the scheduler.

3.4. Model Training Details

Due to the limited amount of data provided, we addressed the data scarcity issue by
using a single-instance learning structure. The dataset consisted of single or multiple signal
data samples for each patient depending on the auscultation positions (MV, TV, AV, PV),
and each signal data sample was labeled. During our experiments, we treated the files
collected based on auscultation positions as individual samples for training our model.
However, during the evaluation phase, we needed to derive a single result for each patient.
Hence, it became necessary to combine individual samples based on their auscultation
positions. Figure 9 visually illustrates the single-instance learning structure used in this
study. During the evaluation phase, we selected the highest probability of heart murmur
among the probability values calculated for each auscultation position and assigned the
heart murmur label based on a certain threshold criterion.
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Figure 9. Overview of the automated murmur detection (AMD) system.

The PhysioNet Challenge 2022 evaluated algorithmic pre-screening models for medical
professionals on two fronts [9]. Firstly, weighted accuracy assigns more weight to patients
with noise and abnormal results. The weighted accuracy can be calculated by referring
to Table 3 and utilizing Equation (9). Secondly, a cost-based scoring metric, cost, was
introduced for the clinical outcome identification task, which takes into account not only
the cost of human diagnostic screening but also the costs associated with delays and missed
treatments. The cost can be computed using Equation (10) with reference to Table 4. In our
study, we trained the model using the training data to improve model performance and
fine-tuned hyperparameters based on the important weighted accuracy metric from the
validation data. As a result, other evaluation metrics’ values might be somewhat lower.

In addition to the evaluation metrics proposed in the competition, four additional met-
rics were computed. The area under the receiver operating characteristic curve (AUROC)
represents the area under the curve of the true-positive rate with respect to the false-positive
rate. The area under the precision–recall curve (AUPRC) represents the area under the
curve of precision against recall. The F-measure is a metric calculated as the harmonic
mean of the precision and recall. Accuracy measures how many observations, both positive
and negative, were correctly classified, providing a measure of overall correctness. All the
evaluation metrics, except for the cost metric, take values between 0 and 1, where values
closer to 1 indicate superior model performance.

Smurmur =
5mPP + 3mUU + mAA

5(mPP + mUP + mAP)+3(mPU + mUU + mAU) + (mPA + mUA + mAA)
(9)

Soutcome =
5nTP + nTN

5(nTP + nFN) + (nFP + nTN) (10)

3.5. Experimental Results
3.5.1. Use of Multi-Channel Approach and ReLCNN Model

We evaluated the performance of both the proposed multi-channel approach (depicted
in Figure 5) and the proposed ReLCNN model. As a baseline, we utilized the LCNN model
introduced by Lee et al. (2022) [12]. Moreover, the ReLCNN model was introduced as an
architecture that incorporates the Swish activation function and adds residual blocks with
the MHA mechanism to LCNN.
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Table 3. Murmur Metric.

Murmur Expert

Present Unknown Absent

Murmur classifier

Present mPP mPU mPA

Unknown mUP mUU mUA

Absent mAP mAU mAA

Table 4. Clinical outcome metric.

Outcome Expert

Abnormal Normal

Outcome classifier
Abnormal nTP nFP

Normal nFN nTN

Table 5 presents the feature combinations applied for each experimental model ID.
Table 6 and Figure 10 present the performance of the LCNN and ReLCNN models and the
proposed feature combinations using six performance evaluation metrics, with Figure 10
providing a visual representation of the experimental results. PhysioNet Challenge 2022
used weighted accuracy as the evaluation metric to assess the final performance. In this
study, we conducted hyperparameter tuning based on weighted accuracy to optimize the
models, which might have led to relatively lower values for other evaluation metrics.

Table 5. Feature ID allocation based on feature combinations.

Feature ID Spec PI Demo S1S2 Murmurs Envelope s(S1S2) s(Murmurs) s(Envelope)

1 3 3
2 3 3 3

3 3 3 3 3
4 3 3 3
5 3 3 3
6 3 3 3

7 3 3 3 3
8 3 3 3
9 3 3 3

10 3 3 3

11 3 3 3
12 3 3

Abbreviation: Spec = spectrogram; PI = peak interval; Demo = demographic; S1S2 = S1 and S2; Murmurs = systolic
and diastolic murmurs; s = smoothing function.

We conducted a comparison between the LCNN and ReLCNN models under the same
conditions as the baseline LCNN model. The findings revealed that the LCNN model
achieved a weighted accuracy of 79.6%, whereas the ReLCNN model exhibited improved
performance, achieving a weighted accuracy of 80.5%. This enhancement represents an
increase of approximately one percentage point. Moreover, to further improve the model’s
performance, four combinations of proposed features were applied. These features included
detecting S1 and S2 boundaries, detecting systolic and diastolic murmurs, using both S1
and S2 boundary detection features together with systolic and diastolic murmur features,
and using the envelope as a feature without classifying S1 and S2 boundaries and murmurs.
The weighted accuracies of the models with these additional features were measured as
81.1%, 82.0%, 80.8%, and 81.1%, respectively. The model incorporating S1 and S2 boundary
features achieved the highest performance with a weighted accuracy of 82.0%, marking a
substantial improvement from the previous model’s 79.6% weighted accuracy. These results



Biology 2023, 12, 1291 16 of 23

indicate that the proposed additional features could effectively capture the characteristics
of heart sound data, leading to enhanced model accuracy.

Table 6. Results for performance in evaluation set.

Model Feature ID AUROC AUPRC F-Measure Acc Weighted Acc ↑ Cost ↓

LCNN 1 0.764 0.611 0.526 0.796 0.796 16,753
LCNN 2 0.803 0.657 0.516 0.785 0.788 14,695

ReLCNN 1 0.765 0.614 0.547 0.822 0.805 15,041

ReLCNN 3 0.780 0.626 0.534 0.831 0.811 11,105
ReLCNN 4 0.770 0.627 0.550 0.822 0.820 11,274
ReLCNN 5 0.778 0.631 0.515 0.775 0.808 12,657
ReLCNN 6 0.773 0.623 0.534 0.827 0.811 12,178

ReLCNN 7 0.767 0.613 0.548 0.812 0.827 12,432
ReLCNN 8 0.775 0.626 0.541 0.821 0.819 11,140
ReLCNN 9 0.767 0.621 0.543 0.817 0.837 11,977
ReLCNN 10 0.773 0.625 0.517 0.775 0.832 11,574

ReLCNN 11 0.767 0.596 0.529 0.821 0.814 12,152
ReLCNN 12 0.779 0.627 0.531 0.819 0.832 12,955

Abbreviation: Acc = Accuracy.

In addition, we conducted experiments by applying smoothing functions to the pro-
posed four features. The parameter for controlling the degree of smoothing was set to 70.
The models with smoothing functions exhibited weighted accuracies of 82.7%, 81.9%, 83.7%,
and 83.2%, respectively. All the models with smoothing functions generally outperformed
the models without smoothing. In particular, the model including systolic and diastolic
murmur features achieved a weighted accuracy of 83.7%, showcasing an improvement of
over four percentage points compared to the baseline model.

The application of smoothing functions in all models contributed to improving the
performance of heart disease detection. Smoothing reduced noise and emphasized the
dynamic characteristics of the signals, enhancing the signal-to-noise ratio in heart sound
data and revealing clearer patterns related to heart diseases. Smoothing in heart sound data
can play a crucial role in early detection and accurate diagnosis of heart diseases. The four
proposed features demonstrated that the application of smoothing functions can effectively
capture the characteristics of heart sound data and enhance model accuracy, ultimately
contributing to improved detection of heart diseases.

Furthermore, to assess the impact of the PI feature, we conducted additional experi-
ments by selecting feature combinations that exhibited the best performance in terms of
weighted accuracy and cost metrics. Feature ID 11, which corresponded to a model where
only the PI feature was removed from the feature ID 3 combination, achieved a weighted
accuracy of 81.4% with a cost of 12,152. This indicates that, while the weighted accuracy
was comparable to that of feature ID 3, the cost increased. Feature ID 12, derived from the
feature ID 9 combination with the exclusion of the PI feature, demonstrated a weighted
accuracy of 83.2% with a cost of 12,955. This also suggested a decrease in performance
when the PI feature was not utilized.

3.5.2. Optimizing Smoothing Hyperparameter (Window Size)

In Table 6, it was shown that the application of the smoothing method brings significant
improvements in performance. Based on this finding, we conducted experiments to explore
the optimal hyperparameters for smoothing.

We present our results in two ways. Firstly, the performance metrics for various
window size (N) values are recorded in Table 7, and the envelope curves corresponding
to different window sizes for the smoothing method are shown in Figure 11. Figure 11
displays PCG signals with the smoothing method applied, and it can be observed that, as
the window size increased, the envelope became smoother. According to Table 6, features
S1 and S2 (feature IDs 4 and 8) showed minimal changes after applying the smoothing
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method. However, for the systolic and diastolic noise features (feature IDs 5 and 9), sig-
nificant differences were observed. The detection of these features was challenging due
to their high variability, but the application of the smoothing method reduced the vari-
ability, contributing to increased accuracy in FHS boundary detection and, consequently,
improving the performance of heart murmur detection. Furthermore, an interesting obser-
vation from Table 7 is that, for weak smoothing applications, the performance remained
similar to the pre-application stage, while at window size values of around 60 to 80,
both feature IDs 9 and 10 showed enhanced performance. However, excessive application
of smoothing did show improvement compared to pre-application but did not lead to
optimal performance.

Figure 10. We have depicted the performance results for 12 models across six evaluation metrics in
barplots. According to the weighted accuracy and cost metric used in the PhysioNet Challenge 2022,
the ReLCNN-9 model and the ReLCNN-3 model exhibited the most favorable outcomes. Excluding
the cost metric, the ReLCNN-9 model appears to be generally superior.
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Table 7. The weighted accuracy results when varying the window size parameter with the smooth-
ing method.

Feature ID
Smoothing

20 40 60 70 80 90

9 0.804 0.811 0.825 0.837 0.836 0.819
10 0.812 0.822 0.824 0.832 0.819 0.822

Figure 11. Extraction of cardiac sound envelopes based on the window size parameter
from smoothing.

3.5.3. Impact of MHA

In this study, we conducted ablation experiments to validate the effectiveness of
MHA. The ablation study involved removing or replacing MHA components based on the
overall architecture described in Figure 6 while keeping the rest of the model unchanged.
As evident from the results presented in Table 8, the performance significantly deteriorated
when MHA components were removed. This indicates the limitations in noise detection
due to various noise types. Experiments were conducted to determine the optimal number
of heads, and it was found that achieving high performance required using eight heads
for both feature IDs 9 and 10. This result highlights the importance of exploring noise in
multiple directions. Therefore, our proposed architecture, which utilizes eight heads to
preserve diverse forms of noise information, greatly enhances detection performance.

3.5.4. Examining the Impact of ReLU and Swish Activation Functions

Activation function research is a crucial field that requires continuous exploration to
enhance the performance of deep neural networks. Various activation functions have been
proposed over time. In this study, we conducted experiments to assess the impact of the
ReLU [32] and Swish [30] activation functions on the performance of deep neural networks.
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Table 8. Experimental results for MHA application and the number of heads in the ReLCNN model.
The utilization of MHA yielded performance improvements in all cases based on the weighted
accuracy metric, and for the cost metric, enhancements were observed in five out of six experiments.
The best performance in terms of weighted accuracy was achieved when MHA was set to eight.

Feature ID MHA Weighted Acc ↑ Cost ↓

9 8 0.787 11,613
4 0.814 11,259
8 0.837 11,977

10 0.816 11,463

10 8 0.795 11,872
4 0.809 11,578
8 0.832 11,574

10 0.811 10,907

The experimental results are presented in Table 9, and the activation functions were
applied differently based on the best features and models from Table 6. The term “None”
denotes the deep neural network model without any applied activation function, which
achieved a weighted accuracy of 0.822. The model with the ReLU activation function
showed a performance of 0.832, while the model with the Swish activation function
achieved a weighted accuracy of 0.837.

Table 9. Performance comparison based on the type of activation function applied in LCNN blocks
with a = 1 in the ReLCNN architecture. The Swish activation function demonstrated the most
favorable results across both the weighted accuracy and cost metrics.

Feature ID Activation Weighted Acc ↑ Cost ↓

9 None 0.822 12,417
ReLU 0.832 12,560
Swish 0.837 11,977

From the experimental results, it is evident that the application of activation functions
had a significant impact on performance. Although the model with the Swish activation
function exhibited higher weighted accuracy, the performance difference compared to the
ReLU activation function was not substantial. This suggests that the proposed ReLCNN
model did not suffer from vanishing gradients due to its relatively shallow depth, leading
to similar performances with both activation functions.

4. Discussion
4.1. Limitations

This study has several limitations. It is crucial to clearly understand and acknowledge
these limitations for a proper interpretation of our research findings. Below, we provide a
summary of the limitations of our study:

• Insufficient data: The study was constrained by a limited dataset comprising
942 patients, potentially affecting the model’s generalization performance. Expanding
the dataset in future research could enhance the model’s robustness;

• Lack of widely accepted PCG databases: The absence of universally approved PCG
databases remains a significant concern, hindering precise comparisons between
studies. Further validation of the proposed model and features using authenticated
PCG data is necessary. Collaborative efforts within the medical community to establish
standardized PCG databases would greatly benefit future research;

• External noise: Recorded PCG signals may contain external noise, which could im-
pact accurate diagnosis. The development of recording equipment capable of noise
reduction during data acquisition is necessary;

• Challenges in peak detection: Due to the substantial variability in cardiac sounds,
accurately detecting peak points in PCG signals can be challenging. While current
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algorithms rely on ECG signals for peak detection, future research should focus on
developing algorithms tailored to PCG characteristics for more precise peak detection.

4.2. Future Work

In future research, we may consider extending the proposed MCHeart system to
similar domains, like electrocardiography and echocardiography. Additionally, it would
be beneficial to experiment with various state-of-the-art techniques in model architecture,
such as Transformer [34] and Conformer [40].

5. Conclusions

In conclusion, traditional approaches have predominantly relied on spectrogram
features extracted from audio data to capture time–frequency characteristics. However,
our understanding of heart signals, particularly the distinct sounds of S1 and S2 during
each heartbeat, offers an avenue for more nuanced analysis. Leveraging this knowledge,
we proposed the multi-channel-based heart signal processing (MCHeart) system, a heart
murmur detection framework designed to address irregular heart murmurs. This system
consists of three key components:

• Enhanced cardiac activity sound features: Our approach capitalizes on additional
feature information derived from cardiac activity sounds, such as S1 and S2, obtained
from PCG data. By extracting cardiac activity sound features and employing mel
spectrograms, we can capture richer temporal and frequency domain characteristics,
augmenting the model’s capacity for detection;

• Smoothing function for noise minimization: We apply a smoothing function to mitigate
the impact of noise or irregularities present in heart sound signals. This preprocessing
step contributes to a cleaner signal representation, enhancing the system’s ability to
distinguish meaningful patterns;

• Residual LCNN (ReLCNN) architecture: We introduce the ReLCNN architecture,
which integrates residual blocks and MHA mechanisms into the LCNN model. The in-
corporation of MHA facilitates diverse feature extraction from multiple perspectives,
enabling parallel aggregation of distinct heart murmur characteristics.

Through the implementation of the ReLCNN model, we observed a notable improve-
ment in performance, with the weighted accuracy increasing from 79.6% to 80.5%. By in-
corporating the S1 and S2 components into the ReLCNN model, the weighted accuracy
further rose to 82.0%. Remarkably, the application of a smoothing function yielded the
most significant improvement, resulting in an accuracy of 83.7%.

Our findings underscore the potential of integrating domain knowledge, preprocessing
techniques, and advanced architectures for heart murmur detection. The MCHeart system
demonstrates the value of considering specific attributes of heart sounds and harnessing
advanced modeling strategies to enhance accuracy and robustness in detecting irregular
heart murmurs. Further research in this direction holds promise for improving the clinical
applicability and accuracy of automated heart murmur detection systems.
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The following abbreviations are used in this manuscript:

ACC accuracy
AUPRC area under the precision–recall curve
AUROC area under the receiver operating characteristic curve
AV aortic valve
CNN convolutional neural network
ECG electrocardiogram
FHS fundamental heart sound
HRV heart rate variability
LCNN light CNN
MCHeart multi-channel-based heart signal processing scheme for heart noise detection
MFM max feature map
MHA multi-head self-attention
MV mitral valve
NIN network-in-network
PCG phonocardiogram
PV pulmonic valve
ReLCNN residual LCNN
ReLU rectified linear unit
STFT short-time Fourier transform
TV tricuspid valve
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