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ABSTRACT We design a low-density parity-check (LDPC) coded multi-user massive multiple-input
multiple-output (MIMO) system to achieve a high error correcting capability with a fast convergence speed
of iterative joint detection and decoding (JDD) process employing a low-complexity detection. Minimum
mean squared error detection with parallel interference cancellation (MMSE-PIC) and its variations are
considered as low-complexity linear detection algorithms.We provide a factor graph representation of LDPC
coded multi-user massive MIMO system using JDD algorithm employing MMSE-PIC detection, and we
formulate updating rules ofmessages flowing in the JDDprocess.We propose a practical and efficient tool for
analyzing the extrinsic information transfer (EXIT) characteristics of messages exchanged between detector
and decoder, based on which LDPC codes and JDD strategy are jointly designed to result in a low bit error
rate (BER) and a fast convergence speed of JDDmechanism. It is observed that the error correcting capability
and JDD convergence behavior predicted by the proposed analysis tool match well the actual performances
obtained by simulations. It is also observed that LDPC coded multi-user massive MIMO system employing
LDPC codes and JDD strategy designed optimally by the proposed EXIT analysis tool achieves a lower BER
with a faster convergence speed.

INDEX TERMS Codedmulti-user massive-MIMO, LDPC codes, joint detection and decoding,MMSE-PIC,
EXIT analysis.

I. INTRODUCTION
As the demand for wireless and mobile communication
services is growing at a rapid pace, research and development
for communication technologies supporting high data rate
and high spectral efficiency as well as serving a high
number of users is strongly required. As one of promising
solutions to meet these requirements, multi-input and multi-
output (MIMO) technology was proposed in communication
system design [1], [2], and recently, massive MIMO systems
have been proposed to achieve even higher data rates in
wireless communication systems [3], [4]. Through intensive
investigations and studies in academia and engineering
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fields, the massive MIMO system is considered one of key
technologies for the next generation cellular networks, known
as the fifth generation (5G) systems [5], [6], [7]. Among
various forms of application, a multi-user massive MIMO
system, in which a base station (BS) is equipped with a
massive number of antennas to serve many user equipments
(UE) simultaneously, has been actively studied to be adopted
in 5G systems [8], [9].

In a massive MIMO system, optimal signal detection is not
feasibly implementable due to a resultant high computational
complexity. Thus, low-complexity signal detection algo-
rithms have been actively studied to make a massive MIMO
technology be a viable solution in practical communication
systems. As a result, suboptimal detection algorithms based
on belief propagation (BP) over factor graph (FG) were
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proposed [10], [11]. Suboptimal linear detection algorithms
including zero forcing (ZF) detection [12], [13] andminimum
mean squared error (MMSE) detection [14], [15], [16]
have also been intensively studied for the purpose of
complexity reduction inmassiveMIMO systems. The parallel
interference cancellation (PIC) process has been applied to
MMSE-based iterative joint detection and decoding (JDD)
schemes [17], [18], [19], [20], [21], which is referred to as
MMSE-PIC detection. Numerical analysis technique has also
been applied to iterative massiveMIMO detection scheme for
a complexity reduction [22], [23].
Error control coding has widely been used in various

communication systems for the purpose of enhancing com-
munication reliability, by which transmit power can be saved
at the cost of bandwidth expansion. Low-density parity-check
(LDPC) codes have recently been selected in various wireless
or wired communication standards thanks to the capacity
approaching error correction capability [24], [25], [26].
Communication standards adopting LDPC codes include
IEEE802.16e (mobile WiMAX) [27], EN 302 307 (DVB-
S2) [28] and IEEE802.3ca (E-PON) [29]. Density evolution
algorithm enables us to design LDPC codes efficiently and
analyze the behavior of iterative decoding [30], among which
the extrinsic information transfer (EXIT) chart is the most
well-known and extensively used example [31]. There also
exist huge amount of researchworks that applied LDPC codes
to MIMO systems for the purpose of improving transmission
reliability. The design and analysis of LDPC coded MIMO
system has been conducted by using the density evolution
algorithm [32], [33], [34], [35].
In order to improve further the communication reliability

of massive MIMO systems, it is desirable to apply LDPC
codes as an error correction scheme [36], [37], [38], [39],
[40], [41], [42], [43], [44]. To gain a high level of performance
improvement from the LDPC coded multi-user massive
MIMO system, we implement an iterative JDD mechanism
in the receiver. The additional computational complexity
resulting from decoding process needs to be compensated by
the complexity reduction attained by using a low-complexity
detection algorithm. There exist previous research works for
designing LDPC codes for massive MIMO system equipped
with low-complexity detection algorithm. Following are
some examples. Modified MMSE and matched filter (MF)
soft-output detection [45] and the FG-based BP detection
with Gaussian approximation of interference (FG-GAI BP)
[37], [46], [47] were considered in designing LDPC codes
for massive MIMO systems. Iterative soft-input soft-output
(SISO)MMSE detectors were proposed to enhance the signal
detection of massive MIMO systems [17], [18], [19], [20],
[21]. Protograph LDPC codes [43] and LDPC coded space
shift keying were proposed for massive MIMO system with
a low-complexity detector [48].

In the coded massive MIMO system, the error correction
capability, the computational complexity and the convergence
speed of JDD process are key issues to judge the feasibility
of the overall system. Among these issues, the convergence

speed of JDD is critical to meet the latency requirement, but
it has not received enough attention in conventional works.
The JDD process is composed of detection, decoding and
message exchange between these two units. Each of detection
and decoding units can have its own local iterations, and
the overall round-trip process from detector to detector via
decoder forms a global iteration. We can control the JDD
convergence speed by the ratio of the numbers of detection
local iterations and decoding local iterations in one global
iteration, where this ratio will be called a JDD strategy. Then,
LDPC codes are designed optimally together with selecting
JDD strategy in order to achieve the desirable performance
in terms of both bit error rate (BER) and JDD convergence
speed. There exist few works considering JDD convergence
speed when designing LDPC codes. Thus, there is a strong
demand for a design tool by which we can construct coded
massive MIMO system achieving both lower BER and faster
JDD convergence. In the previous work of the authors [37],
LDPC codes and JDD strategy are optimally designed for
multi-user massive MIMO system adopting FG-GAI BP as a
low-complexity detection algorithm. Linear detectors require
lower complexity than FGBP based detectors, so we consider
MMSE-PIC, which is widely used, and its variations as a low-
complexity detection algorithm in the coded massive MIMO
system. As variations of MMSE-PIC detection, we consider
Approximate MMSE-PIC and Gauss-Seidel-aided MMSE-
PIC algorithms. We represent the LDPC coded multi-user
massive MIMO system by a factor graph composed of
observation nodes, detection nodes, switch nodes, variable
nodes and check nodes connected through edges. Then,
we formulate message updating rules in component units of
JDD process employing a low-complexity linear detection to
fit in our framework. We define the EXIT characteristics of
MMSE-PIC detector and its variations, and combine it with
the decoder to form an overall EXIT characteristic function
representing the whole JDD process.

By using the obtained EXIT characteristics, we trace the
density evolution of messages flowing in JDD by which the
convergence speed and BER are predicted. In EXIT analysis,
BER performance can be evaluated by the threshold, meaning
the value of Eb/N0 over which BER improves abruptly.
In this manner, we choose the JDD strategy to result in a
fast convergence and optimize degree distributions of factor
graph of LDPC codes to result in a low threshold. Then,
the parity check matrix of LDPC codes is constructed by
using the progressive edge growth (PEG) algorithm [49].
It is observed that the performance in terms of BER and
convergence speed predicted by the proposed analysis tool
is consistent with the result obtained by simulations. This
observation validates that the proposed design procedure
based on EXIT analysis tool is practically useful in designing
coded multi-user massive MIMO systems to achieve low
BER with fast JDD convergence speed. The proposed design
tool can be used compatibly for any kind of detection schemes
once the analysis on the detection mechanism is conducted.
It is observed from simulations that optimally selected JDD

VOLUME 11, 2023 125493



H. J. Park, J. W. Lee: Design of LDPC Coded Multi-User Massive MIMO Systems

FIGURE 1. Structure of coded multi-user massive MIMO system.

strategy results in a faster convergence of JDD algorithm and
consequently may satisfy the latency requirement of multi-
user massive MIMO system in practical applications more
easily.

This paper is organized as follows. In Sec. II, we present
a system model for LDPC coded multi-user massive MIMO
systems and introduce a corresponding factor graph repre-
sentation. In Sec. III, we analyze MMSE-PIC detector and
its variations to formulate the message updating rule in JDD
process. We propose an EXIT analysis tool to investigate
the behavior of JDD of the LDPC coded multi-user massive
MIMO system in Sec. IV. In Sec. V, we design LDPC codes
and a JDD strategy by using the proposed EXIT analysis tool
to show low BER and fast JDD convergence. In Sec. VI, we
evaluate BER performances of the proposed LDPC coded
multi-user massive MIMO system in various points of view.
Then, we confirm that the performance prediction obtained
by the proposed tool is consistent with the actual simulation
result. Finally, we conclude this paper in Sec. VII.

II. SYSTEM MODEL
We consider an uplink transmission of a coded multi-user
massive MIMO system, in which nT independent UEs with
a single antenna transmit data to a BS equipped with nR
antennas as depicted in Fig. 1. At each UE, K information
bits are encoded to N -bit codeword, resulting in a code rate
of R = K/N , which is modulated as M -ary symbols. Then,
U = N/ log2M symbols are generated and transmitted
to BS over U channel uses by each UE. Let s(u)t denote
a symbol transmitted by UE t at the u-th channel use,
where t = 1, 2, · · · , nT and u = 1, 2, . . . ,U . We let
s(u) = [s(u)1 · · · s

(u)
nT ]

T
∈ CnT×1 denote a symbol vector

transmitted from UEs to BS at the u-th channel use, where
s(u)1 , · · · , s(u)nT are transmitted at the same time.We also let y(u)r ,
r = 1, · · · , nR, denote a received signal by the r-th receive
antenna of BS at the u-th channel use. Then, the received sig-
nal vector y(u) = [y(u)1 · · · y

(u)
nR ]

T
∈ CnR×1 can be expressed as

y(u) = H(u)s(u) + n(u), u = 1, 2, . . . ,U , (1)

where H(u)
∈ CnR×nT denotes a channel gain matrix whose

entries obey the independent and identically distributed
(i.i.d.) complex Gaussian with zero-mean and unit-variance,
and n(u) = [n(u)1 · · · n

(u)
nR ]

T
∈ CnR×1 denotes an additive noise

vector whose entries are i.i.d. zero-mean circular symmetric
complex white Gaussian with variance of σ 2.

FIGURE 2. Factor graph representation for the receiver of LDPC coded
multi-user massive MIMO system.

The receiver of coded multi-user massive MIMO system
can be represented by a factor graph as shown in Fig. 2.
There existU detectors and nT decoders, where each detector
reflects multi-user detection performed by BS at each channel
use and each decoder reflects decoding operation for data of
each UE. Each detector is represented by a single detection
node while each decoder consists of N variable nodes
and N − K check nodes. Detection nodes deliver soft
information regarding code bits composing transmit symbols
to corresponding variable nodes in decoders via switch nodes.
Note that the t-th group of log2M switch nodes of the
u-th detection node are connected to the u-th group of log2M
variable nodes in the t-th decoder. Switch nodes change
directions of message flows between detector and decoder.
They switch their functions between i) adding incoming
messages and delivering the result to a target node, and ii)
passing the incoming message to a target node. Observation
nodes collect received signals and input them to detection
nodes.

III. JOINT DETECTION AND DECODING
For given received signals over U channel uses, the receiver
performs JDD in an iterative manner over the factor graph
shown in Fig.2. Iterative process can be applied to both
detection and decoding. Iterative process can also be used
in message exchange between detector and decoder. We call
iterations inside detection and decoding as local iterations.
Thenwe define a global iteration as the sequence of detection,
message delivery from detector to decoder, decoding, and
message delivery from decoder to detector.We allowmultiple
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FIGURE 3. Detailed view of detection node in coded multi-user massive MIMO system.

local iterations in a global iteration, where Ndet and Ndec
denote numbers of local iterations inside detector and
decoder, respectively. This is different from conventional
schemes in which a global iteration is composed of one
detection iteration and one decoding iteration. We define a
JDD strategy as the ratio Ndet : Ndec composing one global
iteration, where the ratio represents strictly two numbers Ndet
and Ndec themselves without allowing the cancellation of
common factors. We let Ng denote the number of global
iterations.

A. LOW-COMPLEXITY LINEAR DETECTION
We consider a MMSE-PIC detection and its variations as a
low-complexity linear detection algorithm to be implemented
in JDD of coded multi-user massive MIMO system. As vari-
ations of MMSE-PIC, we consider Approximate MMSE-
PIC and Gauss-Seidel-aided MMSE-PIC to further lower the
computational complexity required by JDD mechanism.

1) MMSE-PIC DETECTION
The task of MMSE-PIC detector is obtaining soft decision
values for transmit symbols from received signals with a
given channel state information. The MMSE-PIC detection
can be performed in an iterative manner, where the MMSE
filtering and PIC are performed in parallel. Let ŝ(u)t denote an
estimate for a transmit symbol s(u)t , where a mean estimator
is used. Consider a bitstream of length I representing a
symbol s(u)t , where I = log2M . We define x(u)t,i = −1 if

the i-th bit of a bitstream representing s(u)t is 1 and x(u)t,i = 1
otherwise. We also define a priori log-likelihood ratio (LLR)

of x(u)t,i as La(x
(u)
t,i ) = log

P(x(u)t,i =1)

P(x(u)t,i =−1)
and define ξ

(u)
t,i =

tanh
(
1
2La(x

(u)
t,i )

)
. Then, the estimate of s(u)t is obtained by

ŝ(u)t =
∑
a∈A

aP
{
s(u)t = a

}
=

∑
aϵA

a
2I

I∏
i=1

(1+ aiξ
(u)
t,i ), (2)

where A is a set of values for s(u)t and ai is the value of x
(u)
t,i

corresponding to s(u)t = a. We let E (u)
t denote the variance of

s(u)t , which is obtained by

E (u)
t =

∑
a∈A

|a|2

2I

I∏
i=1

(1+ aiξ
(u)
t,i )−

∣∣ŝt ∣∣2 . (3)

The PIC process cancels all symbols other than a specific
target symbol by using symbol estimates as

ŷ(u)t = y(u) −
nT∑

j=1,j̸=t

h(u)j ŝ(u)j = h(u)t s(u)t + ñ(u)t , (4)

where h(u)t is the t-th column of H(u) and ñ(u)t ≜∑nT
j=1,j̸=t h

(u)
j e(u)j + n(u) with e(u)j = s(u)j − ŝ(u)j . The MMSE

nulling matrix is obtained by

W(u)H
= H(u)H

(
H(u)1(u)H(u)H

+ σ 2I
)−1

=

(
H(u)HH(u)1(u)

+ σ 2I
)−1

H(u)H , (5)
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where 1(u)
= diag

{
E (u)
1 , · · · ,E (u)

nT

}
. We apply a MMSE

filter to ŷ(u)t and obtain ẑ(u)t = w(u)H
t ŷ(u)t , where w(u)H

t is
the t-th row of W(u)H . Then, the MMSE filter output is
expressed as

ẑ(u)t = w(u)H
t (h(u)t s(u)t + ñ(u)t ) = µ

(u)
t s(u)t + w(u)H

t ñ(u)t , (6)

where µ
(u)
t = w(u)H

t h(u)t . Note that for givenw(u)
t and h(u)t , the

random variable ẑ(u)t is considered normally distributed with
a mean µ

(u)
t s(u)t and a variance σ̂

(u)2
t , where

σ̂
(u)2
t = w(u)H

t E
{
ñ(u)t ñ(u)Ht

}
w(u)
t . (7)

Note that

E
{
ñ(u)t ñ(u)Ht

}
=

∑
j̸=t

h(u)j E (u)
j h(u)Hj + σ 2I, (8)

by using the independence between e(u)j and e(u)k , j ̸= k , and

between e(u)j and n(u)k , ∀j, k , with E{e(u)j } = E{n(u)j } = 0 and

E{e(u)j e(u)∗j } = E (u)
j , ∀j. Then, (7) can be expanded as

σ̂
(u)2
t = w(u)H

t

(
H(u)1(u)H(u)H

+ σ 2I
)
w(u)
t −|µ

(u)
t |

2E (u)
t , (9)

where H(u)1(u)H(u)H
=

∑
j h

(u)
j E (u)

j h(u)Hj . By definition,

w(u)H
t = h(u)Ht (H(u)1(u)H(u)H

+ σ 2I)−1 so that (9) can be
further expanded as

σ̂
(u)2
t = w(u)H

t h(u)t − |µ
(u)
t |

2E (u)
t = µ

(u)
t − µ

(u)2
t E (u)

t . (10)

We normalize MMSE filter output ẑ(u)t as z(u)t = ẑ(u)t /µ
(u)
t

whose distribution is Gaussian with amean s(u)t and a variance
1/µ(u)

t − E
(u)
t . Then, the likelihood of z(u)t for given w(u)

t and
h(u)t is determined as

p(z(u)t |s
(u)
t = a) =

ρ
(u)
t

π
exp

(
−ρ

(u)
t |z

(u)
t − a|

2
)

, (11)

where ρ
(u)
t =

1
2

(
(µ(u)

t )−1−E (u)
t

)−1. Let us define a posteriori
LLR of x(u)t,i as Ld (x

(u)
t,i ) = log

p(x(u)t,i =1|z
(u))

p(x(u)t,i =−1|z
(u))

, where z(u) =

{z(u)1 , · · · , z(u)t , · · · , z(u)nT }. Then, we have

Ld (x
(u)
t,i )= log

∑
a∈A+1i

p(s(u)t = a|z(u))∑
a∈A−1i

p(s(u)t = a|z(u))

= log

∑
a∈A+1i

∏nT
m=1 p(z

(u)
m |s

(u)
t = a)p(a)∑

a∈A−1i

∏nT
m=1 p(z

(u)
m |s

(u)
t = a)p(a)

, (12)

where A+1i = {a|ai = 1} and A−1i = {a|ai = −1}.
It is well known that the off-diagonal terms of H(u)HH(u)

become negligible compared to diagonal terms due to a
channel hardening as the size of H(u) grows [3]. Thus, w(u)H

t
has a dominant entry associated with s(u)t and consequently,

z(u)t = s(u)t + w(u)H
t ñ(u)t /w(u)H

t h(u)t is dominated by s(u)t .
It follows that Ld (x

(u)
t,i ) is approximated as

Ld (x
(u)
t,i ) ≈ log

∑
a∈A+1i

p(z(u)t |s
(u)
t = a)p(a)∑

a∈A−1i
p(z(u)t |s

(u)
t = a)p(a)

. (13)

Let us define an extrinsic LLR of x(u)t,i as

Le(x
(u)
t,i ) = Ld (x

(u)
t,i )− La(x

(u)
t,i ). (14)

By using (11), (13), the property P(x(u)t,i = ai) =

eaiLa(x
(u)
t,i )/2/(eLa(x

(u)
t,i )/2 + e−La(x

(u)
t,i )/2) with ai = ±1, and the

approximation log
∑

i e
−xi ≈ −min(xi), we can approximate

Le(x
(u)
t,i ) defined in (14) as

Le(x
(u)
t,i )

≈ log

∑
a∈A+1i

exp
(
− ρ

(u)
t |z

(u)
t −a|

2
+

∑I
j=1,j̸=i

ajLa(x
(u)
t,j )

2

)
∑

a∈A−1i
exp

(
− ρ

(u)
t |z

(u)
t −a|2+

∑I
j=1,j̸=i

ajLa(x
(u)
t,j )

2

)
≈ min

a∈A−1i

{
ρ
(u)
t |z

(u)
t − a|

2
−

1
2

I∑
j=1,j̸=i

ajLa(x
(u)
t,j )

}

− min
a∈A+1i

{
ρ
(u)
t |z

(u)
t − a|

2
−

1
2

I∑
j=1,j̸=i

ajLa(x
(u)
t,j )

}
. (15)

The decision on the estimation for x(u)t,i is made such that
x(u)t,i = 1 if Ld (x

(u)
t,i ) ≥ 0 and x(u)t,i = −1 otherwise.

When MMSE-PIC detector is implemented in JDD pro-
cess, a priori LLR La(x

(u)
t,i ) is fed from the decoder and the

extrinsic LLR Le(x
(u)
t,i ) generated in detector is delivered to

the decoder. In most of conventional coded MIMO receivers,
one detection iteration and one decoding iteration composes
one global iteration. However, this mechanism needs to be
modified to enhance the overall performance by allowing
multiple detection iterations and decoding iterations in one
global iteration. Inside local detection iterations, the sum of
an extrinsic LLR Le(x

(u)
t,i ) obtained in the detector and a priori

LLR La(x
(u)
t,i ) fed from the decoder is used as a locally defined

a priori LLR L ′a(x
(u)
t,i ), i.e.,

L ′a(x
(u)
t,i ) = La(x

(u)
t,i )+ Le(x

(u)
t,i ). (16)

In other words, L ′a(x
(u)
t,i ) replaces La(x

(u)
t,i ) in above equations

used for message updates through detection iterations. Then,
L ′a(x

(u)
t,i ) is fed back to the detector and a new extrinsic LLR

Le(x
(u)
t,i ) is obtained after performing processes introduced

above. This procedure repeats for Ndet detection iterations
and the extrinsic LLR Le(x

(u)
t,i ) obtained at the final detection

iteration is delivered to the decoder. Above operations related
with adding LLR messages and setting direction of LLR
message flows are the role of switch nodes placed at the
output of detector. The detailed view of detection node
is depicted in Fig. 3 and the MMSE-PIC algorithm is
summarized in Algorithm 1.
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Algorithm 1MMSE-PIC Detection for Given u

1 Given La(x
(u)
t,i ), initialize L

′
a(x

(u)
t,i )← La(x

(u)
t,i ), ∀t, i

2 for m = 1 to Ndet do
3 for t = 1 to nT do
4 ξ

(u)
t,i ← tanh( 12L

′
a(x

(u)
t,i )), ∀i

5 ŝ(u)t ←
∑

a∈A
a
2I

∏I
i=1(1+ aiξ

(u)
t,i )

6 E (u)
t =

∑
a∈A

|a|2

2I
∏I

i=1(1+ aiξ
(u)
t,i )− |ŝ

(u)
i |

2

7 1(u)
← diag(E (u)

1 ,E (u)
2 , . . . ,E (u)

nT )

8 W(u)H
←

(
H(u)HH(u)1(u)

+ σ 2I
)−1H(u)H

9 for t = 1 to nT do
10 µ

(u)
t ← w(u)H

t h(u)t
11 ρ

(u)
t ← ((µ(u)

t )−1 − E (u)
t )−1/2

12 ŷ(u)t ← y(u) −
∑nT

j=1,j̸=t h
(u)
j ŝ(u)j

13 zt (u)← w(u)H
t ŷ(u)t /µ

(u)
t

14 Le(x
(u)
t,i )← mina∈A−1i

{
ρ
(u)
t |z

(u)
t − a|

2
−

1
2

∑
j̸=i ajL

′
a(x

(u)
t,j )

}
−mina∈A+1i

{
ρ
(u)
t |z

(u)
t −

a|2 − 1
2

∑
j̸=i ajL

′
a(x

(u)
t,j )

}
, ∀i

15 L ′a(x
(u)
t,i )← La(x

(u)
t,i )+ Le(x

(u)
t,i ), ∀i

2) APPROXIMATE MMSE-PIC DETECTION
As mentioned earlier, the off-diagonal terms of H(u)HH(u)

become smaller compared to diagonal terms due to a channel
hardening as the size of H(u) grows [3]. It follows that
H(u)HH(u)1 + σ 2I can be approximated by a diagonal
matrix as

H(u)HH(u)1+ σ 2I ≈


w̃(u)
1,1 0 · · · 0

0 w̃(u)
2,2 · · · 0

...
...

. . . 0
0 0 · · · w̃(u)

nT ,nT

 , (17)

where

w̃(u)
t,t = ||h

(u)
t ||

2E (u)
t + σ 2

=

nR∑
j=1

|h(u)j,t |
2E (u)

t + σ 2, (18)

t = 1, · · · , nT . Then, the MMSE nulling matrix defined in
(5) can be approximated as

W(u)H
=

(
H(u)HH(u)1+ σ 2I

)−1H(u)H

≈



1
w̃(u)
1,1

0 · · · 0

0 1
w̃(u)
2,2

· · · 0

...
... · · · 0

0 0 · · · 1
w̃(u)
nT ,nT




h(u)H1
h(u)H2

...

h(u)HnT

 , (19)

whose t-th row is expressed by

w(u)H
t ≈

1

w̃(u)
t,t

h(u)Ht =
h(u)Ht

||h(u)t ||2E
(u)
t + σ 2

. (20)

Algorithm 2 Approximate MMSE-PIC Detection for
Given u

1 Given La(x
(u)
t,i ), initialize L

′
a(x

(u)
t,i )← La(x

(u)
t,i ), ∀t, i

2 for m = 1 to Ndet do
3 for t = 1 to nT do
4 ξ

(u)
t,i ← tanh( 12L

′
a(x

(u)
t,i )), ∀i

5 ŝ(u)t ←
∑

a∈A
a
2I

∏I
i=1(1+ aiξ

(u)
t,i )

6 E (u)
t =

∑
a∈A

|a|2

2I
∏I

i=1(1+ aiξ
(u)
t,i )− |ŝ

(u)
i |

2

7 w(u)H
t ← h(u)Ht /(||h(u)t ||2E

(u)
t + σ 2)

8 µ
(u)
t ← w(u)H

t h(u)t
9 ρ

(u)
t ← ((µ(u)

t )−1 − E (u)
t )−1/2

10 for t = 1 to nT do
11 ŷ(u)t ← y(u) −

∑nT
j=1,j̸=t h

(u)
j ŝ(u)j

12 zt (u)← w(u)H
t Oy(u)t /µ

(u)
t

13 Le(x
(u)
t,i )← mina∈A−1i

{
ρ
(u)
t |z

(u)
t − a|

2
−

1
2

∑
j̸=i ajL

′
a(x

(u)
t,j )

}
−mina∈A+1i

{
ρ
(u)
t |z

(u)
t −

a|2 − 1
2

∑
j̸=i ajL

′
a(x

(u)
t,j )

}
, ∀i

14 L ′a(x
(u)
t,i )← La(x

(u)
t,i )+ Le(x

(u)
t,i ), ∀i

Consequently, (20) replaces Line 8 in Algorithm 1 and
the resultant Approximate MMSE-PIC is summarized in
Algorithm 2.

3) GAUSS-SEIDEL-AIDED MMSE-PIC DETECTION
To relieve high computational complexity incurred by a
matrix inversion used to compute MMSE nulling matrix,
we apply a Gauss-Seidel algorithm which is able to find a
solution of a matrix equation in an iterative manner. Let

ẑ(u) =W(u)H ŷ(u)t , (21)

where ẑ(u) = [ẑ(u)1 , ẑ(u)2 , · · · , ẑ(u)t ]T . We reformulate (21) by
multiplying G(u)

= H(u)HH(u)1 + σ 2I to the left of both
sides as

G(u)ẑ(u) = G(u)W(u)H ŷ(u)t = H(u)H ŷ(u)t . (22)

By applying Gauss-Seidel algorithm, we solve (21) via (22)
in an iterative manner, where entries of ẑ(u) are recursively
updated. The t-th entry of ẑ(u) obtained at the ℓ-th iteration
of Gauss-Seidel algorithm is denoted by z̃(u)t [ℓ] and obtained
by [20]

z̃(u)t [ℓ] =
1

g(u)t,t

(
h(u)Ht ŷ(u)t −

∑
j<t

g(u)t,j z̃
(u)
j [ℓ]

−

∑
j>t

g(u)t,j z̃
(u)
j [ℓ− 1]

)
, (23)

where g(u)i,j denotes the (i, j)-th entry of G(u). The initial

value z̃(u)t [0] is determined from (22) by using the diagonal
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Algorithm 3Gauss-Seidel-AidedMMSE-PICDetec-
tion for Given u

1 Given La(x
(u)
t,i ), initialize L

′
a(x

(u)
t,i )← La(x

(u)
t,i ), ∀t, i

2 for m = 1 to Ndet do
3 for t = 1 to nT do
4 ξ

(u)
t,i ← tanh( 12L

′
a(x

(u)
t,i )), ∀i

5 ŝ(u)t ←
∑

a∈A
a
2I

∏I
i=1(1+ aiξ

(u)
t,i )

6 E (u)
t =

∑
a∈A

|a|2

2I
∏I

i=1(1+ aiξ
(u)
t,i )− |ŝ

(u)
i |

2

7 g(u)t,t ← ||h
(u)
t ||

2E (u)
t + σ 2

8 µ
(u)
t ← ||h

(u)
t ||

2/g(u)t,t
9 ρ

(u)
t ← ((µ(u)

t )−1 − E (u)
t )−1/2

10 for t = 1 to nT do
11 ŷ(u)t ← y(u) −

∑nT
j=1,j̸=t h

(u)
j ŝ(u)j

12 z̃(u)t [0]← 1
g(u)t,t

h(u)Ht ŷ(u)t

13 for ℓ = 1 to nGS do
14 z̃(u)t [ℓ]← z̃(u)t [0]− 1

g(u)t,t

( ∑
j<t g

(u)
t,j z̃

(u)
j [ℓ]+∑

j>t g
(u)
t,j z̃

(u)
j [ℓ− 1]

)
15 z(u)t ← z̃(u)t [ℓ]/µ(u)

t

16 Le(x
(u)
t,i )← mina∈A−1i

{
ρ
(u)
t |z

(u)
t − a|

2
−

1
2

∑
j̸=i ajL

′
a(x

(u)
t,j )

}
−mina∈A+1i

{
ρ
(u)
t |z

(u)
t −

a|2 − 1
2

∑
j̸=i ajL

′
a(x

(u)
t,j )

}
, ∀i

17 L ′a(x
(u)
t,i )← La(x

(u)
t,i )+ Le(x

(u)
t,i ), ∀i

approximation for G(u) as

z̃(u)t [0] =
1

g(u)t,t
h(u)Ht ŷ(u)t , (24)

where g(u)t,t = ||h
(u)
t ||

2E (u)
t + σ 2. We also apply a diagonal

approximation for G(u) to determine µ
(u)
t . Since W(u)H

=

(G(u))−1H(u)H and (G(u))−1 ≈ diag
{
1/g(u)1,1, · · · , 1/g

(u)
nT ,nT

}
,

we obtain an approximation w(u)H
t = h(u)Ht /g(u)t,t , and

consequently

µ
(u)
t = w(u)H

t h(u)t =
1

g(u)t,t
||h(u)t ||

2. (25)

The Gauss-Seidel-aided MMSE-PIC detection is summa-
rized in Algorithm 3. Note that the Gauss-Seidel iteration is
included as a subloop in the detection iteration, where nGS
denotes the number of Gauss-Seidel iterations performed in
each detection iteration.

B. DECODING
Each LDPC decoder is represented by a bitartite factor graph
composed of N variable nodes and N − K check nodes
connected by edges as shown in Fig. 2. Given channel LLRs
fed to variable nodes, soft LLR messages regarding code
bits are computed at all variable nodes and check nodes in
an iterative manner with messages exchanged between two

classes of nodes. Let Lv denote the channel LLR available
at the variable node v, Lvc denote the message sent from
the variable node v to the check node c, and Lcv denote the
message sent from the check node c to the variable node v.
Then, LLRmessages are updated by a sum-product algorithm
[26], [30] as

Lvc = Lv +
∑

c′∈Cv\c

Lc′v (26)

in variable nodes and

Lcv =
∏

v′∈Vc\v

sign(Lv′c) · φ
( ∑
v′∈Vc\v

φ (|Lv′c|)
)

(27)

in check nodes, where φ(x) = log exp(x)+1
exp(x)−1 . Note that

Cv\c denotes the set of check nodes except c connected to
the variable node v and Vc\v denotes the set of variable
nodes except v connected to the check node c. The message
updates and message exchange between nodes introduced
above describes local iterations of decoding. Thus, one local
decoding iteration consists of a sequence of variable node
update, message delivery from variable node to check node,
check node update and message delivery from check node to
variable node.

Let us consider message exchange between detectors and
decoders. As depicted in Fig. 2, the u-th group of log2M
variable nodes in each decoder are connected to the u-th
detection node via switch nodes.We focus on the t-th decoder
and let p = i+ (u−1) · log2M , 1 ≤ i ≤ log2M . The extrinsic
LLR Le(x

(u)
t,i ) obtained in the u-th detection node is delivered

to the p-th variable node in the t-th decoder, denoted by vtp.
Then, Le(x

(u)
t,i ) is used as the channel LLR at the variable node

v = vtp, i.e., Lv = Le(x
(u)
t,i ) in (26), and decoding iterations

proceed.
After Ndec decoding iterations, each variable node sums

up all LLR messages sent from connected check nodes and
delivers the summed result to the detection node, which is
used as a priori LLR in the detector at the next global iteration.
In other words, La(x

(u)
t,i ) sent to the detector as a priori LLR is

obtained by

La(x
(u)
t,i ) =

∑
c∈Cvtp

Lcvtp , (28)

where Lcvtp is obtained at the Ndec-th decoding iteration. After
Ng global iterations, we make decision on each code bit as
the following. The code bit is decoded as 0 if La(x

(u)
t,i ) ≥ 0,

and 1 otherwise. The overall JDD process is summarized
in Algorithm 4.

IV. EXIT ANALYSIS FOR THE BEHAVIOR OF JOINT
DETECTION AND DECODING
Behavior of iterative JDD processes can be investigated by
using the EXIT analysis [31]. Under the assumption that LLR
messages in the same stage are i.i.d., we propose an EXIT
analysis tool for analyzing the behavior of JDD process of
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Algorithm 4 Joint Detection and Decoding (JDD)
Algorithm

1 Initialize La(x
(u)
t,i )← 0, ∀u, t, i and Lcv← 0, ∀v, c

2 for l = 1 to Ng do
3 for u = 1 to U do
4 for m = 1 to Ndet do
5 Run Detection Algorithm for the u-th

detector
6 Compute Le(x

(u)
t,i ), ∀t, i by (15)

7 for t = 1 to Nt do
8 v← i+ (u− 1) log2M , ∀u, i
9 Lv← Le(x

(u)
t,i )

10 for l ′ = 1 to Ndec do
11 Update Lvc, ∀v by (26)
12 Update Lcv, ∀c by (27)

13 Update La(x
(u)
t,i ), ∀u, i by (28)

14 Decide each code bit based on the sign of La(x
(u)
t,i ),

∀u, t, i

codedmassiveMIMO system.We focus on the bit-level EXIT
characteristics of all component units in the JDD process
in the receiver. Let IA denote a mutual information between
a code bit, or equivalently a binary symbol x(u)t,i , and the
corresponding a priori LLR message L ′a(x

(u)
t,i ) of detector.

We also let IE be a mutual information between a code bit and
the corresponding extrinsic LLRmessage Le(x

(u)
t,i ) of detector.

Then, we regard the detector as an EXIT module generating
IE for a given input IA, where a channel SNR is used as
a parameter. We let ICV be a mutual information between
a code bit and the LLR message Lcv while we let IVC be a
mutual information between a code bit and a LLR message
Lvc. Then, the message update at variable node in decoder
can be interpreted as an EXIT function generating IVC for a
given input ICV with a parameter IE . The message update at
check node is considered an EXIT function generating ICV
for a given input IVC .

Allowing a slight abuse of notation, we express ICV
associated with degree-dc check nodes as ICV (dc) and IVC
associated with degree-dv variable nodes as IVC (dv). In a
similar manner, we use IA(dv) and IE (dv) to denote IA
and IE , respectively, that are associated with degree-dv
variable nodes. Then, we define average mutual information
over all degrees as ĪCV =

∑dc,max
dc=2

ρdc ICV (dc) and ĪVC =∑dv,max
dv=2

λdv IVC (dv), where λdv and ρdc denote the fractions
of edges that are connected to degree-dv variable nodes and
degree-dc check nodes, respectively, and dv,max and dc,max are
maxima of dv and dc, respectively.

Under the assumption of normal distribution of LLR
message, the mutual information between a code bit and a
LLR message can be expressed by a function of variance or

standard deviation as [32]

J (σL) = 1−
∫
∞

−∞

e−(ξ−σ 2
L /2)2/2σ 2

L√
2πσ 2

L

· log2[1+ e
−ξ ]dξ,

(29)

where σ 2
L is the variance of a normally distributed LLR

message L. Since a locally defined a priori LLR message of
detector is obtained by (16) and (28), we can obtain IA(dv) by

IA(dv) = J
(√

[J−1(IE (dv))]2 + dv · [J−1(ĪCV )]2
)

. (30)

Note that IE (dv) is defined as a function of IA(dv) with a
parameter of channel SNR, i.e.,

IE (dv) = fO

(
IA(dv),

Eb
N0

)
, (31)

where fO() is expressed in a polynomial form, and it is
obtained by Monte Carlo simulation and a curve fitting tech-
nique. At variable nodes, the message going to a target check
node is generated by summing up all incoming messages
except one from a target check node, so Lvc is obtained
by summing up the extrinsic LLR message of detector and
(dv − 1) copies of Lcv. Then, IVC (dv) is obtained as

IVC (dv)

= J
(√[

J−1 (IE (dv))
]2
+ (dv − 1)·

[
J−1

(
ĪCV

)]2)
, (32)

where the EXIT function of check node is approximated
by [32]

ICV (dc) ≈ 1− J
(√

dc − 1 · J−1(1− ĪVC )
)

. (33)

The density evolution of soft messages in the JDD
process in terms of EXIT characteristics is summarized in
Algorithm 5. By running Algorithm 5, the update of average
mutual information ĪVC over iterations can be traced. If the
value of ĪVC reaches 1 after iterations at a certain Eb/N0,
the JDD process is interpreted to converge and the decoding
succeeds at this Eb/N0. The lowest value of Eb/N0 at which
JDD converges is defined as a threshold. In case that an
iterative process can be described by a 2-D EXIT chart
consisting of two EXIT curves, it is easy to predict whether or
not the mutual information reaches 1 and decoding succeeds.
If a tunnel is observed between two EXIT curves, a decoding
trajectory penetrates the tunnel and reaches the highest value
of mutual information, which implies a successful decoding.
However, if a higher dimensional EXIT chart is defined as in
a coded massiveMIMO system, detecting a tunnel by a visual
inspection is not easy any more. Thus, we need to trace the
value of ĪVC by running Algorithm 5 to judge the convergence
of JDD process.

Let us consider 3-D EXIT chart of JDD for coded
massive MIMO system obtained as a by-product of running
Algorithm 5. A 3-D EXIT chart is composed of two EXIT
surfaces, each of which represents EXIT characteristics
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Algorithm 5 EXIT Analysis for JDD Process

1 Initialize: ĪCV ← 0 and IE (dv)← 0, ∀dv
2 for l = 1 to Ng do
3 for dv = 2 to dv,max do
4 for l ′ = 1 to Ndet do

5 IE (dv)← fO
(
J

(√
[J−1(IE (dv))]2 + dv · [J−1(ĪCV )]2

)
, EbN0

)
6 ĪE ←

∑dv,max
dv=2

λdv IE (dv)
7 for l ′′ = 1 to Ndec do

8 ĪVC ←
∑dv,max

dv=2
λdv · J

(√[
J−1 (IE (dv))

]2
+ (dv − 1)·

[
J−1

(
ĪCV

)]2)
9 ĪCV ←

∑dc,max
dc=2

ρdc ·
(
1− J

(√
dc − 1 · J−1(1− ĪVC )

))

FIGURE 4. 3-D EXIT chart and trajectory of JDD for (3, 6)-regular LDPC
coded multi-user massive MIMO system with nT = 4 and nR = 16 at
Eb/N0 = −7[dB], where QPSK is used for modulation. Note that ĪE
denotes the mutual information per observation node.

of variable node and check node, respectively. The space
between two EXIT surfaces may or may not form an
unblocked tunnel from the entry to the exit. If an unblocked
tunnel is formed, the JDD trajectory will travel through
the tunnel by a 3D zigzag movement to reach the point of
ĪVC = 1. In this case, the JDD process converges and a low
BER can be obtained. On the other hand, if the space between
two EXIT surfaces does not form an unblocked tunnel, the
JDD trajectory will get stuck at a certain point of ĪVC < 1,
resulting in a high BER. The JDD trajectory can be obtained
by connecting the points of ĪVC , ĪCV , and ĪE obtained by
running Algorithm 5 with straight lines. The trajectory moves
straight in the direction of ĪE -axis by a detection iteration and
experiences a pair of orthogonal movements on the ĪVC -ĪCV
plane by a decoding iteration. In Fig. 4, we plot several JDD
trajectories obtained by using distinct JDD strategies, which
are defined as the ratio of Ndet : Ndec composing a global
iteration. It is observed that different JDD strategies result

in different JDD trajectories. The JDD trajectory reaching
ĪVC = 1 with a small number of zigzag movements implies
fast convergence of JDD process. Since a tunnel formed
between two EXIT surfaces is uneven, an efficient strategy
for trajectory movement should be designed to obtain the
fast convergence of JDD process. We achieve this goal by
choosing appropriate JDD strategy for a given detection
algorithm and accordingly designing LDPC codes.

V. OPTIMAL DESIGN OF LDPC CODES AND JDD
STRATEGY
In building LDPC coded multi-user massive MIMO systems,
there exist two main design parameters: the degree distribu-
tion of LDPC codes and the JDD strategymeaning the ratio of
Ndet : Ndec composing one global iteration. The first design
parameter determines the threshold and the second design
parameter determines the convergence speed of JDD. Our
design goal is a strong error correcting capability resulting in
a low BER and a fast convergence speed of JDD algorithm.
For this purpose, we utilize the EXIT analysis tool proposed
in Sec. IV. To evaluate the convergence speed, we trace the
evolution of ĪVC with respect to the total number of local
iterations by running Algorithm 5 as shown in Fig. 5 - Fig. 10.
Recall that a local iteration means each detection iteration
and decoding iteration. Note that running Ng global iterations
with the ratio Ndet : Ndec results in Ng(Ndet + Ndec) local
iterations when MMSE-PIC and Approximate MMSE-PIC
detection schemes are employed. When Gauss-Seidel-aided
MMSE-PIC detection scheme is used, the total number of
local iterations becomes Ng(NdetnGS + Ndec).
LDPC codes are designed via degree distribution optimiza-

tion followed by edge placement between variable nodes
and check nodes. We determine λ = {λ2, · · · , λdv,max } and
ρ = {ρ2, · · · , ρdc,max } to maximize the code rate R(λ, ρ) with
convergence of JDD guaranteed at a given Eb/N0 by using
EXIT analysis, where the code rate is defined by [26]

R(λ, ρ) = 1−

∑dc,max
dc=2

ρdc/dc∑dv,max
dv=2

λdv/dv
. (34)
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For a given target code rate, we run Algorithm 5 for various
Eb/N0 and find the smallest Eb/N0 resulting in the maximum
R(λ, ρ) exceeding the target code rate. Such Eb/N0 is
defined as the threshold and it is denoted by (Eb/N0)∗. The
corresponding degree distributions are considered optimal
and denoted by (λ∗, ρ∗).
Next, we place edges between variable nodes and check

nodes based on (λ∗, ρ∗) to satisfy the following criteria [26]:
(a) Short cycles involving only degree-2 variable nodes

should be avoided.
(b) Length-4 cycles should be avoided.
(c) All degree-2 variable nodes should represent only non-

systematic bits.
The criteria (a) and (b) can be satisfied by applying the
progressive edge growth (PEG) algorithm [49], and the
criterion (c) can be satisfied by a condition

λ2 ≤ 2
dc,max∑
dc=2

ρdc/dc, (35)

which can be incorporated in the degree distribution opti-
mization process as a constraint [36]. Then, the degree
distribution for a given Eb/N0 is determined as

max
λ,ρ

R(λ, ρ)

s.t. ĪVC = 1 as a result of running Algorithm 5,

λ2 ≤ 2
dc,max∑
dc=2

ρdc/dc,

dc,max∑
dc=2

ρdc =

dv,max∑
dv=2

λdv = 1 with ρdc , λdv ≥ 0, (36)

where the first constraint ensures the convergence of JDD and
the second constraint satisfies the criterion (c).

We also need to consider the convergence speed of JDD
algorithm when designing LDPC codes. The convergence
speed is determined by the harmony of degree distribution
and JDD strategy. We predict the convergence speed of JDD
by observing the evolution of ĪVC with respect to the number
of local iterations as shown in Fig. 5 - Fig. 10. The degree
distribution achieving (Eb/N0)∗ as well as the fastest JDD
convergence will be considered the overall optimal and will
be denoted as (λ†, ρ†).
In summary, LDPC codes and JDD strategy for multi-

user massive MIMO system are designed by the following
procedure:
(i) Perform the degree distribution optimization (36) for

various Eb/N0 and candidate JDD strategies.
(ii) Determine (Eb/N0)∗ and the optimal JDD strategy, and

find the corresponding degree distribution (λ†, ρ†).
(iii) Construct the parity-check matrix of LDPC codes from

(λ†, ρ†) by using the PEG algorithm.
By following the above procedure, we can efficiently
construct LDPC codes and JDD mechanism for multi-user
massive MIMO system showing a lower threshold (Eb/N0)∗,

FIGURE 5. Evolution of ĪVC with respect to the number of local iterations
for some JDD strategies with MMSE-PIC detection, where R = 1/2,
nT = 4, nR = 16.

FIGURE 6. Evolution of ĪVC with respect to the number of local iterations
for some JDD strategies with MMSE-PIC detection, where R = 3/4,
nT = 4, nR = 64.

or equivalently a better error correcting capability, and a faster
convergence of JDD.

VI. NUMERICAL RESULTS
We consider LDPC codedmulti-user massiveMIMO systems
with 4 UEs and 16 or 64 receive antennas at BS, i.e.,
nT = 4 and nR = 16 or 64. We regard the multi-user
massive MIMO system with nT UEs and nR BS antennas
as nT × nR channel. Each UE encodes information bits to
rate-1/2 or 3/4 LDPC codes and maps code bits to QPSK
symbols by Gray-mapping. The channel gain of each pair
of UE and BS antenna is characterized as an i.i.d. complex
Gaussian random variable with zero mean and unit variance.
The additive noise at BS antenna is supposed to be i.i.d.
zero-mean circular symmetric complexwhite Gaussian noise.
We consider an iterative JDD process at the receiver which
employs MMSE-PIC, Approximate MMSE-PIC and Gauss-
Seidel-aided MMSE-PIC as a detection algorithm, where the
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TABLE 1. Optimal degree distributions (λ∗, ρ∗) of rate-1/2 LDPC codes for multi-user massive MIMO system with MMSE-PIC for some candidate JDD
strategies, where (nT × nR ) = (4 × 16) and (4 × 64) are considered, and dv,max = 24 is used.

TABLE 2. Optimal degree distributions (λ∗, ρ∗) of rate-3/4 LDPC codes for multi-user massive MIMO system with MMSE-PIC for some candidate JDD
strategies, where (nT × nR ) = (4 × 16) and (4 × 64) are considered, and dv,max = 20 is used.

number of Gauss-Seidel iterations per each detection iteration
is set as 1, i.e., nGS = 1. Thus, we consider only Ndet : Ndec
when designing a JDD strategy.

We solve the optimization problem (36) by using a
differential evolution algorithm [50] with a concentrated
check node degree distribution [30]. We find degree
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TABLE 3. Optimal degree distributions (λ∗, ρ∗) of rate-1/2 LDPC codes for multi-user massive MIMO system with Approximate MMSE-PIC for some
candidate JDD strategies, where (nT × nR ) = (4 × 16) and (4 × 64) are considered, and dv,max = 24 is used.

TABLE 4. Optimal degree distributions (λ∗, ρ∗) of rate-3/4 LDPC codes for multi-user massive MIMO system with Approximate MMSE-PIC for some
candidate JDD strategies, where (nT × nR ) = (4 × 16) and (4 × 64) are considered, and dv,max = 20 is used.

distributions (λ∗, ρ∗) achieving the threshold (Eb/N0)∗

with different JDD strategies for each channel sce-
nario and code rate under consideration. Then, we

determine the overall optimal degree distribution (λ†, ρ†)
among candidate (λ∗, ρ∗) resulting in the fastest JDD
convergence.
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TABLE 5. Optimal degree distributions (λ∗, ρ∗) of rate-1/2 LDPC codes for multi-user massive MIMO system with Gauss-Seidel-aided MMSE-PIC for some
candidate JDD strategies, where (nT × nR ) = (4 × 16) and (4 × 64) are considered, and dv,max = 24 is used.

TABLE 6. Optimal degree distributions (λ∗, ρ∗) of rate-3/4 LDPC codes for multi-user massive MIMO system with Gauss-Seidel-aided MMSE-PIC for some
candidate JDD strategies, where (nT × nR ) = (4 × 16) and (4 × 64) are considered, and dv,max = 20 is used.

In Table 1 - Table 6, we list degree distributions (λ∗, ρ∗)
of LDPC codes for multi-user massive MIMO systems
achieving the threshold by some candidate JDD strategies

for each channel scenario, code rate and detection algorithm
under consideration. By a practical reason, λdv and ρdc having
negligible values are enforced to be null. In each table,
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FIGURE 7. Evolution of ĪVC with respect to the number of local iterations
for some JDD strategies with Approximate MMSE-PIC detection, where
R = 1/2, nT = 4, nR = 16.

FIGURE 8. Evolution of ĪVC with respect to the number of local iterations
for some JDD strategies with Approximate MMSE-PIC detection, where
R = 3/4, nT = 4, nR = 64.

we also list the channel capacity and the threshold obtained
by EXIT analysis. It is observed that for a given channel
scenario, the threshold is obtained identically irrespective of
the JDD strategy. This implies that equivalent error correcting
capabilities are attained by different JDD strategies if an
infinite number of iterations are allowed, although distinct
JDD strategies result in different convergence speeds as will
be shown below.

In Fig. 5 - Fig. 10, we plot evolutions of ĪVC with respect
to the number of local iterations obtained at the threshold
Eb/N0 by some candidate JDD strategies for given channel
scenario, code rate and detection algorithm. Evolution curves
are obtained by EXIT analysis for multi-user massive MIMO
system using LDPC codes whose degree distributions are
listed in Table 1 - Table 6. A faster evolution of ĪVC toward
1 indicates a faster convergence of JDD algorithm. Taking
3-D EXIT chart obtained at just above the threshold

FIGURE 9. Evolution of ĪVC with respect to the number of local iterations
for some JDD strategies with Gauss-Seidel-aided MMSE-PIC detection,
where R = 1/2, nT = 4, nR = 16.

FIGURE 10. Evolution of ĪVC with respect to the number of local
iterations for some JDD strategies with Gauss-Seidel-aided MMSE-PIC
detection, where R = 3/4, nT = 4, nR = 64.

Eb/N0 into consideration, it is obvious that the JDD trajectory
penetrates a tunnel formed between two EXIT surfaces by
a high number of small strides of zig-zag movements. This
may explain the reason why ĪVC converges to 1 after a high
number of local iterations at the threshold Eb/N0 as shown in
Fig. 5 - Fig. 10. We plot in Fig. 11 evolutions of ĪVC obtained
at some different values of Eb/N0 for the same scenario as
in Fig. 7. It is observed from Fig. 7 and Fig. 11 that at
higher Eb/N0, ĪVC converges to 1 with a lower number of
local iterations. This implies that a tunnel formed between
two EXIT surfaces is wide open so that the JDD trajectory
penetrates the tunnel and reaches the convergent point with a
small number of zig-zag movements. Distinct JDD strategies
sequentially result in different degree distributions, different
shapes of EXIT surfaces, different shapes of tunnel and
different JDD trajectories, and consequently different JDD
convergence speeds.
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FIGURE 11. Evolution of ĪVC with respect to the number of local
iterations obtained for various values of Eb/N0 with Approximate
MMSE-PIC detection, where R = 1/2, nT = 4, nR = 16.

In each of Table 1 - Table 6, we mark the optimal JDD
strategy and values of overall optimal degree distributions
(λ†, ρ†) by boldface fonts. It is observed that the optimal
JDD strategy differs from Ndet : Ndec = 1 : 1 which
has been widely used in conventional schemes. The optimal
JDD strategy varies depending on the channel scenario, code
rate and detection algorithm. It is obvious that the proposed
analysis tool enables us to choose the optimal JDD strategy
very easily and efficiently depending on the environment
encountered by the system. Some of previous works adopt
non-conventional JDD strategies [18], [19], [20], but the
choice of JDD strategy is not environment-dependent and
the rationale of the choice for JDD strategy is not clearly
presented. In this aspect, we claim that the proposed EXIT
analysis tool is very useful and practical in the multi-user
massive-MIMO communication system.

We construct parity-check matrices of LDPC codes of
specific blocklengths N by applying PEG algorithm [49] to

FIGURE 12. BER of LDPC coded multi-user massive MIMO system with
N = 64000, nT = 4 and nR = 64, where the number of local iterations is
high enough to result in the convergence of JDD.

FIGURE 13. BER of rate-1/2 LDPC coded multi-user massive MIMO system
using MMSE-PIC detection with N = 2304 over 4 × 16 channel obtained
by different JDD strategies and different numbers of local iterations.

realize target degree distributions (λ∗, ρ∗). Then, we perform
BER simulations for codedmulti-usermassiveMIMO system
with various JDD strategies for each code rate, channel
scenario and detection algorithm. In Fig. 12, we plot the
BER of coded multi-user massive MIMO system using
various MMSE-PIC detection algorithms in JDD process,
where accordingly optimal JDD strategies and optimally
designed LDPC codes with sufficiently long blocklength,
i.e., N = 64000, are employed. It is observed that the
order of threshold values for various schemes predicted by
EXIT analysis matches well the order of BER performances
obtained by simulations, although threshold value itself is
a little bit distant from the simulated result. This verifies
the practical effectiveness of the proposed EXIT analysis in
designing the coded multi-user massive MIMO systems.
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FIGURE 14. BER of rate-3/4 LDPC coded multi-user massive MIMO system
using MMSE-PIC detection with N = 4096 over 4 × 64 channel obtained
by different JDD strategies and different numbers of local iterations.

FIGURE 15. BER of rate-1/2 LDPC coded multi-user massive MIMO
system using Approximate MMSE-PIC detection with N = 2304 over
4 × 16 channel obtained by different JDD strategies and different
numbers of local iterations.

In Fig. 13 - Fig. 18, we plot BER performances of
LDPC coded multi-user massive MIMO system with short to
medium blocklength, whose LDPC codes are constructed by
degree distributions (λ∗, ρ∗) listed in Table 1 - Table 6 with
the PEG algorithm. In each figure, we plot BER performances
obtained by three candidate JDD strategies chosen from each
corresponding table. Note that JDD candidates used in Fig. 13
are chosen from Table 1 and the corresponding convergence
behaviors of ĪVC are presented in Fig. 5. In this manner,
each of the following triplets are associated with one another:
(Fig. 6, Fig. 14, Table 2), (Fig.7, Fig. 15, Table 3), (Fig. 8,
Fig. 16, Table 4), (Fig. 9, Fig. 17, Table 5), and (Fig. 10,
Fig. 18, Table 6). In each of Fig. 13 - Fig. 18, we compare
BERs of distinct JDD strategies obtained by the same or

FIGURE 16. BER of rate-3/4 LDPC coded multi-user massive MIMO
system using Approximate MMSE-PIC detection with N = 4096 over
4 × 64 channel obtained by different JDD strategies and different
numbers of local iterations.

FIGURE 17. BER of rate-1/2 LDPC coded multi-user massive MIMO
system using Gauss-Seidel-aided MMSE-PIC detection with
N = 2304 over 4 × 16 channel obtained by different JDD strategies and
different numbers of local iterations.

similar numbers of local iterations. For this purpose, we
choose common multiples of Ndet + Ndec of JDD strategies
under comparison as local iteration numbers at which BERs
are read and compared. In case that a common multiple is
not found, multiples of Ndet + Ndec having similar values
are chosen as local iteration numbers to be tested. We pick
up three groups of local iteration numbers, each of which
corresponds to a beginning stage, a middle stage and a
converging stage, respectively, of the BER evolution. Then,
we plot BERs obtained at three different groups of local
iteration numbers as in Fig. 13 - Fig. 18. By investigating
these figures, we can compare the convergence speeds of JDD
algorithm obtained by distinct JDD strategies. It is clear that
the convergence speed of JDD can be predicted well by using
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FIGURE 18. BER of rate-3/4 LDPC coded multi-user massive MIMO
system using Gauss-Seidel-aided MMSE-PIC detection with
N = 4096 over 4 × 64 channel obtained by different JDD strategies and
different numbers of local iterations.

the evolution of ĪVC based on the proposed EXIT analysis.
For example, in Fig. 15, BER curves drawn with dashed lines
corresponding to the JDD strategy of 1:7 improves the most
rapidly among three JDD strategies under comparison, which
is consistent with the prediction made from Fig. 7. It is also
clear that using the optimal JDD strategy and overall optimal
degree distribution (λ†, ρ†) results in the lowest BER for a
given number of local iterations, or equivalently, the fastest
convergence of JDD for each channel scenario, code rate
and detection algorithm. We may also compare convergence
speeds of JDD strategies by using BER evolution curves
obtained with respect to the number of local iterations as
depicted in Fig. 19 and Fig. 20. These two figures are obtained
by tracing BERs given in Fig. 15 and Fig. 18, respectively,
with respect to the local iteration number at particular values
of Eb/N0. Note that different BER evolution curves are
obtained at different Eb/N0 as shown in Fig. 19. In order to
compare convergence speeds of JDD strategies over a wide
range of Eb/N0, BER evolution curves at many different
values of Eb/N0 need to be obtained, which is not efficient.
Thus, alternatively, we plot BER curves as in Fig. 13 - Fig. 18
to compare convergence speeds of JDD strategies over all
Eb/N0.
We compare performances of LDPC coded multi-user

massiveMIMO systems obtained by using different detection
algorithms in JDD, i.e., MMSE-PIC, Approximate MMSE-
PIC andGauss-Seidel-aidedMMSE-PIC, where optimal JDD
strategies found for each case are used. By revisiting Fig. 12,
we find that three detection algorithms result in similar values
of threshold and similar BER performances with sufficiently
long blocklength. However, these detection schemes show
distinct convergence speeds. It is predicted from Fig. 21 that
the use of Approximate MMSE-PIC results in the fastest
JDD convergence while we obtain the slowest convergence

FIGURE 19. BER of rate-1/2 LDPC coded multi-user massive MIMO
system with N = 2304 over 4 × 16 channel obtained by using
Approximate MMSE-PIC detection at particular Eb/N0.

FIGURE 20. BER of rate-3/4 LDPC coded multi-user massive MIMO
system with N = 4096 over 4 × 64 channel obtained by using
Gauss-Seidel-aided MMSE-PIC detection at Eb/N0 = −14.9dB.

behavior by using MMSE-PIC detection. This prediction
is confirmed by simulations as shown in Fig. 22. Note
that BER performances presented in Fig. 22 are obtained
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FIGURE 21. Evolution of ĪVC with respect to the number of local iterations
with MMSE-PIC, Approximate MMSE-PIC and Gauss-Seidel-aided
MMSE-PIC detection algorithms, where R = 1/2, nT = 4, nR = 16.

FIGURE 22. BER of rate-1/2 LDPC coded multi-user massive MIMO
system with N = 2304 over 4 × 16 channel obtained by using MMSE-PIC,
Approximate MMSE-PIC and Gauss-Seidel-aided MMSE-PIC detection
algorithms.

with short blocklength, where MMSE-PIC outperforms
other detection algorithms at high Eb/N0 and BER curves
experience a cross-over in the intermediate Eb/N0 region.
We can state that a reasonably good BER performance is
obtained by usingApproximateMMSE-PIC or Gauss-Seidel-
aided MMSE-PIC detection algorithms with a lower number
of iterations and consequently with higher throughputs.
It follows that in the communication environment with higher
target throughput, Approximate MMSE-PIC can be a good
choice for the detection algorithm in the JDD process of
LDPC coded multi-user massive-MIMO system.

VII. CONCLUSION
In this paper, we proposed an efficient analysis tool for
investigating the JDD behavior of LDPC coded multi-user
massive MIMO system employingMMSE-PIC detection and
its variations as a low-complexity linear detection algorithm.

For this purpose, we provided a factor graph representation
of LDPC coded multi-user massive MIMO system and
formulated message updating processes in the iterative
JDD process. Then, we defined an EXIT characteristics of
component units in the overall system and analyzed the
behavior of JDD process in terms of EXIT mechanism. Then,
we designed jointly LDPC codes and the JDD strategy in
order to achieve a lower BER and a faster convergence speed
of JDD process. It was verified that the proposed analysis
tool can predict the error correcting capability and the JDD
convergence behavior quite well and thus the proposed tool is
useful for designing LDPC coded multi-user massive MIMO
system. It was also confirmed that the system designed
optimally by the proposed analysis tool achieves a lower BER
with a faster convergence speed.
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