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1 Introduction

As there has been no convincing hint for physics beyond the Standard Model (SM) at the
Large Hadron Collider (LHC) and other experiments, it has become important to make
precision measurements of the Higgs properties and describe the deviations from the SM
predictions in terms of higher dimensional operators in the effective field theories (EFTs).

On the other hand, there is a lot of evidence for dark matter from orbital velocities
of galaxies, gravitational lensing, Cosmic Microwave Background anisotropies, large scale
structures, etc. However, the nature of dark matter has not been known. As dark matter
is almost neutral under the gauge symmetries of the SM, the EFT description of the
interactions between dark matter and the SM has drawn a lot of attention for direct and
indirect detections and LHC searches, enabling us to treat the mediator interactions for
dark matter in a model-independent way. Although we need to take into account the
validity of the EFT description at some high energy scales, we can still decode the important
information for microscopic models for dark matter in the EFT approach.

The consistent conditions for EFTs are manifest through the properties of the S-matrix
such as analyticity, unitarity, and Lorentz invariance. In particular, such consistency
conditions give rise to positivity conditions in the forward limit of the scattering amplitudes
at low energies [1–3]. Recently, positivity bounds have been applied to the SMEFTs [4–11]
and the Higgs-portal derivative interactions for scalar dark matter [12]. In the latter work,
it has been shown that the positivity bounds can constrain the parameter space further for
explaining the relic density for Weakly Interacting Massive Particles [12]. As a by-product of
looking for the origin of the dimension-8 derivative Higgs-portal couplings, it has been found
that the correlations between dimension-4 and dimension-6 operators in a Ultra-Violet(UV)
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complete model such as massive graviton or radion are crucial for identifying the safe
Higgs-portal models from direct detection bounds [12].

In this article, we extend our analysis of the positivity bounds in ref. [12] to the case
for freeze-in scalar dark matter with general Higgs-portal interactions. We assume that
a sufficiently large reheating temperature is achieved after a slow-roll inflation and scalar
dark matter is never in thermal equilibrium. In this case, we search for the parameter space
where the correct relic density for dark matter is explained through the freeze-in process
with the 2-to-2 thermal scattering of the Higgs fields in the SM thermal plasma. Then,
in the case with suppressed dimension-4 and dimension-6 Higgs-portal interactions, which
are proportional to Higgs or scalar dark matter masses, we determine the relic density
dominantly by the dimension-8 derivative Higgs-portal interactions and in turn show how
the positivity bounds are complementary to constrain the parameter space further. We also
discuss the implications of the positivity bounds for microscopic origins of the Higgs-portal
interactions such as massive graviton, radion and conformal/disformal couplings.

The paper is organized as follows. We first present the general effective interactions
in the Higgs-portal scenario for scalar dark matter, discuss the positivity bounds on
them including the derivative self-interactions for Higgs and dark matter, and address
the implications for the positivity bounds for massive graviton, radion and the extended
metric tensor with conformal and disformal modes. Next we determine the relic density for
dark matter from the thermal scattering of the Higgs fields after reheating and impose the
positivity bounds in the parameter space where the correct relic density is obtained. There
is one appendix for the details of the thermal averages of the production rates for scalar
dark matter with the most general Higgs-portal interactions up to dimension-8 operators.
Finally, conclusions are drawn.

2 Positivity bounds on Higgs-portal couplings

We first consider the effective Lagrangian for a real scalar dark matter φ and the Higgs
doublet H in the Standard Model, up to dimension-8 operators, and review the posi-
tivity bounds on them [12]. Then, we discuss the implications of positivity bounds for
microscopic models.

2.1 Positivity bounds

The effective Higgs-portal dark matter Lagrangian is:

LHiggs−portal = L1 + L2 (2.1)

with

L1 = − 1
6Λ4

(
c1m4

φφ4 + 4c2m2
H |H|4 + 8c′2m2

HλH |H|6 + 4c′′2λ2
H |H|8

+ 4c3m2
Hm2

φφ2|H|2 + 4c′3λHm2
φφ2|H|4

)
+ 1

6Λ4

(
d1m2

φφ2(∂µφ)2 + 4d2m2
H |H|2|DµH|2 + 4d′2λH |H|4|DµH|2

+ 2d3m2
φφ2|DµH|2 + 2d4m2

H |H|2(∂µφ)2 + 2d′4λH |H|4(∂µφ)2
)

, (2.2)
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O
(1)
H2φ2 = (DµH†DνH)(∂µφ∂νφ) O

(2)
H2φ2 = (DµH†DµH)(∂νφ∂νφ)

Oφ4 = ∂µφ∂µφ∂νφ∂νφ

O
(1)
H4 = (DµH†DνH)(DνH†DµH) O

(2)
H4 = (DµH†DνH)(DµH†DνH)

O
(3)
H4 = (DµH†DµH)(DνH†DνH)

Table 1. Dimension-8 operators for Higgs and real scalar dark matter.

L2 =
C

(1)
H2φ2

Λ4 O
(1)
H2φ2 +

C
(2)
H2φ2

Λ4 O
(2)
H2φ2

+
Cφ4

Λ4 Oφ4 +
C

(1)
H4

Λ4 O
(1)
H4 +

C
(2)
H4

Λ4 O
(2)
H4 +

C
(3)
H4

Λ4 O
(3)
H4 (2.3)

where the coefficients of all the dimension-4 and dimension-6 operators are dimensionless
parameters, and C

(1)
H2φ2 , C

(2)
H2φ2 , Cφ4 and C

(1,2,3)
H4 are the Wilson coefficients for the dimension-

8 operators containing four derivatives listed in table 1, and Λ is the cutoff scale.
We assume a Z2 symmetry for the scalar dark matter, so the effective Higgs-portal

interactions include only even numbers of scalar dark matter particles. We can also add the
extra higher dimensional terms such as ϕ8, ϕ6, ϕ4|H|2, ϕ4|H|4, but they are irrelevant for
positivity and dark matter phenomenology in the leading order perturbation theory. So, we
drop them in the following discussion.

We also remark that it is convenient to parametrize the dimension-4 and dimension-6
operators in terms of the suppression factors of dark matter and Higgs masses as in eq. (2.2).
The reason is the following. Considering the UV complete models where more fundamental
interactions of mediator particles are proportional to mass squares for dark matter and
Higgs masses, we can get the lower dimensional operators suppressed by powers of m2

φ/Λ2

and m2
H/Λ2, so the dimension-8 operators become dominant for relatively high energy

processes such as freeze-in production of dark matter at a reheating temperature satisfying
mφ, mH ≪ Treh ≲ Λ.

From the scattering amplitudes for superposed states of Higgs and dark matter scalars,
we can impose the following positivity bounds on the dimension-8 derivative Higgs-portal
couplings [12],

C
(1)
H4 + C

(2)
H4 ≥ 0, (2.4)

C
(1)
H4 + C

(2)
H4 + C

(3)
H4 ≥ 0, (2.5)

C
(2)
H4 ≥ 0, (2.6)

C
(1)
H2φ2 ≥ 0, (2.7)

Cφ4 ≥ 0, (2.8)

4
√
(C(1)

H4 + C
(2)
H4 + C

(3)
H4)Cφ4 ≥

∣∣∣C(1)
H2φ2 + 2C

(2)
H2φ2

∣∣∣− C
(1)
H2φ2 . (2.9)

We note that the positivity condition in eq. (2.9) can be rewritten as −C
(1)
H2φ2 − 2A ≤

C
(2)
H2φ2 ≤ 2A with A ≡

√
(C(1)

H4 + C
(2)
H4 + C

(3)
H4)Cφ4 . First, in the case with C

(2)
H2φ2 = +1 and
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C
(1)
H2φ2 ≥ 0, the positivity condition in eq. (2.9) leads to A ≥ 1

2 , which is the lower bound on
the product of the dimension-8 derivative self-interactions for Higgs and scalar dark matter.
But, if C

(2)
H2φ2 = −1, the positivity condition in eq. (2.9) gives rise to C

(1)
H2φ2 ≥ 1−2A. Then,

small dimension-8 self-interactions for Higgs and scalar dark matter can be compatible with
the positivity bounds. Either cases with C

(2)
H2φ2 = +1 or −1 are phenomenologically viable,

given that Higgs-portal interactions are feeble for freeze-in scenarios, but we focus on the
case with C

(2)
H2φ2 < 0 in the later discussion.

2.2 Microscopic models for dimension-8 operators

The dimension-8 operators as well as the lower dimensional operators in eqs. (2.2) and (2.3)
can be originated from the exchanges of a massive spin-2 particle and/or a radion-like
scalar particle [13–16], so we review the relation of the positivity bounds for those models
in ref. [12]. We also comment on the case where scalar dark matter has conformal and
disformal couplings through the metric [19].

First, suppose that there is an exchange of the massive spin-2 particle between the
SM Higgs and the scalar dark matter through the energy-momentum tensor, in the follow-
ing form,

LG = −cH

M
GµνT H

µν − cφ

M
GµνT φ

µν (2.10)

where T H
µν , T φ

µν are the energy-momentum tensors for Higgs and dark matter, given by

T H
µν = (DµH)†DνH + (DνH)†DµH − gµν [gρσ(DρH)†DσH]

+ gµν(m2
H |H|2 + λH |H|4), (2.11)

T φ
µν = ∂µφ∂νφ − 1

2gµν(gρσ∂ρφ∂σφ) + 1
2gµνm2

φφ2. (2.12)

Here, cH , cφ are dimensionless couplings and M is the suppression scale for the spin-2
interactions. Then, after integrating out the massive spin-2 particle, we obtain the effective
Lagrangian for the SM Higgs and the scalar dark matter [12],

LG,eff = 1
4m2

GM2

(
2TµνT µν − 2

3T 2
)

, (2.13)

where Tµν = cHT H
µν + cφT φ

µν , T = cHT H + cφT φ with T H = T H,µ
µ and T φ = T φ,µ

µ . Then,
we get the correlations between the effective Higgs-portal couplings for dark matter at the
matching scale, as follows,

C
(2)
H2φ2

Λ4 = −1
3

C
(1)
H2φ2

Λ4 = − 2cHcφ

3m2
GM2 , (2.14)

c′3
Λ4 = c3

Λ4 = d3
Λ4 = d4

Λ4 = d′4
Λ4 = 1

2
C

(1)
H2φ2

Λ4 . (2.15)

In this case, if the massive spin-2 particle induces an attractive force between the Higgs
and scalar dark matter, namely, cHcφ > 0, leading to C

(1)
H2φ2 > 0 [12], the positivity bounds

for the Higgs-portal interactions in eqs. (2.7) and (2.9) are ensured. We regard the model
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with massive spin-2 particle as being another effective theory with undetermined signs of
the couplings to the energy-momentum tensors. However, as in the massive graviton or
Kaluza-Klein graviton from the extra dimension [13–16], the massive spin-2 particle can give
rise to a new attractive force, being compatible with the positivity bounds and providing a
consistent UV complete models.

On the other hand, the radion can be exchanged between the SM Higgs and the scalar
dark matter through the trace of the energy-momentum tensor, as follows,

Lr = cr
H√
6M

r T H +
cr

φ√
6M

r T φ (2.16)

with radion couplings, cr
H , cr

φ. Then, after integrating out the radion, we find the effective
Lagrangian for the SM Higgs and the scalar dark matter [12] as

Lr,eff = 1
12m2

rM2 T 2 (2.17)

with T = cr
HT H + cr

φT φ. which leads to the correlations between the effective Higgs-portal
couplings, as follows,

C
(1)
H2φ2 = 0, (2.18)

c′3
Λ4 = c3

Λ4 = d3
Λ4 = d4

Λ4 = d′4
Λ4 = −6

C
(2)
H2φ2

Λ4 = −
2cr

Hcr
φ

m2
rM2 . (2.19)

In this case, if the radion induces an attractive force between the Higgs and scalar dark
matter, namely, cr

Hcr
φ > 0, we get C

(2)
H2φ2 > 0 [12], but it is not necessary for positivity

bounds in view of eq. (2.9). As a result, we find that the effective self-couplings for
Higgs and scalar dark matter up to dimension-8 operators can be obtained from the
graviton/radion exchanges, and they are correlated by one parameter originating from a
more fundamental theory.

Before closing this section, we also comment on the case with conformal and disformal
couplings for scalar dark matter [19]. Suppose that the Riemannian geometry is generalized
to the Finsler geometry with the couplings for scalar dark matter,

g̃µν = Cgµν + D∂µφ∂νφ (2.20)

where C and D are called the conformal and disformal couplings, respectively, taking the
following form at the leading order,

C = 1 + c2 φ2

M2
P l

+ cX
∂µφ∂µφ

M4
P l

, (2.21)

D = d

M4 + d

M4 c̃2 φ2

M2
P l

. (2.22)

Here, c, cX , d, c̃ are dimensionless parameters and M is the cutoff scale. Thus, the scalar
dark matter couples to the Higgs through the modified metric, as follows, [19],

Leff = −1
2(g̃µν − gµν)T µν

H

= −1
2(C − 1)T H,µ

µ − 1
2D ∂µφ∂νφ T H,µν (2.23)

– 5 –



J
H
E
P
1
1
(
2
0
2
3
)
1
1
9

where T µν
H is the energy-momentum tensor for the Higgs fields. Then, ignoring the non-

derivative interactions, i.e. c = c̃ = 0, and taking M = Λ and cX = c̃XM4
P l/Λ4, we get the

effective interactions between the Higgs and scalar dark matter by

C
(1)
H2φ2 = −d, C

(2)
H2φ2 = 1

2d + c̃X . (2.24)

Therefore, the positivity bound in eq. (2.7) implies that d < 0, whereas c̃X can be either
positive or negative. This result is in contrast to the causality condition, d > 0, which
comes from the sub-luminal propagation of the metric perturbations around the Finsler
geometry [20]. In contrast, the positivity bounds with d < 0 in our work stem from
the perturbations of the SM Higgs which couple to the modified gravity sector, limiting
the possibility of the Finsler geometry as a UV completion of the effective dimension-8
Higgs-portal interactions. Our result shows another example where the positivity bounds
are violated, other than certain massive gravity models in the literature [21].

3 Dark matter relic density via Higgs-portal freeze-in

In this section, we consider the constraints on the effective Higgs-portal couplings for the
freeze-in production of dark matter. We discuss the interplay between the relic density of
dark matter and the positivity bounds in constraining the dimension-8 derivative Higgs-
portal couplings. For some related papers on the freeze-in production of dark matter
through the exchanges of a massive graviton in the literature, we refer to refs. [17–19].

3.1 Boltzmann equations for dark matter

We can determine the relic density by the freeze-in mechanism [23–25] in our scenario.
To this, we consider the production channels for scalar dark matter via ϕiϕi → φφ

(i = 1, 2, 3, 4), as shown in figure 1. The effective Higgs-portal interactions relevant for
the freeze-in mechanism are dimension-4 and dimension-6 Higgs-portal couplings, such as
terms with c3, d3, and d4 in eq. (2.2), and the dimension-8 derivative Higgs-portal couplings
also contribute.

For the freeze-in mechanism to work, we need to require the Higgs-portal couplings
to be small enough such that dark matter is decoupled from the thermal plasma. Thus,
we impose the dimension-4 Higgs-portal operator with c3m2

Hm2
φ/Λ4 ≲ 10−7 [26], the

dimension-6 Higgs-portal operators with d3m2
φ/Λ4, d4m2

H/Λ4 ≲ 1/(T 3
rehMP l)1/2, and the

dimension-8 derivative Higgs-portal operators with C
(1,2)
H2φ2/Λ4 ≲ 1/(T 7

rehMP l)1/2, where
MP l = 2.4× 1018 GeV is the reduced Planck mass and Treh is the reheating temperature.
For c3, d4, d3, C

(1,2)
H2φ2 = O(1), the minimum cutoff scale for the kinematic decoupling is

determined by the dimension-8 operators, namely, Λ ≳ (T 7
rehMP l)1/8. For instance, we need

Λ ≳ 1014.5 GeV for Treh = 1014 GeV and Λ ≳ 107.5 GeV for Treh = 106 GeV, so it is sufficient
to take the cutoff scale to be larger than the reheating temperature by order of magnitude.
Then, we can satisfy automatically the unitarity condition, which corresponds to Treh ≲ Λ
in the limit of ignoring the masses for Higgs and dark matter.

A comment on the running effects of the dimension-8 operators is in order. The
positivity bounds can be set at the matching scale where new mediator particles in UV

– 6 –
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Figure 1. Feynman diagrams for dark matter production due to effective Higgs-portal interactions.
Here, ϕi(i = 1, 2, 3, 4) are the four real scalar fields of the Higgs doublet, and φ is the real scalar
dark matter.

complete models are integrated out. However, we need to take into account the running
effects of the dimension-8 operators when the 2-to-2 scattering processes such as freeze-in
production take place at a much lower energy as compared to the matching scale to UV
complete models. In this case, not only the dimension-8 self-interactions for Higgs [10] but
also the dimension-8 Higgs-portal interactions [12] are subject to the logarithmic running
effects, so small negative values of the low-energy Wilson coefficients of the dimension-8
Higgs-portal interactions are allowed by the positivity bounds [12].

In the later discussion, we assume that the dimension-4 and dimension-6 operators
are suppressed by the mass squares of Higgs or dark matter scalars, but the dimension-8
derivative Higgs-portal couplings are dominant for dark matter production at the high
reheating temperature. In this case, the correlation between the freeze-in dark matter and
the positivity bounds becomes more manifest.

We take the representation of the SM Higgs doublet H in terms of four real scalar
fields, ϕi(i = 1, 2, 3, 4), as follows,

H = 1√
2

(
ϕ1 + iϕ2
ϕ3 + iϕ4

)
. (3.1)

We assume that the electroweak symmetry is unbroken during the freeze-in production of
dark matter, so all the Higgs scalar fields contribute equally to the freeze-in processes.

The number density for the dark matter, nφ, is governed by the following Boltz-
mann equation,

ṅφ + 3Hnφ = R(t) (3.2)

where R(t) is the production rate for dark matter per unit volume and per unit time, the
Hubble parameter during radiation domination is taken to H =

√
ρR

3MPl
=
√

g∗π2

90
T 2

MPl
, with

ρR being the radiation energy density, and g∗ is the number of effective relativistic degrees
of freedom.

Defining the dark matter yield as Yφ ≡ nφ

T 3 , we can rewrite eq. (3.2) as the Boltzmann
equation for the dark matter yield Yφ, in terms of the temperature T , as

dYφ

dT
= − R(T )

H(T )T 4 . (3.3)
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Here, the production rate R(T ) for the process AB → CD is given by

R(T ) = gϕ

∫
fAfB

EAEBdEAdEBd cos θAB

1024π6

∫
|MAB→CD|2dΩAC

√
1−

4m2
φ

s
(3.4)

where gϕ is the number of degrees of freedom for the Higgs fields, which is gϕ = 4,

fA/B = 1
Exp(EA/B/T )− 1 (3.5)

are the occupancy distributions of the Higgs fields, θAB is the angle between the Higgs
boson A and B in the laboratory frame, dΩAC is the solid angle between the Higgs boson A

and the scalar dark matter C in the center of mass (COM) frame, and |MAB→CD|2 is the
squared matrix element of the process AB → CD. Here, we took each initial Higgs field to
be massless in the unbroken phase. Here, we took each initial Higgs field to be massless in
the unbroken phase. When the dark matter mass is larger than the temperature, namely,
EA, EB ≳ mφ > T , leading to the Boltzmann suppression, fA,B ≃ e−EA,B/T .

3.2 Dark matter relic density and positivity bounds

We continue to present the main results of our work on freeze-in production in detail.
Moreover, we add the positivity bounds on the dimension-8 derivative Higgs-portal couplings.

First, in terms of the coefficients of the Higgs-portal effective operators, we obtain the
squared scattering amplitude for ϕiϕi → φφ(i = 1, 2, 3, 4), |Mϕiϕi→φφ|2, as follows,

|Mϕiϕi→φφ|2 =
1

576Λ8

(
3(C(1)

H2φ2+2C
(2)
H2φ2)s2+6C

(1)
H2φ2m4

φ−8(2c3−d4)m2
Hm2

φ

+6C
(1)
H2φ2(t2−2m2

φt)+2s
[
3C

(1)
H2φ2t−(3C

(1)
H2φ2+6C

(2)
H2φ2+2d3)m2

φ−2d4m2
H

])2

(3.6)

where the symmetric factors for identical particles in initial states (i.e., ϕiϕi pairs) and final
states (i.e., dark matter particle pair, φφ) are included. The Mandelstam variables, s and
t, are related to the angle between initial states in the lab frame, θAB, and the scattering
angle θAC in the COM frame, as follows,

s = 2EAEB(1− cos θAB), (3.7)

t = s

2

√1−
4m2

φ

s
cos θAC − 1

+ m2
φ. (3.8)

We can take dΩAC = 2πd cos θAC due to the azimuthal symmetry in the COM frame. Here,
we note that s appearing in t is taken in the COM frame, but its value is identical to the one
in the lab frame, so we take the form of s in the lab frame in eq. (3.7), which is appropriate
for the thermal averages.

We comment on the scattering angle dependence of the scattering amplitude in connec-
tion to the partial UV completion of the dimension-8 operators. Taking s, t ≫ m2

φ, m2
H , we

– 8 –
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-5 0 5 10
9

10

11

12

13

14

Log10mφ [GeV]

Lo
g 1
0
T
re
h
[G
eV

]

C(1)
H2φ2=1, C

(2)
H2φ2=-1

Λ=10 13
GeV

Λ=10 14
GeV

Λ=10 15
GeV

Λ=10 16
GeV

Ωh2 > 0.12

-5 0 5 10

2

4

6

8

10

Log10mφ [GeV]

Lo
g 1
0
T
re
h
[G
eV

]

C(1)
H2φ2=1, C

(2)
H2φ2=-1

Λ=10 6 GeV

Λ=10 8 GeV

Λ=10 10 GeV

Λ=10 12 GeV

Figure 2. Parameter space for mφ vs Treh, satisfying the positivity bounds and the relic density for
dark matter. We took the values of Λ = 1013,14,15,16 GeV(106,8,10,12 GeV) for the left (right) plots
and C

(1)
H2φ2 = 1 and C

(2)
H2φ2 = −1 in common. We took the dark matter mass only above 1 keV

because of the Lyman−α bounds on warm dark matter [22].

can approximate the squared scattering amplitude in eq. (3.6) to

|Mϕiϕi→φφ|2 ≃ 1
576Λ8

[
3(C(1)

H2φ2 + 2C
(2)
H2φ2)s2 + 6C

(1)
H2φ2 t(t + s)

]2
. (3.9)

We note that the terms containing c3, d3, d4 = O(1) in eq. (3.6) are neglected in the massless
limit for Higgs and dark matter. Then, in the case with the exchanges of the massive
graviton for dark matter, we can set C

(1)
H2φ2 = −3C

(2)
H2φ2 , for which the squared scattering

amplitude in eq. (3.6) is proportional to |Mϕiϕi→φφ|2 ∝ s4(1− 3 cos2 θ)2, being (d-wave)2,
in the massless limit for Higgs and dark matter. On the other hand, in the case with the
exchanges of the radion for dark matter, we can take C

(1)
H2φ2 = 0, for which the squared

scattering amplitude in eq. (3.6) is independent of the scattering angle, being (s-wave)2.
As discussed previously, dimension-4 and dimension-6 terms are suppressed by the mass

squares for Higgs and dark matter, so the leading contribution to the freeze-in production is
through dimension-8 operators, being dominated near the reheating temperature. Moreover,
we bound the reheating temperature to be smaller than the cutoff scale in the effective theory
such that even higher dimensional operators make minor contributions to the freeze-in
production in the UV. More explicitly, we consider the dimension−(4 + 2n) Higgs-portal
interactions with 2n derivatives in the effective theory below the cutoff scale Λ. Then,
those higher dimensional operators give rise to the leading scattering rate for dark matter
production scaling by R(T ) ∼ T 12

Λ8
(

T
Λ
)4(n−2), so the resultant relic abundance for dark

matter is determined by the reheating temperature to be Yφ ∼ 1
4n−1

T 7
rehMP l

Λ8
(Treh

Λ
)4(n−2) by

integrating eq. (3.3) between T = Treh and T = mH . As a result, the higher dimensional
operators with more than four derivatives, namely, n > 2, are sub-dominant for the freeze-in
production as compared to the dimension-8 operators, as far as the reheating temperature
is below the cutoff scale, namely, Treh ≲ Λ.
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As a consequence, from the results in the appendix on the production rate for dark
matter and the relic abundance, for Treh ≫ mφ, mH , we find that dark matter is produced
mostly around the reheating temperature. Thus, we get the approximate formula for the
relic abundance in our scenario as

Ωφh2 ≃ 0.12
(

mφ

1 TeV

)(
Treh

1011 GeV

)7
(
1013 GeV

Λ

)8

×
(14

5 (C(1)
H2φ2)2 + 16C

(1)
H2φ2C

(2)
H2φ2 + 24(C(2)

H2φ2)2
)

. (3.10)

In figure 2, we depict the parameter space in mφ vs Treh, satisfying the relic density
for dark matter. We chose values of the suppression scale for the Higgs-portal effective
interactions to Λ = 1013,14,15,16 GeV on the left plot, Λ = 106,8,10,12 GeV on the right plot,
but we took C

(1)
H2φ2 = 1 and C

(2)
H2φ2 = −1 for both plots. We have also taken into account

the Boltzmann suppression for dark matter production when mφ ≳ Treh. We also remark
that the dark matter masses below about 1 keV is disfavored by Lyman−α constraints [22].
The larger cutoff scale Λ or the smaller reheating temperature, the heavier dark matter
mass is preferred. Moreover, the lower cutoff scale Λ, the smaller reheating temperature
Treh is needed for the correct relic density. Regarding the reheating temperature as being a
free parameter, we find that the wide ranges of dark matter masses and the cutoff scales
are consistent with the dark matter relic density at present.

As discussed in the end of section 2.1, we recall that C
(2)
H2φ2 < 0 is not a necessary

condition, because the positivity bound in eq. (2.9) involving C
(2)
H2φ2 depends on C

(1)
H2φ2

and the other dimension-8 operators such as C
(i)
H4(i = 1, 2, 3) and Cφ4 . For instance, in

the case of the radion couplings, we have C
(1)
H2φ2 = 0, so there is only an upper bound on

the absolute value of C
(2)
H2φ2 when (C(1)

H4 + C
(2)
H4 + C

(3)
H4)Cφ4 ̸= 0, but the sign of C

(2)
H2φ2 is

unconstrained. However, the case with a sizable positive value of C
(2)
H2φ2 is allowed only in

the limited parameter space with non-vanishing self-interactions for Higgs and dark matter,
as will be shown shortly.

In figure 3, we show the parameter space for C
(1)
H2φ2 and C

(2)
H2φ2 in the left plot and for

mφ and C
(1)
H2φ2 in the right plot, satisfying the relic density for dark matter and positivity

bounds. We fixed Λ = 1013 GeV and Treh = 1011 GeV for both figures. The relic density
with Ωh2 < 0.12 is achieved outside the orange regions, whereas the observed relic density,
Ωh2 = 0.12, is explained for mφ = 1− 103 GeV along the boundary of the orange region.
The region satisfying the positivity bounds are shown in green. For the left plot of figure 3,
we also took the combination of the dimension-8 derivative self-interactions for Higgs and
dark matter by A ≡

√
(C(1)

H4 + C
(2)
H4 + C

(3)
H4)Cφ4 = 0.1. We can also allow for a larger value

of A as far as the cutoff Λ is sufficiently large to avoid the experimental constraints at the
LHC. Hence, the positivity bounds in eq. (2.9) are satisfied even for C

(2)
H2φ2 > 0 in the left

plot of figure 3, although dark matter is overproduced for mφ ≃ 1TeV. For A = 0.1, the
positivity bounds exclude a large portion of the parameter space with small dark matter
masses below 1TeV for |C(1)

H2φ2 | < 10. Moreover, in figure 4, we also show the similar
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Positivity

satisfied

Ωh2 > 0.12

-10 -5 0 5 10
-10

-5

0

5

10

C(1)
H2φ2

C
(2
) H
2φ
2

Λ= 1013 GeV, Treh=10
11 GeV

m
φ=1 GeV

m
φ=1 TeV

m
φ=1 GeV

Positivity satisfied

Ωh2 > 0.12

-5 0 5 10
-10

-5

0

5

10

Log10mφ [GeV]

C
(1
) H
2φ
2

C(2)
H2φ2=-0.5

Λ= 1013 GeV, Treh=10
11 GeV

Figure 3. Left: parameter space for C
(1)
H2φ2 vs C

(2)
H2φ2 , satisfying positivity and relic density. We

chose the dark matter mass to mφ = 1GeV and 1TeV. For A ≡
√
(C(1)

H4 + C
(2)
H4 + C

(3)
H4)Cφ4 = 0.1,

the positivity bounds in eqs. (2.7) and (2.9) are satisfied in green. Right: parameter space for
mφ vs C

(1)
H2φ2 , satisfying positivity and relic density, for C

(2)
H2φ2 = −0.5. The positivity bounds

in eq. (2.7) are satisfied in green regions. In common for all the plots: we took Λ = 1013 GeV
and Treh = 1011 GeV, and dark matter relic density is overproduced in orange regions, namely,
Ωh2 > 0.12, and it saturates the observed value along the boundary of the orange region.

Positivity

satisfied

Ωh2 > 0.12

-2 -1 0 1 2
-2

-1

0

1

2

C(1)
H2φ2

C
(2
) H
2φ
2

Λ= 108 GeV, Treh=10
6 GeV

m
φ=1 MeV

m
φ=1 GeV

m
φ=1 MeV

Positivity satisfied

Ωh2 > 0.12

-6 -4 -2 0 2 4
-2

-1

0

1

2

Log10mφ [GeV]

C
(1
) H
2φ
2

C(2)
H2φ2=-0.5

Λ= 108 GeV, Treh=10
6 GeV

Figure 4. The same as in figure 3, except that Λ = 108 GeV and Treh = 106 GeV.

results for Λ = 108 GeV and Treh = 106 GeV, but the correct relic density is now achieved
for mφ = 10−3 − 1GeV.

As shown in the right plot of figures 3 or 4, there are destructive interferences between
C

(1)
H2φ2 and C

(2)
H2φ2 when they take the opposite signs, favoring a relatively larger dark matter

mass around C
(1)
H2φ2 ≳ −2C

(2)
H2φ2 . We checked that a complete cancellation between the

different dimension-8 operators does not occur.
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4 Conclusions

We considered the interplay of the relic density and positivity bounds for constraining the
general Higgs-portal interactions for scalar dark matter up to dimension-8 operators. We
focused on the production of dark matter by the freeze-in mechanism where dark matter
is produced by the 2-to-2 thermal scattering of the Higgs fields after reheating. As a
result, we showed that when dimension-4 and dimension-6 operators are suppressed by
mass squares for Higgs or dark matter, the dimension-8 derivative Higgs-portal interactions
determine the relic density dominantly. We found that when massive graviton or radion is
exchanged between Higgs and scalar dark matter as attractive forces, the resultant effective
dimension-8 operators are consistent with the positivity bounds. However, the disformal
couplings in the general metric can respect the subluminal propagation of graviton but
violate the positivity bounds.

Taking into account both the freeze-in condition and the unitarity condition during the
production of dark matter, we found that there is a lot of the parameter space satisfying the
relic density for a sufficiently large reheating temperature. For instance, we obtained the
correct relic density with dark matter masses, mφ = 1−103 GeV and mφ = 10−3−1GeV, for
(Λ, Treh) = (1013, 1011)GeV and (Λ, Treh) = (108, 106)GeV, respectively. We also illustrated
how the positivity bounds can constrain the parameter space for the dimension-8 derivative
Higgs-portal interactions, otherwise unconstrained by the relic density only. Therefore, the
positivity bounds are useful for identifying the consistent effective Higgs-portal interactions
at low energies, for instance, coming from the couplings of massive graviton, radion as well
as the extended metric interactions with conformal and disformal modes.

A Dark matter production rates

We introduce the dark matter production rate for ϕϕ → φφ considered in the text. (Here,
we suppress the Higgs index i for ϕ.) Then, we also compute the dark matter relic abundance
in our scenario.

In general, we take the squared scattering amplitude for ϕϕ → φφ in terms of the
Mandelstam variables, s and t, in the momentum expansion, as follows,

|M|2 =
∑

0≤i+j≤4
ci,j

sitj

M2(i+j) . (A.1)

Here, we introduced the suppression mass scale M just for making the 2-to-2 scattering
amplitude dimensionless in four dimensions. Then, performing the thermal averages for the
initial states and the phase space integrals for the final states in eq. (3.4), we obtain the
production rate for each term of eq. (A.1), as follows,

|M|2 → R(T );

c0,0 → c0,0
T 4

4608π
, (A.2)

c1,0
s

M2 → c1,0
M2

T 6ζ(3)2

16π5 , (A.3)

c2,0
s2

M4 → c2,0
M4

π3T 8

5400 , (A.4)
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c3,0
s3

M6 → c3,0
M6

72T 10ζ(5)2

π5 , (A.5)

c4,0
s4

M8 → c4,0
M8

128π7T 12

19845 , (A.6)

c0,1
t

M2 → c0,1
M2

π4m2
φT 4 − 144T 6ζ(3)2

4608π5 , (A.7)

c0,2
t2

M4 → c0,2
M4

(
m4

φT 4

4608π
−

m2
φT 6ζ(3)2

12π5 + π3T 8

16200

)
, (A.8)

c0,3
t3

M6 → c0,3
M6

(
m6

φT 4

4608π
−

5m4
φT 6ζ(3)2

32π5 +
π3m2

φT 8

3600 − 18T 10ζ(5)2

π5

)
, (A.9)

c0,4
t4

M8 → c0,4
M8

(
m8

φT 4

4608π
−

m6
φT 6ζ(3)2

4π5 +
7π3m4

φT 8

9000 −
576m2

φT 10ζ(5)2

5π5 + 128π7T 12

99225

)
,

(A.10)

c1,1
st

M4 → c1,1
M4

(
m2

φT 6ζ(3)2

16π5 − π3T 8

10800

)
, (A.11)

c2,1
s2t

M6 → c2,1
M6

(
π3m2

φT 8

5400 − 36T 10ζ(5)2

π5

)
, (A.12)

c3,1
s3t

M8 → c3,1
M8

(
72m2

φT 10ζ(5)2

π5 − 64π7T 12

19845

)
, (A.13)

c1,2
st2

M6 → c1,2
M6

(
m4

φT 6ζ(3)2

16π5 −
π3m2

φT 8

4050 + 24T 10ζ(5)2

π5

)
, (A.14)

c2,2
s2t2

M8 → c2,2
M8

(
π3m4

φT 8

5400 −
96m2

φT 10ζ(5)2

π5 + 128π7T 12

59535

)
, (A.15)

c1,3
st3

M8 → c1,3
M8

(
−

m6
φT 6ζ(3)2

16π5 −
π3m4

φT 8

2160 +
108m2

φT 10ζ(5)2

π5 − 32π7T 12

19845

)
. (A.16)

We remark that the production rate for eq. (A.1) becomes, in the relativistic limit for
dark matter,

R(T ) =
∑

0≤i+j

ci,j(−1)j 22(i+j)Γ2(i + j + 2)ζ2(i + j + 2)T 2(i+j+2)

128π5(j + 1)(i + j + 1)M2(i+j) , (A.17)

which is in agreement with [19].
After integrating the Boltzmann equation in eq. (3.3) between the reheating temperature

Treh and the temperature T = mH when the Higgs fields are decoupled, we get the dark
matter yield as

Yφ(mH) = Yφ(Treh) +
gϕ√
g∗

[
F7(T 7

reh − m7
H) + F5(T 5

reh − m5
H) + F3(T 3

reh − m3
H)

+ F1(Treh − mH) + F−1

( 1
Treh

− 1
mH

)]
(A.18)
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where

F7 =
32
√

2
5π6MP l(12c0,4 + 5(−3c1,3 + 4c2,2 − 6c3,1 + 12c4,0))

138915M8 , (A.19)

F5 = −
18
√

2
5MP lζ(5)2 (5M2(3c0,3 − 4c1,2 + 6(c2,1 − 2c3,0))

)
5π6M8

−
18
√

2
5MP lζ(5)2

(
2m2

φ(48c0,4 − 5(9c1,3 − 8c2,2 + 6c3,1))
)

5π6M8 , (A.20)

F3 =
π2MP l

(
5M4(2c0,2 − 3c1,1 + 6c2,0) + 5M2m2

φ(9c0,3 − 8c1,2 + 6c2,1)
)

16200
√
10M8

+
π2MP l

(
3m4

φ(42c0,4 − 25c1,3 + 10c2,2)
)

16200
√
10M8 , (A.21)

F1 =

√
5
2MP lζ(3)2

(
−3M6(c0,1 − 2c1,0) + 2M4m2

φ(3c1,1 − 4c0,2) + 3M2m4
φ(2c1,2 − 5c0,3))

)
16π6M8

+

√
5
2MP lζ(3)2

(
6m6

φ(c1,3 − 4c0,4)
)

16π6M8 , (A.22)

F−1 = −

√
5
2MP l

(
c0,0M8 + c0,1M6m2

φ + c0,2M4m4
φ + c0,3M2m6

φ + c0,4m8
φ

)
768π2M8 . (A.23)

Here, Yφ(Treh) is the dark matter yield at the reheating temperature. We note that we can
fix g∗ to the value at the temperature which dominates the integration of the Boltzmann
equation, namely, g∗ = g∗(Treh) for the UV freeze-in case with Treh ≫ mH .

From the amplitude squared for the scattering ϕϕ → φφ, given in eq. (3.6), we obtain

F7 =
2
√

2
5π6MP l

(
7(C(1)

H2φ2)2+40C
(1)
H2φ2C

(2)
H2φ2+60(C(2)

H2φ2)2
)

138915Λ8 , (A.24)

F5 =−
3
√

2
5MP lζ(5)2

(
m2

φ

(
6(C(1)

H2φ2)2+5C
(1)
H2φ2(9C

(2)
H2φ2+2d3)+30C

(2)
H2φ2(3C

(2)
H2φ2+d3)

))
5π6Λ8

−
3
√

2
5MP lζ(5)2

(
10m2

Hd4(C(1)
H2φ2+3C

(2)
H2φ2)

)
5π6Λ8 , (A.25)

F3 =
2π2MP l

(
10m2

φ(−4c3(C(1)
H2φ2+3C

(2)
H2φ2)+3m2

HC
(1)
H2φ2d4+2m2

Hd4(6C
(2)
H2φ2+d3))

)
388800

√
10Λ8

+
π2MP l

(
m4

φ

(
9(C(1)

H2φ2)2+20C
(1)
H2φ2(3C

(2)
H2φ2+d3)+20(3C

(2)
H2φ2+d3)2

)
+20m4

Hd2
4

)
388800

√
10Λ8 ,

(A.26)

F1 =

√
5
2MP lm

2
φm2

Hζ(3)2(−2c3+d4)
(
m2

Hd4−m2
φ(C

(1)
H2φ2+6C

(2)
H2φ2+2d3)

)
48π6Λ8 , (A.27)

F−1 =−

√
5
2MP lm

4
φm4

H(d4−2c3)2

6912π2Λ8 . (A.28)
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As a result, in the limit of Treh ≫ mH , we can approximate the dark matter yield in
eq. (A.18) to

Y (mH)≃Y (Treh)+
gϕ√

g∗(Treh)

[
F7T 7

reh+F5T 5
reh+F3T 3

reh+F1Treh−F−1
1

mH

]
. (A.29)

Furthermore, assuming Yφ(Treh) = 0 and d4, c3 = O(1), from Treh ≫ mφ, mH , we can make
a further approximation for the dark matter yield by

Yφ(mH) ≃ gϕ√
g∗(Treh)

F7T 7
reh. (A.30)

Then, the dark matter production occurs at the high temperature near the reheating
temperature, so we can fix g∗ = 106.75 in the SM.

Finally, the dark matter relic abundance at present is determined as

Ωφh2 =1.6×108
(

mφ

1 GeV

)(
g∗s(T0)

g∗s(Treh)

)
Yφ(mH) (A.31)

≃ 5.7×105
(

mφ

1 GeV

) 8
√

2
5π6MP lT

7
reh

(
7(C(1)

H2φ2)2+40C
(1)
H2φ2C

(2)
H2φ2+60(C(2)

H2φ2)2
)

138915Λ8 .

(A.32)

Here, the number of the effective entropy degrees of freedom is given by g∗s(T0) = 3.91 at
present and g∗s(Treh) = 106.75 at the reheating temperature.
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