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Edge-Based Local and Global Energy Active
Contour Model Driven by Signed Pressure

Force for Image Segmentation
Asim Niaz , Ehtesham Iqbal , Asif Aziz Memon , Asad Munir , Jin Kim , and Kwang Nam Choi

Abstract— Image segmentation is a tedious task that suffers
from constraints, such as blurred or weak edges and intensity
inhomogeneity. Active contour models (ACMs), including edge-
and region-based methods, are extensively used for image seg-
mentation. Each of these methods has its pros and cons that
affect image-segmentation accuracy and CPU processing time.
This study combines local and global region-based fitting energies
and uses statistical image information to drag contours toward
object boundaries, thus overcoming image inhomogeneity. The
bias field, the region affected by image artifacts, is calculated
and added with the local fitting energy model to capture
inhomogeneous object boundaries. Furthermore, the combined
local and global statistical information is appended with the
edge-indicator function to rapidly move the contour over objects
with strong edges, thereby avoiding boundary leakage. A region-
based length term is driven by the signed pressure force (SPF)
function that evolves the curve on either the outer or inner side of
the object, depending on its sign. The SPF function contributes
to achieving a smoother version of energy minimization over
gradient descent flow. The proposed ACM is applied to multiple
synthetically generated, and medical images, together with online
available public databases: the PH2 database, the skin-cancer-
mnist-ham10000 THUS10000 database, and the specific images
from PascalVOC2007 database. All the experiments confirm the
better segmentation accuracy and improved time potency of the
proposed methodology over previous level set-based approaches.

Index Terms— Active contours, bias field, image segmentation,
inhomogeneous image segmentation, level set.

I. INTRODUCTION

IMAGE segmentation is an important technique in image
processing and computer vision, with many applications
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in different fields, such as medical image analysis [1], [2],
intelligent transportation [3], [4], defect detection [5], and
remote sensing [6]. The basic principle of image segmentation
is to distinguish different objects in images. It is used to
extract specific characteristics [regions of interest (ROIs)] from
a given image for analysis. With the progress of artificial
intelligence, a variety of image-segmentation technologies,
such as deep neural networks [6], [7], [8], [9], [10] and
scene parsing [11], [12], [13], [14], are developed in recent
years. Such techniques belong to the category of learning-
based methods; compared to traditional methods, they require
more resources and data for searching statistical information
and features [15]. Conventional methods, such as thresholding
and unsupervised-based methods, are also important in the
machine learning era. The active contour model (ACM), often
termed the snake model, is based on an unsupervised method
that was initially proposed by Kass et al. [16]. Since then,
ACMs have remained one of the most used conventional
methods for image segmentation. An active contour is a
computer-generated curve guided by outer and inner forces
that are further influenced by the image constraints. These
forces attract contours toward image constraints such as edges
and lines. Both forces evolve under the influence of partial
differential equations (PDEs), which become zero at the object
boundary. ACMs are divided into two different classes based
on the image constraints: edge-based ACMs [17], [18], [19],
[20], [21], [22] and region-based ACMs [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48].
Both types of ACMs have their strengths and weaknesses.
Edge-based ACMs make use of a balloon force, consisting
of image gradient information, to capture object boundaries.
Such methods are useful for images with sharp object edges
or boundaries and involve lower computational complexity.
However, the performance of edge-based methods on images
with blurred or weak edges is limited.

In contrast, region-based ACMs are independent of the
image gradient and use region-based statistical information
on the insides and outsides of the contour. Region-based
ACMs are capable of segmenting objects with weak edges
and are less accustomed to noise. Conventional region-based
image-segmentation ACMs consider that overall image inten-
sity is homogeneous, failing to catch the ROIs in the case
of inhomogeneity in images. Overall, the edge-based ACMs
perform effectively on images with a distinguishable difference
between the ROI and the background. A classic case of
region-based ACM is the Chan–Vese (C–V), an extension
of the Mumford-Shah (M–S) ACM [49]. The C–V method
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Fig. 1. Segmentation of an inhomogeneous image: (a) C-V model, (b) LBF
model, and (c) LIF model column.

transforms the minimization problem into a curvature-flow
problem [35]. This model effectively segments images with
homogeneous objects of interest, but its performance is limited
in that it produces unsatisfactory segmentation results on
inhomogeneous images. This limitation arises from the general
assumption in region-based methods that the images contain
only homogeneous regions.

Real-world images are often affected by inhomogeneity,
such as abrupt intensity variations, light effects, and low con-
trast. This limitation was overcome by Li et al. [50] presenting
a local binary fitting (LBF) ACM using local image statistics
and a Gaussian kernel deals with image inhomogeneity. This
method is considerably limited by the initial contour position,
leading to poor performance. Zhang et al. [28] presented their
local image fitting (LIF) region-based ACM for inhomoge-
neous image segmentation. The LIF energy model extracts
the local image information from the image and segments
inhomogeneous images. A Gaussian kernel is employed to
maintain a smooth contour evolution and avoid the reinitializa-
tion problem. Li et al. [50] dealt with intensity inhomogeneity
by deriving the image local clustering property based on a
local clustering criterion function. Fig. 1 shows the segmen-
tation of an inhomogeneous object against a white back-
ground; local region-based ACMs perform better than global
region-based models in the case of intensity corrupted images.
Zhang et al. [51], [52] used bias field estimation in their model
based on local fitting energies; this technique showed signif-
icant performance improvement on inhomogeneous images.
In [51], a variational level set with bias correction (VLSBC)
ACM is proposed with simultaneous bias field estimation
and image segmentation. This model has also relied on the
initial curve position. Oh et al. [32] presented a hybrid
ACM, which combined the global region-based fitting term
with the geodesic edge term, to perform image segmentation.
The fractional varying-order differential (FVOD) model [53]
introduced varying differential orders for different textural
characteristics in an image, resulting in a new different
image formulation and an energy functional for contour
evolution. Despite a good alternative to previous work, con-
verging PDEs of multiple orders adds to the computational
cost of the FVOD. To overcome the limitations of pre-
vious ACMs, Wang et al. [48] proposed LPFBC ACM,
which is a local pre-piecewise fitting bias correction model
that utilizes an energy function and optimization techniques
to achieve fast and accurate segmentation by minimizing
the impact of image information grasp and model energy
fluctuations.

Many deep learning-based approaches have been devised for
image segmentation, including DeepLabV3+ [54], a famous
segmentation model based on an encoder–decoder network.
The encoder uses atrous convolution at various scales to
capture multiscale contextual information, and the decoder
effectively improves the segmentation results along object

boundaries. Despite its state-of-the-art (SOTA) performance,
it is a data-hungry model that requires massive amounts
of labeled data; otherwise, it compromises its performance
significantly, as further discussed in Section V. Contrarily,
classic image-segmentation model, such as ACM, does not
require labeled data and hence is less time-consuming as no
time and labor costs associated with data labeling incur. [55]

Many research works, including [56], [57], [58], and [59],
incorporated local energies with global energies to achieve
superior performance than the previous methods. However, the
difference is that each research has its unique energy functional
formulation combining the local and global energies.

The proposed model combines local and global energies
along with the edge-indicator function and the length-based
region term with the signed pressure force (SPF) function in
such a way that the contour fits the true boundary of the object
of interest. The solution converges with higher accuracy and
less computational time than previous methods.

Our literature review suggests that global-region-based
ACMs are appropriate for images with homogeneous
regions. Local-region-based ACMs are good at handling
inhomogeneous images. The edge-based models are efficient
over images with distinguishable differences between the
background and the foreground. The ACMs with either
local-region-based or global-region-based energy fitting
terms only show limited performance for different levels of
inhomogeneity.

This study aims to contribute to the scientific literature for
image segmentation using ACMs. The principal contributions
of this research are given as follows.

1) A novel fit model comprising both the local-region-
and global-region-based image information to assist the
moving contour in capturing objects of interest. The
global-region-based image fitting energy helps speed up
the contour evolution over homogeneous objects, while
the local-region-based fitting energy confines contours
over inhomogeneous object boundaries.

2) The inclusion of bias field estimation with the local-
region-based fitting energy increases the accuracy of
inhomogeneous image segmentation.

3) Appending the edge-indicator function with the fit model
speeds up contouring over objects with strong edges.

4) A region-based length term, operated by the SPF func-
tion, helps the contour to suppress false contours and
evolves either in the outer or inner direction depending
on the force sign.

The implementation of the proposed methodology is fol-
lowed by investigations comparing its results to other active
contour-based models over several synthetically generated
and real-world images. The experimental outcome affirms
the superiority of the proposed edge-based local and global
ACM operated with SPF function. Fig. 2 shows a graphical
representation of the SPF function.

The rest of this article is organized as follows.
Sections II and III comprise the previous works and the
proposed methodology, respectively. Section IV illustrates and
discusses briefly the experimental results that include seg-
mentation quality analysis and ablation study, and Section V
presents the discussion, followed by Section VI summarizing
our study.
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Fig. 2. Signs of the SPF function: SPF > 0 in the region outside the object
boundary, SPF < 0 in the region inside the object boundary, and SPF = 0 at
the object boundary.

II. RELATED WORK

A. M-S Model
Consider � to be a bounded open subset of R2 and ∂� to

be the boundary of �. Let I (x) → R be the image under
experiment and C : [0, 1] → R2 be a parameterized curve
representing a contour.

The M-S model [49] is a basic region-based ACM.
It achieves the solution image, I , by finding an optimal
piecewise function, u, that varies within a subregion of the
image domain in a smooth fashion. The proposed M-S energy
functional is

EMS(I, C) = λ

∫
�

(I − u)2dx

+ v

∫
�\C

(∇u)2dx + µ

∫
�

|C | (1)

where |C | shows the total length of the bounding contour C ,
and λ, v, and µ represent the positive-valued coefficients. M-S
models show nonconvex behavior leading to irregularity of the
edge term and make the energy minimization problem more
complex.

B. C-V Model
Chan and Vese [35] proposed the C-V model, which is

based on contour evolution approach and is inspired by
one of the most basic and famous M-S models. The C-V
model is the minimization of the energy-based segmentation
model. Assume that two regions, outside (C) and inside (C),
of appreciatively piecewise constant intensities form the input
image I (x).

The C-V model energy function is formulated as

ECV(C, c1, c2)

= λ1

∫
outside(C)

|I (x) − c1|
2 Hϵ(φ(x))dx

+ λ2

∫
inside(C)

|I (x) − c2|
2(1 − Hϵ(φ(x)))dx

+ µ

∫
�

|∇ Hϵ(φ(x))|2dx + v

∫
�

Hϵ(φ(x))dx (2)

where c1 and c2 are the mean values of the global intensities
from the outside(C) and inside(C) regions of image I (x),

respectively. λ1, λ2, and µ are parameters with values ≥ 0. The
last and the second-to-last term in (2) represent the Euclidean
length and the area of contour C , respectively. Hϵ(φ(x)) is
the regularized form of the Heaviside step function, which is
expressed as

Hϵ(φ(x)) =
1
2

(
1 +

2
π

arctan
(

φ

ϵ

))
. (3)

ϵ regularizes the Heaviside function. c1 and c2 are expressed
as

c1 =

∫
�

I (x)Hϵ(φ(x))dx∫
�

Hϵ(φ(x))
, c2 =

∫
�

I (x)(1 − Hϵ(φ(x)))dx∫
�
(1 − Hϵ(φ(x)))

.

(4)

The C-V model minimizes its energy function as a critical
instance of the minimal partition problem. For (2), curve C
evolves with respect to φ using [60] as

∂φ

∂t
= −λ1δϵ(φ)(I − c1)

2
+ λ2δϵ(φ)(I − c2)

2

+ µδϵ(φ)div
(

∇φ

|∇φ|

)
− vδϵ(φ). (5)

In (4), δϵ(x) represents a smooth form of the Dirac delta
function, which is expressed as

δϵ(φ) =
ϵ

π(φ2 + ϵ2)
. (6)

The C-V model is proposed with the supposition of
homogeneous image regions. It successfully segments images
with homogeneous regions and can detect interior contours
automatically. However, the performance efficiency of this
region-based ACM is limited for inhomogeneous image-
segmentation tasks.

C. LBF Model

Li et al. [50] encapsulated the local image information
to propose their LBF energy function. The LBF method
overcame the limitations of the C-V method and handled
the inhomogeneous image-segmentation task with improved
accuracy. Let I (x) ⊂ R2 be a given image, φ : �; R2 is the
level set function, and C is the closed computer-generated line.
The proposed LBF energy functional is expressed as

ELBF(C, f1, f2)

= λ1

∫
�

Kσ (x − y)|I (y) − f1(x)|2 Hϵ(φ(y))dy

+ λ2

∫
�

Kσ (x − y)|I (y) − f2(x)|2(1 − Hϵ(φ(y)))dy

+ µ

∫
�

1
2
(∇φ(x) − 1)2dx + v

∫
�

δϵ(φ(x)|∇φ(x)|dx

(7)

where λ1 and λ2 are the positive parameters and Hϵ(φ) is
a smoother form of the Heaviside function defined in (3).
Kσ (x−y) represents a weighting function as a Gaussian kernel
having a localization property. This property makes Kσ (x − y)

decrease and then reach zero as |x − y| increases. Kσ (x − y),
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with a scaling parameter σ to control the region scalability,
has the following mathematical representation:

Kσ (x − y) =
1

(2π)

n
2 σ n

exp
−

|x − y|
2

2σ 2 . (8)

In (8), f1 and f2 are the two numbers to fit the image
intensities near the center point x of the above integral. In other
words

f1(x) =
Kσ ∗ [Hϵ(φ)I (x)]

Kσ ∗ Hϵ(φ)
(9)

and

f2(x) =
Kσ ∗ [(1 − Hϵ(φ))I (x)]

Kσ ∗ (1 − Hϵ(φ))
(10)

are the local averages of the intensities from the insides
and outsides of curve C , respectively. The gradient descent
algorithm, from [60], minimizes (8) to

∂φ

∂t
= −λ1δϵ(φ)

∫
�

Kσ (x − y)|I (x) − f1(y)|2dx

+ λ2δϵ(φ)

∫
�

Kσ (x − y)|I (x) − f2(y)|2dx

+ vδϵdiv
(

∇φ

|∇φ|

)
+ µ

(
∇φ − div

(
∇φ

|∇φ|

))
.

(11)

µ and v are the scaling values for the distance regulariza-
tion penalty term, and v represents a positive parameter of
the length term initiating the curve evolution toward object
boundaries.

Though this model captures inhomogeneous objects in
images, it sometimes fails to accomplish accurate segmenta-
tion. This method potentially traps into local minima that lead
to false segmentation results.

D. LIF Model
Zhang et al. [28] introduced the LIF energy and used it

to extract local image information to be used in achieving
segmentation. Their model is capable of dealing with signif-
icant intensity inhomogeneity in images. The LIF model is
based on Gaussian filtering as smoothing function to introduce
their variational level set function. The LIF energy function is
devised by keeping the difference between the original input
image and the fit image minimized. The mathematical form is
given as

ELIF =
1
2

∫
�

|I − ILIF|
2dx . (12)

ILIF in (12) accounts for local fit image formulation as

ILIF(x) = f1(x)Hϵ(φ) + f2(x)(1 − Hϵ(φ)). (13)

In (13), f1(x) and f2(x) account for the local mean inten-
sities of the inside regions and the outside regions of point x ,
as defined by (9) and (10), respectively.

Using the gradient descent algorithm from [60], the energy
functional (12) with respect to φ minimizes to

∂φ

∂t
= (I − ILIF)( f1(x) + f2(x))δϵ(φ) (14)

where δ(φ) corresponds to the Dirac delta function expressed
in (6). The computation time of the LIF model is less expen-
sive and it is robust than the LBF model; however, it yields
an analogous outcome.

E. VLSBC Model
Zhang et al. [51] presented a variational level set for-

mulation for image segmentation and bias field estimation,
also called a VLSBC model. They modeled intensity inho-
mogeneity to be Gaussian distributed with separate means
and variances. They mapped the original image intensities
onto other domains by introducing a sliding window. The
mean Gaussian distributions, from the transformed domain,
are adaptively estimated by multiplying a piecewise constant
signal with the bias field. The region affected by the intensity
corruption in images is called the bias field. The VLSBC
model defines an energy functional on each local region com-
bining the bias field with it. The energy formulation is given as

EVLSBC ≈

∫ (
6i=1

∫ N

�i
Kσ (x − y)|I (y) − b(x)mi |

2dy
)

dx .

(15)

This energy functional is the local clustering criteria func-
tion and is principled on an iterative k-means algorithm. The
energy functional can further be minimized to

EVLSBC

=

∫ (
6i=1

∫ N

�i
Kσ (x − y)|I (y) − b(x)mi |

2 Mi (φ)dy
)

dx

(16)

where Mi is the representation of the object region member-
ship function with x ∈ {�i }

N
i=1. mi accounts for the intensity

means for distinguished regions, ωi , where i = 1, 2, 3, . . . , i ;
mi is given as

mi =

∫
Kσ ∗ (I (x)b(x)Mi (φ))

Kσ ∗
(
b(x)2 Mi (φ)

) (17)

where b(x) is the bias field, which is estimated as

b(x) = 6N
i=1

Kσ ∗ (I (x)mi Mi (φ))

Kσ ∗
(
m2

i Mi (φ)
) . (18)

This VLSBC model is motivated by the retinex model; it
defines an inhomogeneous image as

I (x) = b(x)J (x) + n(x) (19)

where n(x) is the additive noise and

J (x) ≈ 6N
i=1mi Mi (φ) (20)

is the true image, free from inhomogeneous intensity corrup-
tion. The VLSBC model is relatively robust, but it lags in
performance for some cases.

F. FRAGL Model
Fang et al. [61] proposed the fuzzy region-based active

contours driven by weighting global and local fitting energy
(FRAGL) model by incorporating fuzzy sets with combined
local and global energy functions. FRAGL energy functional
is given as

EFRAGL = E rg
+ Eedg (21)
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where E rg is the fuzzy region-based energy function and

Eedg
= r1L(u − 0.5) + r2 P(u − 0.5) (22)

is the edge-based energy function. r1 and r2 are positive terms
and

L =

∫
�

δ(u − 0.5)|∇(u − 0.5)|dx (23)

and

P =
1
2

∫
�

1 − |∇(u − 0.5)|dx (24)

are the regularization terms and penalty terms, respectively.
Overall, the FRAGL model produces acceptable results as can
be observed in Section IV.

G. FVOD Model
Zhang and Tian [53] proposed their FVOD model based

on the idea that not all pixels in an image are of similar
texture; therefore, the same differential order is insufficient
for effective contour evolution. The FVOD model carries out
different differential orders for pixels of different textural
characteristics. The FVOD model processes a new difference
image (I (x)new) as the input image, formulated as

I (x)new = I (x) + mag(DA I (x)) (25)

where

mag(DA I (x)) = |(DAx I (x))| + |(DAy I (x))| (26)

is the fractional varying-order gradient magnitude and DAx
and DAy are the fractional varying-order partial derivatives,
respectively; for deeper understanding, see [53].

FVOD energy final functional is given as

EFVOD = EVLSBC + vER + µEP (27)

where EVLSBC is taken from (16), but with new difference
image (I (x)new) as the input image

ER =

∫
|∇ H(φ)|dx (28)

and

EP =

∫
p(|∇φ|)dx (29)

are the contour length and the penalty terms, respectively.
The calculations for PDEs of multiple orders add to the
computational cost of this method.

III. PROPOSED METHOD

This section presents the formulation of an edge-based
local and global ACM driven with spf function. For image
segmentation using level sets, image information, such as
intensity, inhomogeneity level, edges, or texture, could help
increase segmentation quality. The level set is basically the
solution of numeric changes in image topology. This is obvi-
ous that relying only on the global perspective of image is
insufficient for effective contour evolution, especially when
image intensities are not homogeneous. The proposed method
combines statistical information of the local and global image
regions to drag contours toward the objects to be segmented.

This information is further embedded with the edge indicating
function to capture ROIs accurately in images. Furthermore,
the spf function-based length term forces contours to stick
robustly to the ROI boundaries.

Consider that I (x) : � ⊂ R2
→ R is the given image; the

proposed edge-based local and global energy ACM equation
is

EELGS = EELG + µL t extsp f (φ) (30)

where EELG is the proposed energy term combining
the edge-based local and global statistical information.
L t extsp f (φ) is the region-based length term driven by the spf
function, which minimizes the possibility of sticking into local
minima. The length term increases the influence of interior and
exterior forces of the contour, helping faster propagation of the
function toward object boundaries. µ is the width controlling
constant for the Dirac delta function. The energy function
EELG is given as

EELG(φ) =

∫
�

g(∇(I ))(I − IcbLFE)(I − IGFE)dx (31)

where g(∇(I )) is the edge-indicator function with positive
decreasing fashion [21], which is defined as

g(∇(I )) =
1

1 + |∇Gσ ∗ I (x)|
. (32)

This edge-indicator function is used here to approximate the
edge intensities taking smaller values at the object boundary,
where g ∈ [0, 1]. IGFE is the global fitting energy model, which
is defined as

IGFE = v1 M1 + v2 M2 (33)

and IcbLFE is the local fitting energy model convolved with a
Gaussian kernel for computational efficiency, which is defined
as

IcbLFE = G(x) ∗ (b(x)(m1 M1 + m2 M2)) (34)

where m1 and m2 represent local mean intensities and b(x)

is the bias field accountable for image intensity corruption,
defined by (17) and (18), respectively. M1 and M2 stand for
membership functions with relations H(φ) and (1 − H(φ),
respectively. In (35), v1 and v2 are the global intensity means
of the inner and outer regions of the curve, respectively,
inspired by (4), and defined by appending the edge-indicator
function as

v1 =

∫
�

I (x)g(∇(I ))Hϵ(φ(x))dx∫
�

g(∇(I ))Hϵ(φ(x))

v2 =

∫
�

I (x)g(∇(I ))(1 − Hϵ(φ(x)))dx∫
�

g(∇(I ))(1 − Hϵ(φ(x)))
. (35)

L t extsp f (φ), the region-based length term, is defined as

L t extsp f (φ) =

∫
�

textsp f (I )δϵ(φ)|∇φ| (36)

where spf is the SPF function modulating the contour evolution
sign [−1, 1] inside and outside the contour such that it
attracts and expands itself when inside and outside the ROI,
respectively. The spf function is given as

textsp f (I ) =
I (x) − IGFE(x)

max(|I (x) − IGFE(x)|)
. (37)
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TABLE I
PARAMETERS SETTINGS

Fig. 3. Visual representation of the proposed methodology. The proposed
methodology is an edge-based local and global ACM driven by an SPF
function, combining local and global image information for more effective
contour evolution and accurate segmentation, particularly in images with
nonhomogeneous intensities.

The global-region-based models are insufficient to segment
inhomogeneous images; therefore, we combine them with
local-region-based models to effectively overcome this limi-
tation. An edge-indicator function, appended with the local
and global energy functions, contributes to capturing the ROI
boundaries robustly. The SPF function assists in suppressing
false contour appearances in the image-segmentation results,
expanding the correctness of the contour evolution strategy.

Applying calculus of variation [60], the numeric solution of
the proposed ACM equation minimizes to

∂φ

∂t
= δϵ(φ)µdiv

(
textsp f (I )

∇(φ)

|∇(φ)|

)
+ g(∇(I )(I (x) − IcbLFE(x))(v1 − v2)

× (I (x) − IGFE(x))( f1 − f2)δϵ(φ). (38)

Table I shows the optimal parameter settings for generating
results in this study.

Fig. 3 shows the visual representation of the proposed
method. The proposed ACM takes an input image, estimates
the bias field, calculates local and global energies, appends
them with the gradient flow and evolves itself under the
influence of an spf.

The proposed approach is summarized in Algorithm 1 as an
iterative algorithm.

Fig. 4. Segmentation results over a single-object synthetic image with mul-
tiple levels of inhomogeneity. Column 1: input images with initial contours.
Column 2: C-V [35]. Column 3: LBF [50]. Column 4: LIF [28]. Column 5:
VLSBC [51]. Column 6: Zhang et al. [52]. Column 7: FVOD [53]. Column
8: FRAGL [61]. Column 9: SAM [62]. Column 10: proposed model.

Algorithm 1 Proposed Approach in an Iterative Algorithmic
Form

1 Initializing bias field from b0 = 1.
2 Initialization of level set φ from t = 0,

φt=0 =


−p, x ∈ �0 − ∂�0

0, x ∈ ∂�0

p, x ∈ � − ∂�0

(39)

where c is constant, � shows the image domain with
�0 subset, and ∂�0 represents the starting contour
boundary.

3 Initialize iteration count, m = 0.
4 Compute local and global intensity means m1, m2 and

v1, v2 from (17) and (35), respectively.
5 Compute spf using (37).
6 Update bias field from (18).
7 Solve PDE (38) in φ to get φ(t+1).
8 Check for convergence.

• If not, then update m = m + 1, recall steps 4–7.
• If converged: stop the contour evolution.

IV. EXPERIMENTS AND RESULTS

This section compares the outputs of the different ACMs
with the proposed image-segmentation model. Multiple syn-
thetic, real, and medical images are used to test the proposed
model and conduct segmentation experiments.

We used MATLAB 2018a with a 3.40-GHz Intel Core i7
and 8 GB of random access memory.

Fig. 4 presents the segmentation results of a single-object
synthetic image with multiple levels of inhomogeneity. Col-
umn 1 represents original input images, followed by results
of C-V [35], LBF [50], LIF [28], VLSBC [51], Zhang et al.
[52], FVOD [53], FRAGL [61], SAM [62], and the proposed
model. All the ACMs successfully segmented ROIs in the first
and second rows, while the C-V model [35] and the model
proposed by Zhang et al. [52] show poor performance in the
third row. In the fourth row, only the LIF [28] and the proposed
model completely captured the inhomogeneous object. Except
for the proposed model, all other models failed to capture the
object in the last row. This comparison shows the robustness
of the proposed methodology and confirms that it is the most
accurate among all the methods compared. Table II presents
the CPU times and iterations for contour evolution over the
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TABLE II
CPU TIMES AND ITERATIONS FOR CONTOUR

EVOLUTION OVER THE IMAGES IN FIG. 4

TABLE III
CPU TIMES AND ITERATIONS FOR CONTOUR

EVOLUTION OVER THE IMAGES IN FIG. 5

different images in Fig. 4. Table II confirms the time efficiency
of the proposed model.

Fig. 5 compares the results produced by the different ACMs.
The top row shows the results of a synthetic image having
multiple objects; all the methods produce similar results in this
case. In the second row, segmentation results over a synthetic
hand image are presented. Almost all the ACMs captured
the ROI without showing false contours except the LIF [28]
model. The LIF [28] model was also able to distinguish bound-
aries between the middle fingers. However, only the SAM [62]
and the proposed model captured the distinguished boundaries
between all the fingers without false contours. Table III lists
the CPU times and iterations for contour evolution over the
images in Fig. 5. Table III confirms the time efficiency of the
proposed method.

Fig. 5. Segmentation results over synthetic images. Column 1: input images.
Column 2: C-V [35]. Column 3: LBF [50]. Column 4: LIF [28]. Column 5:
VLSBC [51]. Column 6: Zhang et al. [52]. Column 7: FVOD [53]. Column 8:
FRAGL [61]. Column 9: SAM [62]. Column 10: proposed model.

Fig. 6. Segmentation results over synthetic images with multiple inhomo-
geneous objects. Column 1: input images. Column 2: C-V [35]. Column
3: LBF [50]. Column 4: LIF [28]. Column 5: VLSBC [51]. Column 6:
Zhang et al. [52]. Column 7 FVOD [53]. Column 8: FRAGL [61]. Column 9:
SAM [62]. Column 10: proposed model.

Fig. 6 shows the segmentation results of various computer-
generated images, each having multiple objects, affected
by inhomogeneity. The first column contains the input
(given) images, which is followed by the segmentation result
images of the C-V [35], LBF [50], LIF [28], VLSBC [51],
Zhang et al. [52], FVOD [53], FRAGL [61], SAM [62],
and the proposed method in the subsequent columns. Fig. 6
highlights the instability of the previous ACMs with respect
to segmentation accuracy. The C-V [35] model fails to cap-
ture ROIs due to its assumption of homogeneous intensity.
LBF [50] and LIF [28] show better performance, but they
produce false contour lines. VLSBC [51] and FRAGL [61]
can suppress false contour lines, yet they fail at finding
accurate boundaries of ROIs in the case of inhomogeneous
objects. Moreover, FVOD [53] and the SAM [62] struggle
as the inhomogeneity increases. However, the proposed ACM
achieves segmentation accuracy superior to all the previous
models. Table IV summarizes the CPU times and iterations for
contour evolution over the images in Fig. 6. Table IV confirms
the time efficiency of the proposed method.

Fig. 7 shows the representation of results generated by vari-
ous methods, including the proposed method, over real images.
Row 1 contains given images, followed by the results of C-V
[35], LBF [50], LIF [28], VLSBC [51], Zhang et al. [52],
FVOD [53], FRAGL [61], SAM [62], and the proposed
method. The LBF [50] model captured object boundaries
along with false contours. The FRAGL [61] method generates
reasonable segmentation in the third column image, while
it fails to suppress false contour appearances in the second
image. The LIF method [28] and the method proposed by
Zhang et al. [52] show limited performance as the contours are
limited to the local minima. The VLSBC [51], FVOD [53], and
SAM [62] model show acceptable results with the limitation
of a nonsmooth object boundary compared to our method,
whereas the proposed method outperforms previous ACMs in
terms of segmentation results and time efficiency. Table V
represents the statistical information of methods involved in
the segmentation results of Fig. 7. Table V confirms the time
efficiency of the proposed model.
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Fig. 7. Segmentation results over real images. Row 1: input images. Row 2:
C-V [35]. Row 3: LBF [50]. Row 4: LIF [28]. Row 5: VLSBC [51]. Row 6:
Zhang et al. [52]. Row 7: FVOD [53]. Row 8: FRAGL [61]. Row 9: SAM [62].
Row 10: proposed model.

Fig. 8. Segmentation results over real images. Column 1: input images.
Column 2: C-V [35]. Column 3: LBF [50]. Column 4: LIF [28]. Column 5:
VLSBC [51]. Column 6: Zhang et al. [52]. Column 7: FVOD [53]. Column 8:
FRAGL [61]. Column 9: SAM [62]. Column 10: proposed model.

Fig. 8 represents the segmentation results of various ACMs
on two different real images. The image in the top row is
corrupted with sudden intensity variations and inhomogeneity.
In the first row, the C-V [35] captured the object boundary, but
the appearance of false contours, although in lower quantities
compared with LBF [50], LIF [28], and the method proposed
by Zhang et al. [52], reduces its performance. FRAGL [61]
performs well with slightly lower accuracy than the proposed
model. In the second row, C-V [35] fails to capture the
ROI, whereas LBF [50] and LIF [28] detected the object

Fig. 9. Segmentation results over synthetic and real objects using the
proposed model. Rows 1 and 3: input image with the initial contour of
different shapes and sizes. Rows 2 and 4: results using the proposed model.

TABLE IV
CPU TIMES AND ITERATIONS FOR CONTOUR

EVOLUTION OVER THE IMAGES IN FIG. 6

boundaries but with false contours. VLSBC [51] shows a
better segmentation accuracy than the Zhang et al. [52] model,
which has significantly more false contours. FVOD [53] and
SAM [62] produce acceptable results that are visually alike,
yet both struggle with computational cost compared to our
method.

Table VI lists the processing times and iterations for the
image segmentation in Fig. 8 and confirms the better perfor-
mance of our approach. The initial contour position for all
of the in-comparison methods is set the same for each of the
examples in Figs. 5–8.

Furthermore, Fig. 9 shows contours at different locations
fitting over synthetic and real object images. As the initial
contour is outside the ROI, it squeezes to detect ROI bound-
aries. It is confirmed that the proposed methodology is less
sensitive to the initial position of contour as it achieved the
same level of segmentation despite contour initialization of
different sizes, shapes, and regions.
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TABLE V
CPU TIMES AND ITERATIONS FOR CONTOUR

EVOLUTION OVER THE IMAGES IN FIG. 7

TABLE VI
CPU TIMES AND ITERATIONS FOR CONTOUR

EVOLUTION OVER THE IMAGES IN FIG. 8

To add transparency to our experiments, we have added
Sections IV-A–IV-C.

A. Analysis of Segmentation Accuracy
This section discusses the segmentation accuracy of the

ACMs we tested based on the segmentation results over
images from the PH2 database [63] and the skin-cancer-mnist-
ham10000 database [64]. Both datasets consist of dermoscopic
images of possible skin lesions. Figs. 10 and 11 show the
input images from both the medical datasets obtained through
multiple sources, their ground truths, and the proposed ACM
segmentation results.

Fig. 10. Segmentation results over the sample images from the
PH2 database [63] using the proposed model. Row 1: input image. Row 2:
ground truth. Row 3: initial contour. Row 4: proposed model.

Fig. 11. Segmentation results over the sample images from the skin–
cancer-mnist-ham10000 database [64] using the proposed model. Row 1: input
image. Row 2: ground truth. Row 3: initial contour. Row 4: proposed model.

First, we performed the contour evolution, using the pro-
posed methodology, over images from the PH2 database [63],
as shown in Fig. 10. The first row presents input images and
the second row presents ground truths. The third and fourth
rows show the initial contour position over input images and
the final segmentation results, respectively. Visual analysis
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approves that the contour has successfully detected the object
boundaries.

The skin-cancer-mnist-ham10000 database contains about
10 000 images; the proposed model is tested on 25% of
the total images, randomly selected, from the database [64].
Fig. 11 presents the results generated by the proposed
methodology over sample images from the skin-cancer-mnist-
ham10000 database [64]. The first row contains input images,
followed by ground truths in the second row. The third and
fourth rows show the initial contour position over input images
and the final segmentation results, respectively. From the
visual analysis, it is approved that the contour is fully tied
to the object boundaries.

The segmentation result produced using our methodology
is compared with previous ACM methods against respective
ground truths to calculate its accuracy.

The segmentation accuracy is defined as

Accuracysegm =
TP + TN

TP + TN + FP + FN
(40)

which is the closeness between the produced segmentation
results and their respective ground truths.

We also measured the Dice index and sensitivity over both
datasets mentioned above. The Dice index gives the similarity
of two samples: the segmentation result and the ground truth
in our case. The sensitivity is the measure of how much the
detected region belongs to the actual region. The mathematical
formulation for the Dice index and sensitivity is

Diceseg =
2 × TP

2 × TP + FP + FN
(41)

and

Sensseg =
TP

TP + FN
(42)

respectively.
TP, TN, FP, and FN account for true positive, true nega-

tive, false positive, and false negative terms, respectively. TP
shows the segmented actual regions, TN shows the correctly
nonsegmented regions, FP shows the detected false regions,
and FN shows the undetected actual regions. In the context
of segmentation, these metrics help evaluate the segmentation
models against the respective ground truths of objects to be
segmented in given images. These values are calculated at
pixel levels. The results are considered good if Accuracysegm
has a value near to 1 and poor if the value is near 0.

Tables VII and VIII give the quantitative values for seg-
mentation quality analysis over both the mentioned databases;
all of these values are measured based on test results of
various ACMs. Fig. 12 shows the graphical representation of
Tables VII and VIII. This analysis of both the experimented
datasets exhibits the superiority of the proposed edge-based
local and global energy active contours model.

To add transparency to Section IV, we further evaluated pre-
vious models and our model on the THUS10000 dataset [65].
This time we used F-measure given as

F-measure = 2
(P × R)

P + R
% (43)

where P = (|S ∩ G|/|S|) and R = (|S ∩ G|/|G|) are
the precision and sensitivity, respectively. F-measure for the

TABLE VII

ANALYSIS OF SEGMENTATION ACCURACY OF THE PH2 DATABASE [63]

TABLE VIII
ANALYSIS OF SEGMENTATION ACCURACY OF THE SKIN-

CANCER-MNIST-HAM10000 [64] DATABASE

Fig. 12. Graphical representation of segmentation quality analysis for the
proposed method and previous methods. Left: PH2 database [63]. Right:
skin-cancer-mnist-ham10000 [64].

TABLE IX
F-MEASURE AND AVERAGE CPU TIME OF SEGMENTATION

RESULTS FOR THUS10000 DATASET [65]

segmentation results of THUS10000 [65] method along with
the average time taken for segmenting one image is shown
in Table IX and Fig. 13. The top row in Fig. 13 shows the
input images with initial contours of different shapes and sizes,
followed by the corresponding ground truths. The third, fourth,
fifth, and sixth rows contain the segmentation results of the
FVOD [53], FRAGL [61], SAM [62], and the proposed model,
respectively.

Although all the comparison methods show reasonable
performance, the results presented in Table IX confirm that
the proposed method outclasses previous methods regarding
computational time and F-measure.

B. Noise Sensitivity Analysis
This section discusses the robustness of the proposed

method when the images are corrupted with varying noise
levels. We use the Jaccard similarity index (JSI) to compare
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Fig. 13. Segmentation results over sample images from the THUS10000
dataset [65]. Row 1: input image with initial contours of different shapes and
sizes. Row 2: ground truth. Row 3: FVOD [53] segmentation results. Row 4:
FRAGL [61] segmentation results. Row 5: SAM [62] segmentation results.
Row 6: proposed model segmentation results.

Fig. 14. Column 1: input image corrupted with salt and pepper noise levels
(0.01, 0.02, 0.03, 0.04, and 0.05). Column 2: C-V [35]. Column 3: LBF
[50]. Column 4: LIF [28]. Column 5: VLSBC [51]. Column 6: FVOD [53].
Column 7: FRAGL [61]. Column 8: SAM [62]. Column 9: proposed model.

our results with the corresponding ground truths to perform
noise sensitivity analysis. JSI computes the intersection of the
segmentation result and the related ground truth divided by
the union of both. JSI is given as

JSI(S, G) =
|S ∩ G|

|S ∪ G|
(44)

where S and G are the segmentation result and the correspond-
ing ground truth, respectively.

Figs. 14 and 15 show the segmentation results of various
ACM models, including the proposed model over an image
with different levels of salt and pepper and Gaussian artificial
noises (0.01, 0.02, 0.03, and 0.04) in Rows 1–4, respectively.
Figs. 14 and 15 show that the global region-based models
struggle to capture object boundaries with the increase in noise
levels, producing false contours as well. For Gaussian noise,
Fang et al. [61] made no false contours and captured the entire
object of interest. However, the proposed model captured the
object of interest without false contours irrespective of the
noise type and given noise levels. The segmentation accuracy
compared against the ground truth of the given case is shown

Fig. 15. Column 1: input image corrupted with Gaussian noise levels (0.01,
0.02, 0.03, 0.04, and 0.05). Column 2: C-V [35]. Column 3: LBF [50].
Column 4: LIF [28]. Column 5: VLSBC [51]. Column 6: FVOD [53].
Column 7: FRAGL [61]. Column 8: SAM [62]. Column 9: proposed model.

Fig. 16. From left to right: JSI values for Figs. 14 and 15.

Fig. 17. Ablation study over PH2 database by removing features from the
proposed function.

by the JSI chart in Fig. 16, confirming the robustness of the
proposed model against noise.

C. Ablation Study

This section presents the ablation study to verify the con-
tribution of subfunctions included in the proposed model. The
ablation study is conducted against the segmentation accuracy
metric on the PH2 database only. Our model consists of
statistical information of the global and local regions enforced
by the SPF function. It also deals with inhomogeneity by
introducing bias field estimation in it. Each of these functions
has its impact in terms of improving the performance of our
model. We will be removing some of the features to observe
their effects on the overall performance. First, we will be
removing Lspf, the region-based length term derived by the
spf function, from (21) to observe its influence on the overall
methodology. Lspf is calculated based on the spf function;
therefore, the solution starts getting stuck in local minima,
which significantly degrades its performance. Furthermore,
false contours begin to appear with iterations degrading the
correctness of the method.
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Fig. 18. Comparing segmentation performance of DeepLabV3+ and the proposed method. Top row: input images. Row 2: DeepLabV3+ [54] segmentation
results. Row 3: input image with initial contours of random shapes and sizes for each. Row 4: proposed method segmentation results.

Fig. 19. Evaluation indicator for DeepLabV3+ [54] and the proposed
method. Left: DeepLabV3+ performance against the proposed method in
terms of mean IOU for specific images. Right: DeepLabV3+ performance
against the proposed method in terms of mean IOU for random images.

In the second step, we remove b(x), the bias field estimation
process, and observe its impact on the proposed method’s
performance.

Fig. 17 shows the presentation of the ablation study over
PH2 database by removing the length term and the bias
field estimation process from the proposed function. It is
deduced that each of the features contributes to achieving
higher accuracy and hence is essential for computing better
segmentation results.

V. DISCUSSION

This research presents a new hybrid ACM comprising
local and global statistical information of images enforced
by an SPF function. All of these features contribute to better
segmentation quality, which is further analyzed by the ablation
studies. Deep learning-based techniques are widely adopted
for segmentation these days; however, their performance sig-
nificantly relies on the dataset size. That said, the choice
of segmentation technique depends on factors, such as the
specific application, available data, computational resources,
and desired level of accuracy [66]. While deep learning meth-
ods dominate many areas of image segmentation, traditional
segmentation techniques can still be useful in scenarios where
deep learning might not be suitable or when interpretability
and simplicity are essential. The higher the dataset, the better
the segmentation quality, which is not good when dealing with
comparatively small datasets. Contrarily, the proposed model
belongs to the category of unsupervised methods that do not

depend on the size of the dataset and can be more useful on
small datasets compared with supervised settings.

We further compared the proposed method with
DeepLabV3+ [54], an SOTA deep learning-based method,
to reaffirm that our traditional segmentation technique is
superior in scenarios with no or less training data. Fig. 18
presents the segmentation results when the [54] model and
the proposed models segment specific images (Columns
1–4) from the Pascal VOC dataset [67] and random images
(Columns 5–8). Results show that work [54] produces
superior results when tested on specific images, while it
segments only part of the ROI in random images, which is
often wrong too. On the other hand, the proposed technique
produces results within a desirable range for both the specific
and random images; moreover, it surpasses the work [54]
over random images. Fig. 19 presents the evaluation indicator,
intersection over union (IOU), for DeepLabV3+ and the
proposed method for specific and random images.

VI. CONCLUSION

This study comes up with a jointly formed energy fit-
ting function, including the local and global fit models for
intensity corrupted or inhomogeneous image segmentation.
The bias field is adjoined with the local-region-based fit
energy in this energy function; it increases the efficacy
of the proposed methodology over inhomogeneous regions.
An spf function drives the region-based length term to
assist the contour in whether to evolve inner or outer
direction. The local and global energy functions are inte-
grated to build up their combined effect, further joined with
the edge-indicator function—the inclusion of edge-indicator
function speedups contour over objects with sharp edges.
Section IV contains a comparison of the proposed model
with previous ACMs against various performance metrics.
The analysis of the segmentation based on the PH2, skin-
cancer-mnist-ham10000, and THUS10000 databases approves
the superior achievement of the proposed model. Finally,
we discuss the usability and applicability cases of our
approach when a deep learning-based model compromises its
performance.
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