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We search for energetic electron recoil signals induced by boosted dark matter (BDM) from the galactic
center using the COSINE-100 array of NaI(Tl) crystal detectors at the Yangyang Underground Laboratory.
The signal would be an excess of events with energies above 4 MeVover the well-understood background.
Because no excess of events are observed in a 97.7 kg · yr exposure, we set limits on BDM interactions
under a variety of hypotheses. Notably, we explored the dark photon parameter space, leading to
competitive limits compared to direct dark photon search experiments, particularly for dark photon masses
below 4 MeV and considering the invisible decay mode. Furthermore, by comparing our results with a
previous BDM search conducted by the Super-Kamionkande experiment, we found that the COSINE-100
detector has advantages in searching for low-mass dark matter. This analysis demonstrates the potential of
the COSINE-100 detector to search for MeV electron recoil signals produced by the dark sector particle
interactions.

DOI: 10.1103/PhysRevLett.131.201802

A number of astrophysical observations provide evi-
dence that the dominant matter component of the Universe
is not ordinary matter but rather non-baryonic dark matter
[1,2]. Many searches for signs of dark matter have been
pursued by direct detection experiments [3–8], indirect
detection experiments [9–14], and collider experiments
[15–17] without success [18]. It motivates searches for
alternative types of dark matter that produce substantially
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different signatures in detectors, such as light (mass) dark
matter models that predict extremely low-energy signals
[19–22] or relativistically boosted dark matter (BDM) that
produce more energetic signals [23–25].
A relativistic dark matter particle, i.e., one that is boosted

by interactions with cosmic rays in the galaxy [26–35] or
produced by the decay [36–38] or annihilation [39–41] of
heavier dark sector particles, can deposit signals with
energies that are above MeV in detectors. Since typical
direct detection experiments search for low-energy nuclear
recoil signals, scenarios for such energetic events have not
been very well studied. Here we consider a model in which
a BDM is produced by heavier dark matter particles [42–
44]. It would require at least two species of dark matter
particles, denoted by χ0 and χ1 for the heavier and lighter
dark matter particles, respectively [42,45]. The first direct
search for BDM from annihilations of heavy dark matter
particles in the galactic center was performed with the
Super-Kamiokande detector that searched for energetic
electron recoil signals above 100 MeV induced by BDM
elastic scattering [46]. With COSINE-100 data, we
searched for the inelastic scattering of BDM (IBDM)
[24] induced by the existence of another dark sector particle
[40,41]. Recently, searches for cosmic-ray BDM interact-
ing with protons in dark matter detectors with energies of a
few keV [47,48], as well as in neutrino detectors with
energies between a few MeV [49] and a few GeV [50],
were performed.
In this Letter, we report on a search for BDM that

elastically interacts with electrons in the NaI(Tl) crystals of
the COSINE-100 detector. Such interactions would pro-
duce energetic electrons in the NaI(Tl) crystals. Our region
of interest for the BDM interaction consists of an energy
deposition above 4 MeV, since radioactive γ or β particles
primarily have energy less than 4 MeV.
COSINE-100 [51] is composed of an array of eight ultra-

pure NaI(Tl) crystals, each coupled to two photomultiplier
tubes (PMTs). Because of high background levels and low
light yields of three crystals, this analysis only uses data
from five crystals, corresponding to an effective mass of
61.3 kg [52,53]. The crystals are immersed in an active veto
detector that is composed of 2200 L of linear alkylbenzene
(LAB)-based liquid scintillator (LS) [54]. The LS is
contained within a shield comprising a 3 cm thick layer
of oxygen-free copper, a 20 cm thick layer of lead, and an
array of plastic scintillation counters for cosmic-ray muon
tagging [55,56].
We used data obtained between 21 October 2016 and 18

July 2018, corresponding to 1.7 years of effective live time,
and a total exposure of 97.7 kg · yr for this search. The
same dataset was already adopted for a precise under-
standing and modeling of the observed background
between 1 keV and 3 MeV [57], as well as for a dark
matter search that concentrated on the low-energy nuclear
recoil spectrum [52].

The COSINE-100 data acquisition system recorded two
different signals from the crystal PMTs, covering a wide
dynamic range from single-photoelectron to 4 MeV high
energy [58]. In addition to the low-energy (0–100 keV)
anode readout, the 5th stage dynode readout was recorded
by 500 MHz flash analog-to-digital converters (FADCs) for
8 μs long waveforms. It provided sufficient energy reso-
lution for events with energies between 50 keVand 3 MeV.
We have previously presented a background model for

the COSINE-100 detectors that covered energies below
3 MeV [57,59]. However, events with energies greater than
4 MeV were above the limit of the FADC dynamic range
and suffered from a saturated, nonlinear response. To
address this issue, we developed an algorithm to detect
the saturation of the recorded pulse and reconstruct the
saturated event. A template from the unsaturated events at
the 2–3 MeV energy was compared to the saturated pulse,
and the reconstruction at the saturated region was per-
formed, as shown in Fig. 1(a). The original energy
spectrum as well as the recovered energy spectrum are
shown in Fig. 1(b).
The energy scale above 4 MeV is calibrated with 7.6 and

7.9 MeV γ rays from 56Fe and 63Cu, respectively, that are
produced by thermal neutron capture in the steel supporter
of the lead shield and the copper encapsulation of the
NaI(Tl) crystals [51]. Figure 1(b) shows the reconstructed
energy spectrum of the single hit events, in which the
spectrum above 6 MeV is well described by the neutron
capture events from GEANT4-based [60] simulation.
Candidate events are selected if the reconstructed energy

is greater than 4 MeV with no coincident muon candidate
tracks in the muon detector [55]. We reject α-induced
events in the crystals using a pulse shape discrimination
method [61]. Selected candidate events are sorted into two
different categories: single-hit and multiple-hit events. A
multiple-hit event has accompanying crystal signals with
more than four photoelectrons or has a liquid scintillator
signal above 80 keV [54]. A single-hit event is classified as
one where the other detectors do not meet these criteria.
Although a BDM interaction with the NaI(Tl) crystal would
generate an energetic single electron with energy between a
few MeV and a few 100 MeV [40,41], this energetic
electron could generate a number of Bremsstrahlung
radiation-induced γs that could convert and deposit energy
in the other crystals or the LS. Therefore, we use both
single and multiple-hit channels in this analysis. Although
the single-hit channel exhibits dominant sensitivity, the
multiple-hit channel yields a slight enhancement in final
sensitivity.
Four different categories of events contribute to the

background above 4MeV. Internal or external β=γ radiation
induced by environmental radioactivities were well under-
stood by the background modeling of the COSINE-100
detector for energy below 3 MeV [57,59]. We extended this
model to energies above 4 MeV. Here the main contribution
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is caused by internal 228Th decay, especially sequenced
212Bi (β-decay with a Q value of 2.25 MeV) and 212Po (α
decay with a Q value of 8.95 MeV) decays with a 300 ns
half-life of 212Po. Because of the short half-life, 212Bi and
212Po events pile up in the 8 μs event window. Based on
their distinct pulse shapes, we can partially reject them, but
their residual is the main contribution above 4 MeV from
environmental β=γ radiation.
Although the muon veto detector tags a coincident event

with muons [56], 2.14� 0.21% of the muons that transit
the detector are mis-tagged due to gaps between plastic
scintillator panels. We applied a data-driven method to
estimate the muon mis-tag contribution in the signal region,
as described in Ref. [24]. Because of the 4π solid-angle
coverage of the LS active shield [54], almost no events can
reach the NaI(Tl) crystals without hits on the LS detector.
Therefore, we do not consider the mis-tagged muon
contribution for the single-hit events.
Thermal neutron capture by copper or iron nuclei in the

shielding materials produces γ rays with energies as high as
8 MeV via (n, γ) reactions. The thermal neutron and total

neutron flux measured at the Yangyang underground labo-
ratory are ð1.44�0.15Þ×10−5=ðcm2 ·sÞ and ð4.46�0.66Þ×
10−5=ðcm2 ·sÞ, respectively [62]. The neutron-induced
events shown in Fig. 1(b) were simulated based on this flux.
In addition, we estimate the expected background events

from 8B solar neutrino elastic scattering on electrons.
Table I presents the expected backgrounds from the
aforementioned contributions for the single-hit and multi-
ple-hit channels, which are compared with the measured
data. The measured data agree with the total expected
backgrounds within their uncertainties.
In Ref. [42], it is proposed that the boosted, lighter χ1

dark matter particles are produced in the pair annihilation of
two heavier χ0 with a total flux,

F ¼ 1.6 × 10−4 cm−2 s−1
� hσvi0→1

5 × 10−26 cm3 s−1

��
GeV
m0

�
2

;

ð1Þ
where the reference value for hσvi0→1, which is the velocity-
averaged annihilation cross section of χ0χ0 → χ1χ1,

TABLE I. The expected number of background events and the observed events from the 1.7 years COSINE-100 dataset are shown for
both the single-hit and the multiple-hit channels. The individual contributions from environmental β=γ, thermal neutron capture, muon
mis-tag, and solar neutrino are also listed.

Single hit Multiple hit

Energy (MeV) β=γ Neutron Neutrino Total Data β=γ Neutron Muon Total Data

4–6 172� 26 203� 30 0.039� 0.006 375� 40 322 12� 2 889� 91 15� 2 915� 91 873
6–8 0 592� 63 0.024� 0.004 592� 63 545 0 1165� 120 16� 2 1181� 120 1194
8–10 0 60� 25 0.011� 0.002 60� 25 78 0 30� 11 21� 3 51� 12 37
> 10 0 0 0.003� 0.001 0.003� 0.001 0 0 2� 1 211� 4 213� 4 218

2.4 2.6 2.8 3 3.2

s)�time (

0

2000

4000

6000
A

D
C

original

recostructed

reference

4 6 8 10

Energy (MeV)

10

210

310

410

510

co
un

ts
/(

0.
2 

M
eV

)

original

reconstructed

n-capture

(a) (b)

FIG. 1. (a) An example of a saturated event due to the limited dynamic range (12 bit, 4096 for 2.5 V) is presented as a black solid line.
Reconstruction of the saturated event (red dashed line) is achieved by comparison with the template from unsaturated events (thin blue
solid line). In this example, a 6.02 MeVenergy is reconstructed. (b) The measured energy spectra before (black-solid line) and after (red
dots) reconstruction of the saturated events are presented. The reconstructed energy spectrum is calibrated with 7.6 and 7.9 MeV γ-rays
from the neutron capture of iron and copper, respectively, as shown in the blue dotted line.
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corresponds to a correct dark matter thermal relic density
for χ0 that is derived by a so-called “assisted” freeze-out
mechanism [45], and m0 denotes the mass of χ0. This
production rate is subject to uncertainties in the dark matter
halo models [63–65]. Herewe assume the NFWhalo profile
[63,66] described in Ref. [42]. The relativistic χ1 (massm1)
travels and interacts with terrestrial detector elements either
elastically or inelastically. We consider χ1e− elastic scatter-
ing via a mediator X (mass mX) exchange.
We generate expected signals for various values of BDM

parameters (γ1 ¼ m0=m1, mX, and ϵ, where ϵ is the
coupling between the dark sector mediator X and the
electron) based on Refs. [40,41]. The generated signal
events undergo detector simulation [57,59] and event
selection. To search for BDM-induced events, we use a
Bayesian approach with a likelihood function based on
Poisson probability [52]. We perform binned maximum
likelihood fits to the measured energy spectra for two
different channels of the single-hit and the multiple-hit
events for each signal of the various BDM parameters. Each
crystal for each channel is fitted with a crystal- and channel-
specific background model and a crystal- and channel-
correlated BDM signal for the combined fit by multiplying
the ten likelihoods of the five crystals. We use evaluated
background contributions to set Gaussian priors for the
known background rates.
Figure 2 presents an example of the maximum likeli-

hood fit for BDM signals with assumed parameters of
m1 ¼ 6 MeV, mX ¼ 13 MeV, γ1 ¼ 20, ϵ ¼ 8 × 10−4. The
summed event spectra for the five crystals in the single-hit

(a) and multiple-hit (b) events are shown together with the
best-fit result. For comparison, the expected signals for the
BDM parameters m1 ¼ 10 MeV, mX ¼ 1 MeV, γ1 ¼ 50,
ϵ ¼ 3 × 10−4 and m1 ¼ 6 MeV, mX ¼ 13 MeV, γ1 ¼ 20,
ϵ ¼ 8 × 10−4 are presented. No excess of events that could
be attributed to BDM interaction is found for the consid-
ered BDM signals. The posterior probabilities of signals are
consistent with zero in all cases, and 90% C.L. upper limits
are determined.
We interpret this result in the context of dark photon

phenomenology by assuming that the interaction between
the standard model particles and the dark sector particles
is mediated by a dark photon. It allows us to compare
this result with other dark photon searches in terms of the
parameters mX and ϵ. A similar interpretation with
59.6 days of COSINE-100 data for IBDM was presented
in Ref. [24]. In our analysis, we generate signals using
different sets of model parameters, fixing m1 and γ1 while
varying mX. Figure 3 shows the measured 90% C.L. upper
limits obtained from the 1.7 yr of COSINE-100 data for the
aforementioned model parameters. We compare our results
with those of direct dark photon searches for both the
visible decay mode (mX < 2m1) and the invisible decay
mode (mX ≥ 2m1) in Figs. 3(a) and 3(b), respectively.
(Note that additional constraints from cosmological and
astrophysical observations, depending on the detailed
model of the dark sector particles discussed in Ref. [67],
need to be taken into account.) Notably, for the invisible
mode, our analysis yields a competitive limit for the
dark photon mass below 4 MeV, assuming parameters of
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FIG. 2. The summed energy spectra for the five crystals (black solid circles) and the best fit (green solid lines) with BDM signal of
m1 ¼ 6, mX ¼ 13 MeV, γ1 ¼ 20, ϵ ¼ 8 × 10−4 are presented for the single-hit events (a) and the multiple-hit events (b). Fitted
contributions to the background from β=γ radiation, neutron-capture, and muon mis-tag are indicated. The green bands are the
68% confidence level (C.L.) intervals of the uncertainties obtained from the likelihood fit. For presentation purposes, we draw the BDM
signal shapes assuming BDM parameters of m1 ¼ 10 MeV, mX ¼ 1 MeV, γ1 ¼ 50, ϵ ¼ 3 × 10−4 and m1 ¼ 6 MeV, mX ¼ 13 MeV,
γ1 ¼ 20, ϵ ¼ 8 × 10−4 with ×30 amplification of the signal amplitude.
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m1 ¼ 0.5 MeV and γ1 ¼ 10. This result highlights the
complementarity of our search for the dark photon,
although the specific model discussed in this Letter has
to be assumed.
An additional interpretation of the Super-Kamiokande

(SK) IV search result [23] considers the relic dark matter

mass (m0) and coupling (ϵ) parameter space, as shown in
Fig. 4. Two results are obtained using the same NFW halo
profile [63] with a 0.5 coupling constant between the BDM
and the mediator through the elastic interaction. Despite
using a much smaller dataset of 97.7 kg · yr compared to
the 161.9 kton · yr SK exposure, the lowest bound for ϵ at
m0 of about 200 MeV is at a similar level as that of the SK
search result for an m0 of about 5 GeV. Because of the well
understood backgrounds in the COSINE-100 detector
above 4 MeV, the COSINE-100 data is complementary
to results from the SK detector in searching unexplored
parameter space at low-mass dark matter.
In summary, we searched for evidence of boosted dark

matter (BDM) by observing energetic electron recoil events
induced by the elastic scattering of the BDM. Based on
1.7 yr of COSINE-100 data, we found no evidence of BDM
interaction, and we set 90% C.L. limits for various model
parameters. Our investigation of dark photon interactions
explored a parameter space that complements other dark
photon search experiments. We also demonstrate that a
small-scale dark matter search detector has some unique
advantages for the low-mass dark matter in the BDM
scenario compared to the much larger neutrino detectors.
Although our results are interpreted in the context of the
BDM model that elastically scatters electron, this search
can apply to any theory that predicts an excess of events in
electron recoil of a few MeV, for which the COSINE-100
detector has world-competitive sensitivity.
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