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Abstract: During the last few decades, insulated-gate bipolar transistor (IGBT) power modules have
evolved as reliable and useful electronic parts due to the increasing relevance of power inverters
in power infrastructure, reliability enhancement, and long-life operation. Excessive temperature
stresses caused by excessive power losses frequently cause high-power-density IGBT modules to
fail. As a result, module temperature monitoring techniques are critical in designing and selecting
IGBT modules for high-power-density applications to guarantee that temperature stresses in the
various module components remain within the rated values. In this paper, a module’s different
losses were estimated, a heating pipe system for the thermal power cycling technique was proposed,
and finite element method (FEM) thermal modeling and module temperature measurement were
performed using ANSYS Icepak software version 2022 R1 to determine whether the IGBT module’s
temperature rise was within acceptable bounds. To test the proposed technique, a proposed design
structure of the practical railway application with a 3.3 MW traction inverter is introduced using
commercialized IGBT modules from Semikron company with maximum temperature of about 150 ◦C.
the FEM analysis results showed that the maximum junction temperature is about 109 ◦C which is
in acceptable ranges, confirming the appropriate selection of the employed IGBT module for the
target application.

Keywords: IGBT module; traction inverter; power loss calculation; thermal acceleration; junction
temperature estimation; FEM analysis; ANSYS Icepak

1. Introduction

Power inverters are essential components that must be properly chosen and con-
structed for reliable operation with heavy loads and various environmental conditions in
high-power-density applications such as aerospace, electric vehicles, and railway traction
systems. The increasing relevance of power inverters in power infrastructure, reliability
improvement, and extended lifespan operation has led to the emergence of IGBT power
modules as dependable and useful electronic components [1–3]. IGBT power modules’
high generated power losses convert to heat and raise temperature strains, particularly
the junction temperature of the module. IGBT module failures are a critical worry for
the dependability of power inverters since these temperature stressors have a substantial
impact on the operation of such electronic components [4–6]. IGBT module failure scenarios
brought on by high-temperature strains include solder joint cracks, heel cracking, bonding
wire liftoff, and wire burning [7,8].

Machines 2023, 11, 990. https://doi.org/10.3390/machines11110990 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11110990
https://doi.org/10.3390/machines11110990
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-2009-9004
https://orcid.org/0000-0002-2890-906X
https://orcid.org/0000-0002-1186-3739
https://doi.org/10.3390/machines11110990
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11110990?type=check_update&version=1


Machines 2023, 11, 990 2 of 23

Many studies have shown and illustrated how these failure modes affect a module’s
operation, such as soldering failures accounting for 34% of converter system failures [9,10].
Additionally, a survey based on over 200 products from 80 businesses found that 31% of
respondents selected semiconductor-powered devices as the most fragile parts of power
converters used for various power applications [11]. Furthermore, many research-ers
have emphasized numerous IGBT-module-related research areas and proposed vari-ous
techniques and analysis methods for the acceleration testing of these modules to es-timate
failure modes in the early stages of the implementation process, such as the analy-sis of
IGBT module fault causes presented in [12,13]; the various techniques of accelera-tion
testing for fault diagnostic methodologies given in [14–16]; the analysis of parameters
affecting failure modes in [17]; and the different measuring equipment used in the exper-
imental environment for module fault diagnosis, such as a scanning electron microscope
(SEM), X-ray, and an IR camera, as proposed in [18–20].

The change in the module junction temperature is the most monitored statistic in
several research approaches used to analyze the fault occurrence and estimate the module
lifespan span due to the thermal stress problems that a module confronts when working
in high-power applications. To monitor the junction temperature under consideration,
circuit-based approaches [21,22], thermal-model-based methods such as finite ele-ment
methods [23,24], and experimental-measurement-based lab equipment such as IR cameras
and NTC thermistor devices [25–27] can be applied. In addition, the change in the on-
state collector–emitter voltage measured under a high load current can be used to in-
dicate the junction temperature, as demonstrated in [28]. The short-circuit current of
an IGBT can be measured as a temperature-sensitive parameter to estimate the junction
tem-perature, as carried out in [29]. Moreover, an intelligent gate driver system was used
to monitor the junction temperature based on the turn-off delay time as the parameter
in [30]. In all cited references about the module junction temperature, the most difficult
prob-lems for the designer to examine the module junction temperature in the laboratory
before the manufacturing process are the complicated experimental setup and analysis,
expensive module pricing, and high power density loading circumstances specially for the
testing of the module utilized in the high power density applications such as the traction
inverter systems.

Different power losses, including conduction, switching, and thermal power losses,
introduce temperature cycling during the operation of an IGBT power module [31,32], and
this temperature cycling profile weakens the properties of the IGBT module and shortens
its useful lifetime. As a result, in the selection process of an IGBT module for a target
application, loss modeling and thermal analysis of the IGBT module can be used to predict
the module’s temperature based on the power losses and heat energy calculation. In
this paper, a single 550 KW IGBT power module utilized on a 3.3 MW traction in-verter
was treated as a case study to estimate the module’s temperature using the pro-posed
approach. The proposed approach analyzes and calculates the module’s various power
losses and proposes a thermal heating pipe system for thermal acceleration testing. Finally,
FEM thermal modeling and analysis of the IGBT module is performed to estimate the
module’s temperature.

Based on the need to estimate and monitor an IGBT module’s temperature during
the pre-selection process for the module’s reliable operation under high thermal stresses,
this paper’s contribution is summarized as follows: Accurate analytical and simulation
mod-eling methods for an IGBT module were performed to obtain the module’s various
loss components. These models are based on the device rating conditions and datasheet
pa-rameters, accurately estimating the junction temperature. Furthermore, a practical and
straightforward mathematical design of a heat pipe system for thermal acceleration test-ing
is proposed, which can apply to any module topology with lower computation and a simple
design. Furthermore, the FEM thermal modeling with the designed heat pipe sys-tem of
the IGBT module enables simple and fast junction temperature estimation and the proper
installation and selection of the module’s cooling system.
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The rest of the paper is organized as follows: Section 2 presents the structure and
the design specifications of the IGBT module under study. Section 3 introduces the IGBT
module’s loss components and the calculation techniques. Section 4 presents the pro-posed
design of the heat pipe system for thermal cycling testing. Section 5 illustrates the FEM
thermal modeling of the IGBT module using the ANSYS Icepak software. Section 6 details
the FEM thermal analysis results and discussion. Section 7 presents the conclusions and
future work.

2. Three-Phase Traction Inverter with Parallel IGBT Modules

Figure 1 shows the circuit structure of the 3.3 MW traction inverter utilized in railway
applications. The target traction inverter in this work is implemented using six identical
IGBT power modules (part number FZ1200R33KF2C) acquired from Infineon. The mod-
ules are connected in parallel with equal power sharing of 550 kW. Each module has an
enclosed cabinet and is connected to a high-input DC bus bar with a voltage rating of
1500 V. The FZ1200R33KF2C module is a three-phase two-level IGBT power module with
a maximum rating temperature of 150 ◦C [33]. Figure 2 shows the circuit schematic of
module 1 in the target traction inverter. In addition, the design specifications of the module
are given in Table 1.
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Figure 2. Schematic circuit of the 3-phase 2-level IGBT module-1.

Table 1. Design Specifications of the IGBT power module in the target traction inverter.

Parameter Value

Rated output power (Po) 550 kW
Load power factor (PF) 0.70
Input DC voltage (Vin) 1500 V

Output load current (Io) 500 Arms
Load frequency (f) 60 Hz

Switching frequency (Fsw) 800 Hz
IGBT module part number FZ1200R33KF2C

Target Max. junction temperature (Tjmax) 125 ◦C
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The following power loss calculation and thermal analysis to estimate the module
junction temperature under full loading conditions is performed based on module 1, and
the calculation for the other modules is the same as that for module 1. This is due to
the fact that the six modules in the target traction inverter are identical, individually
constructed, housed in their housing, and have individual heatsinks. The steps of the
proposed approach to estimate the module junction temperature are shown in Figure 3.
They begin with calculating the different power losses for the modules to estimate the
necessary heat energy source, followed by the design of the heat pipe system for the thermal
acceleration test, and conclude with the FEM thermal modeling and analysis for the module
temperature measurement.

Machines 2023, 11, x FOR PEER REVIEW 4 of 24 
 

 

IGBT module part number  FZ1200R33KF2C 
Target Max. junction temperature (Tjmax) 125 °C 

The following power loss calculation and thermal analysis to estimate the module 
junction temperature under full loading conditions is performed based on module 1, and 
the calculation for the other modules is the same as that for module 1. This is due to the 
fact that the six modules in the target traction inverter are identical, individually con-
structed, housed in their housing, and have individual heatsinks. The steps of the pro-
posed approach to estimate the module junction temperature are shown in Figure 3. They 
begin with calculating the different power losses for the modules to estimate the necessary 
heat energy source, followed by the design of the heat pipe system for the thermal accel-
eration test, and conclude with the FEM thermal modeling and analysis for the module 
temperature measurement. 

 
Figure 3. Steps of the proposed approach for IGBT module temperature estimation. 

3. IGBT Module’s Loss Components and Calculation Techniques 
3.1. IGBT Module’s Loss Components 

Each of the six switches in IGBT module 1 (Q1–Q6) has a transistor chip denoted as T 
and a diode chip denoted as D, both of which cause losses when the inverter is operating. 
The total power losses of a module are typically divided into two groups: (1) the main 
loss, which includes conduction losses and switching losses; and (2) the other loss, which 
includes thermal losses due to thermal resistances between the heat sink and the case 
(RthHC), and the case and the ambient environment (RthCA), as well as leakage losses (Pleak). 
Leakage losses are typically disregarded since they have a small value compared with 
other loss components. The following subsections present and compare two methods for 
calculating an IGBT module’s different power loss components, including the device rat-
ing information. 

3.2. Analytical Calculation Using the Datasheet Characteristics 
3.2.1. Conduction Losses Calculation 

Figure 4 depicts the three-phase IGBT module 1’s single-leg equivalent. The IGBT 
power module’s conduction losses are affected by operational conditions such as the load 
current (Io = Ia1), the voltage drop across the transistor (vce), and the forward voltage across 
the diode (vD) chips of the IGBT module’s switches. As a result, the conduction losses of 
the switch Q1 (Pcon_Q1) are composed of the transistor chip’s on-state loss (Pcon_T) and the 
diode chip’s forward loss (Pcon_D) and can be expressed as: 

Figure 3. Steps of the proposed approach for IGBT module temperature estimation.

3. IGBT Module’s Loss Components and Calculation Techniques
3.1. IGBT Module’s Loss Components

Each of the six switches in IGBT module 1 (Q1–Q6) has a transistor chip denoted as T
and a diode chip denoted as D, both of which cause losses when the inverter is operating.
The total power losses of a module are typically divided into two groups: (1) the main
loss, which includes conduction losses and switching losses; and (2) the other loss, which
includes thermal losses due to thermal resistances between the heat sink and the case
(RthHC), and the case and the ambient environment (RthCA), as well as leakage losses (Pleak).
Leakage losses are typically disregarded since they have a small value compared with
other loss components. The following subsections present and compare two methods
for calculating an IGBT module’s different power loss components, including the device
rating information.

3.2. Analytical Calculation Using the Datasheet Characteristics
3.2.1. Conduction Losses Calculation

Figure 4 depicts the three-phase IGBT module 1’s single-leg equivalent. The IGBT
power module’s conduction losses are affected by operational conditions such as the load
current (Io = Ia1), the voltage drop across the transistor (vce), and the forward voltage across
the diode (vD) chips of the IGBT module’s switches. As a result, the conduction losses of
the switch Q1 (Pcon_Q1) are composed of the transistor chip’s on-state loss (Pcon_T) and the
diode chip’s forward loss (Pcon_D) and can be expressed as:

PconQ1(t) = PconT + PconD (1)
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Figure 4. Circuit schematic phase (leg-A) of the three phase IGBT module 1.

Figure 5a shows the transistor chip’s equivalent circuit in the conduction state. With
a series connection of a DC voltage source (vceon) reflecting the transistor’s on-state zero-
current collector–emitter voltage and the collector–emitter on-state resistance (Rc), the
transistor conduction voltage (Vce(t)) can be expressed as follows:

vce(t) = vceon + Rc·ic(t) (2)
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(b) diode.

The conduction voltage calculation across the diode chip can be performed using
the same approach, and using the circuit equivalent shown in Figure 5b, which results in
the following:

vD(t) = vF + Rd·iD(t) (3)

The datasheet V–I characteristics of the transistor and diode chips of the selected
IGBT module, as illustrated in Figure 6, can be used to extract the parameters Rd and Rc in
Equations (2) and (3).
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The on-state resistances Rc and Rd are estimated to be in the range between the
maximum and typical values of the Vceon and VF (as given in the datasheet) of the transistor
and diode chips, respectively, where

Rc =
vcemax − vcetyp

icmax − ictyp
(4)

Rd =
vFmax − vFtyp

iFmax − iFtyp
(5)

Then, the instantaneous value of the transistor chip conduction losses is

Pcon_T (t) = vce(t)× ic(t) = vceon ·ic(t) + Rc·(ic(t))
2 (6)

The transistor conduction losses over a switching period can be expressed as

Pcon_T = Fsw

∫ 1
Fsw

0
Pcon_T (t) (7)

Substituting (6) into (7) gives

Pcon_T (t) = Fsw

1
Fsw∫
0

(
vceon ·ic(t) + Rc·(ic(t))

2
)

dt = vceon ·Icav + Rc·I2
crms (8)

where Icav and Icrms are the average and RMS current values of the switch Q1 transistor
chip, respectively.

Inverters for traction motor applications require dead time (td) to prevent cross-
conduction, which occurs when the upper and lower arms of the IGBT generate a direct
short-circuit across the power supply and GND lines [34,35]. As shown in the waveforms
in Figure 7, the dead time is the time when both the upper-arm and lower-arm IGBTs are
turned off, and the dead time is inserted to force off both the upper-arm and lower-arm
IGBTs to ensure they are never on simultaneously while switching [36].
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Similarly, the instantaneous value of the diode conduction losses is 𝑃௖௢௡_ವ(𝑡) = 𝑣஽(𝑡) × 𝑖஽(𝑡) =  𝑣ி. 𝑖஽(𝑡) + 𝑅ௗ ∗ (𝑖஽(𝑡))ଶ (15)

The average conduction losses from the diode chip can be expressed as 
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Figure 7. Carrier and reference voltage waveforms and the PWM signals for the 3-phase 2-level
inverter (phase-A) with the dead time control.

Assuming that the inverter is working in linear modulation mode with inverter
modulation index m, frequency ω, load voltage-current angle Φ, and dead time td as
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shown in Figure 7, the conduction time of the transistor (tcon_T(t)) and diode (tcon_D(t))
during one switching period tsw can be computed as follows:

tcon_T (t) = tsw

(
1 + msin(ωt + Φ)

2

)
− td (9)

tcon_D(t) = tsw − tcon_T(t) = tsw

(
1 − msin(ωt + Φ)

2

)
+ td (10)

Assuming the output current equation is written as:

ic(t) = Ic_max sin(ωt) (11)

The transistor conduction losses for (tcon_T(t)) conduction time can be calculated using
Equation (8) as:

Pcon_T (t) =
(

Ic_max

(
vceon ·sin (ωt)+Rc·I2

c_maxsin2(ωt)
))

×
(

tsw

(
1+msin(ωt+Φ)

2

)
− td

)
= vceon ·Icav + Rc·I2

crms

(12)

where the Icav and Icrms can be expressed as:

Icav =

(
1
2
− td

tsw

)
Ic_max

π
+ mcos∅ Ic_max

8
(13)

I2
crms =

(
1
2
− td

tsw

)
(Ic_max)

2

4
+ mcos∅ (Ic_max)

2

3π
(14)

Similarly, the instantaneous value of the diode conduction losses is

Pcon_D (t) = vD(t)× iD(t) = vF·iD(t) + Rd·(iD(t))
2 (15)

The average conduction losses from the diode chip can be expressed as

Pcon_D (t) = Fsw

1
Fsw∫
0

(
vF·iD(t) + Rd·(iD(t))

2
)

dt = vF·IDav + Rd·I2
Drms (16)

where IDav is the average diode current, and IDrms is the RMS diode current, which for the
three-phase two-level inverter circuits, can be expressed as:

IDav =

(
1
2
+

td
tsw

)
Ic_max

π
− mcos∅ Ic_max

8
(17)

I2
Drms =

(
1
2
+

td
tsw

)
(Ic_max)

2

4
− mcos∅ (Ic_max)

2

3π
(18)

3.2.2. Switching Losses Calculation

The IGBT module switching losses (Psw) contain two components:

• The first is the transistor switching losses, which occur during the transition between
the on-state and off-state of the transistor and contain the turn-on losses (Psw_onT) and
the turn-off losses (Psw_offT).

The transistor switching loss over one switching period is

PswT = Psw_on + Psw_o f f (19)
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The switching losses of the transistor depend on the energy required to turn on (Eon)
and turn off (Eoff) the transistor, which is a function of the transistor current, switching
frequency, the junction temperature, and the input DC voltage and can be expressed as

EswT = Esw_on + Esw_o f f = f
(

Ic, Vin, Tvj
)

(20)

PswT =
Fsw

∑
0

EswT = Fsw·(E sw_on + Esw_o f f )·
Vintraction

Vindatasheet

(21)

where Vin traction is the DC input voltage used for the target traction inverter, and Vin datasheet
is the DC input voltage from which the module datasheet characteristics are obtained.

Assuming the junction temperature to be constant over one period of the output
waveform, Vin is also constant during the switching period. Therefore, the switching
energy depends on the IC variation, as shown in the transistor characteristics illustrated in
Figure 8a.
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(a) for transistor chip, (b) for diode chip.

• The second component is the diode reverse recovery loss (Prr_D) which also depend
on the reverse recovery energy (ErcD) of the diode and can be expressed as:

PrcD =
Fsw

∑
0

ErcD = Fsw·(ErcD)·
Vintraction

Vindatasheet

(22)

For the constant junction temperature, the reverse recovery energy depends on the IF
variation, as shown in the diode characteristics illustrated in Figure 8b.

3.3. Simulation Estimation Using the Module Rating Information

Figure 9 shows the PSIM simulation model of the three-phase two-level inverter using
the model of the FZ1200R33KF2C IGBT module in the thermal module database. The
module datasheet parameters and characteristics are entered into the software to estimate
the power losses based on the device rating information. The three-phase PWM generator
with dead time control is used to generate the six PWM signals for the module switches.
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Figure 9. PSIM model for the loss calculation of the IGBT module.

The advantage of the PSIM simulation technique compared with analytical calculations
is that it is a faster, simpler, and more accurate technique since there is no approximation
where the exact device rating information is considered in calculations. Furthermore, the
module thermal power losses can be directly calculated with the known values of the
module’s thermal resistances.

The thermal losses (Pth) are the losses due to thermal resistance (Rth), which is the sum
of the thermal resistances between the case and heat sink and between the heat sink and the
environment. The thermal resistance provided in the datasheet is typically given in ◦K/Kw
(degrees Kelvin per kilowatt) or ◦C/W (degrees Celsius per watt). For example, If the
datasheet specifies Rth = 5 ◦K/kW, this means that for every kilowatt of power dissipated,
the temperature difference between the case and the heatsink is 5 ◦K.

In this work, the three-phase PWM generator with dead time control was implemented
as depicted in Figure 10. Figure 10a shows the load voltage comparator of the designed
three-phase inverter module. The sine wave reference voltage was used with phase dif-
ferences of 0, −120, and −240 for the three phases (A, B, and C), respectively. The PWM
signals for the switches in the inverter’s three legs were decided based on the comparator
output and using a 5 us dead time between the operation of the switches in the inverter’s
three legs, as depicted in the sequence in Figure 10b. In Figure 10b, the Ad## 5u is the delay
time used for the PWM signal.

Machines 2023, 11, x FOR PEER REVIEW 10 of 24 
 

 

the datasheet specifies Rth = 5 °K/kW, this means that for every kilowatt of power dissi-
pated, the temperature difference between the case and the heatsink is 5 °K. 

In this work, the three-phase PWM generator with dead time control was imple-
mented as depicted in Figure 10. Figure 10a shows the load voltage comparator of the 
designed three-phase inverter module. The sine wave reference voltage was used with 
phase differences of 0, −120, and −240 for the three phases (A, B, and C), respectively. The 
PWM signals for the switches in the inverter’s three legs were decided based on the com-
parator output and using a 5 us dead time between the operation of the switches in the 
inverter’s three legs, as depicted in the sequence in Figure 10b. In Figure 10b, the Ad## 5u 
is the delay time used for the PWM signal. 

 
(a) (b) 

Figure 10. Three-phase PWM generator with dead time control: (a) voltage comparator; (b) the 
on/off transition sequence (phase A). 

3.4. IGBT Module Power Losses Calculation Results and Comparison 
Figure 11 shows the PSIM simulation results of the reference voltage waveform of 

the inverter phase A with the carrier waveform and the generated PWM signals from the 
designed control loop for the switches Q1 and Q2. For the comparison evaluation between 
the power loss calculations using the analytical and simulation techniques, the dead time 
with 5 us was also considered in the PSIM simulation modeling, as shown in Figure 11. 

Figure 10. Three-phase PWM generator with dead time control: (a) voltage comparator; (b) the
on/off transition sequence (phase A).



Machines 2023, 11, 990 10 of 23

3.4. IGBT Module Power Losses Calculation Results and Comparison

Figure 11 shows the PSIM simulation results of the reference voltage waveform of
the inverter phase A with the carrier waveform and the generated PWM signals from the
designed control loop for the switches Q1 and Q2. For the comparison evaluation between
the power loss calculations using the analytical and simulation techniques, the dead time
with 5 us was also considered in the PSIM simulation modeling, as shown in Figure 11.
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Figure 11. Voltage comparator waveforms and PWM signals of the three-phase inverter (phase A)
with the dead time control.

With an input DC voltage of 1500 V and rated output inductive load of 550 kW, 60 Hz,
and 0.7 pf, the waveforms of the conduction losses of the switch Q1 transistor (Pcond_Q1_T)
and diode (Pcond_Q1_D) are plotted in Figure 12. The average conduction losses of both
the transistor and diode were also estimated over a switching period and calculated as
approximately 331.40 W for the transistor and approximately 91.97 W for the diode.

Figure 13 shows the waveforms of the switching losses of the switch Q1 transistor
(Psw_Q1_T), and diode (Psw_Q1_D). The average switching losses of both the transistor and
diode were estimated over a switching period and calculated as approximately 412.08 W
for the transistor and approximately 84.06 W for the diode.

Furthermore, the total conduction and switching loss waveforms of the switch Q1 and
the whole IGBT module 1 are plotted in Figure 14, where the switch Q1 total losses are esti-
mated at approximately 919.51 W, and the module 1 total power losses are approximately
5577 W. The IGBT module thermal losses can be calculated as the difference between the
module’s total losses (5577 W) and the sum of the conduction and switching losses for the
six switches (5517 W), calculated as approximately 60 W for the module.
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transistor (Pcond_Q1_T).
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To conduct a comparison study between the analytical and simulation techniques for
the IGBT module power loss calculation, Table 2 shows the values of the different power
loss components of the IGBT module using both techniques and the mismatch percentage,
which was less than 8% for all of the loss components calculations. In addition, Figure 15
shows the module’s total power losses with different loading conditions from 20% (110 kW)
to 120% (660 kW), with a mismatch of less than 5% between both techniques.

Table 2. IGBT Module Average Power Losses Calculation and Comparison.

Losses Term
Average Value (W)

Mismatch%
Analytical Simulation

Pcond_Q1_D 86.5 91.97 6.30
Pcond_Q1_T 352.3 331.40 5.90
Psw_Q1_D 91 84.06 7.60
Psw_Q1_T 445.67 412.08 7.50
Ploss_Q1 975.67 919.51 5.75
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4. IGBT Module Heat Pipe System Design Technique

Figure 16 shows the structure of the proposed heat pipe system designed for the
thermal acceleration testing of the target IGBT module based on the module’s total power
loss calculated in the previous section. Three heating pipes are used to generate the heat
energy required for the three-phase IGBT module’s three legs. The three heat pipes are
identical and symmetrically distributed along the cross-sectional area of the IGBT module
heatsink. High-temperature liquid water is used at the inlet of each heat pipe, and the
water temperature in the heat pipes drops due to heat loss [37] to heat the space in the
IGBT module.

Assuming the water temperature is approximately T1
◦C at the inlet point due to the

energy loss to heat the IGBT module, the water temperature at the outlet point is assumed
to drop to an ambient temperature of approximately T2

◦C. The constant-pressure specific
heat capacity of the water Cp can be obtained at the average temperature of (T1 + T2)/2 ◦C
from the standard tables [37], and then the rate of heat energy loss

(
Q.

lossN
)

in all pipes can
be calculated as

N

∑
1

Q.
lossN = N × m. × Cp × ∆T (23)

where N is the heat pipes number, ∆T is the water temperature difference between the inlet
and outlet, and m· is the mass flow rate per pipe.
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The rate of energy losses
(
Q.

loss
)

in joules is equal to the total power loss over the
time calculated using the analytical or simulation techniques for the IGBT loss model in
Section 3 (for the worst case, the largest calculated value using the two techniques is used
in the design of the heat pipe system).

The density of the water (ρ) at the inlet point is

ρ =
P

RT
(24)

where P is the operating pressure, R is the specific gas constant for the water, and T is the
temperature at the inlet in Kelvin.

The cross-sectional area of the heat pipe (Ap) with pipe diameter D is calculated as

Ap = π(
D
2
)

2
(25)

Then, the average velocity of the water (γ) at any point inside the heat pipe can be
calculated as a function of the mass flow rate:

γ =
m.

Ap × ρ
(26)

Substituting (20), (21), and (22) into (23) gives

γ =
Q.

lossN

π
(

D
2 )

2 × ρ × N × Cp × ∆T
(27)

In (23), for the specified total energy losses Q.
lossN , the D is constant (we used a heat

pipe with a diameter of approximately 8.5 mm), the inlet water temperature (T1) has a
high value and is less than the water boiling degree, and T2 is the ambient temperature.
According to the selected T1 and T2, the Cp coefficient can be obtained as shown in the
operating curves depicted in Figure 17a, and the water velocity can be calculated via (25),
as shown in Figure 17b.

As shown in Figure 4, the next step after the heat pipe system design is the FEM
thermal modeling of the IGBT module to estimate the temperatures of the module’s
different components and ensure that the temperature values remain within the rated
values specified for the IGBT module’s use before the manufacturing process of the target
traction inverter.
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5. IGBT Module Thermal Modelling and Analysis

Power electronics designers can improve product reliability by using ANSYS thermal
analysis software (version 2022 R1) and solutions, such as the ANSYS Icepak package,
to predict how their designs will behave when operation conditions change. This allows
them to solve the most challenging thermal issues, see temperature changes, and prevent
overheating issues. For example, during the thermal analysis of an IGBT unit, we can check
how hot the components are and whether or not our design is working as intended. The
next subsections demonstrate how in our research, we used this ANSYS solution to create a
FEM thermal model of the IGBT module and predict its temperature.

5.1. IGBT Module’s Structure and Material Study

Figure 18 shows the construction of the IGBT module under study with part number
FZ1200R33KF2C. The IGBT module chips are produced from silicon, and the ceramics are
coated with copper, which is firmly bonded to the ceramic to realize direct copper bonding
(DCB) with the IGBT. The aluminum–silicon carbide (AlSiC) used to manufacture the
module base plate enables it to have a low coefficient of thermal expansion (CTE), which is
made possible by adjusting the composition of Al and SiC to create a surface that has a low
enough CTE for the direct attachment of electronic components. The module comes with a
heatsink made from aluminum (Al) with a density of approximately 2700 (Kg/m3). Table 3
shows the properties of the IGBT module material. The module properties are provided as
an input parameters to the software during the FEM thermal analysis process.
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Table 3. Constituent material properties of the IGBT power module.

Part
Transistor

Chip
Diode
Chip

Ceramic
Substrate

Copper
Substrate

Base
Plate Bus Bar Housing Heat

Sink
Silicon

Fill

Material Si Si Si3N4 Cu AlSiC Cu Plastic Al -
Density

(Kg/m3) 2330 2330 3200 8933 2960 8933 1150 2700 -

Specific heat
(J/Kg-k) 710 710 695 397 740 397 1600 937 -

Conductivity
(W/m-k) 148 148 80 387.4 200 387.4 0.25 240 0.2

5.2. IGBT Module Geometry Clean-Up

Figure 19 shows the different views of the IGBT module simulated in the ANSYS
Ice-pak thermal simulation software (version 2022 R1). For the three-phase two-level
IGBT module, the number of required heat pipes is N = 3, and heat pipes with a diameter
of D = 8.5 mm and length of 250 mm are used and distributed symmetrically along the
heatsink of the module as shown in Figure 19. The module FZ1200R33KF2C dimensions
are W:140 mm, L:190 mm, D:38 mm. The module’s housing is considered in the thermal
modeling of the IGBT mod-ule to show the effect of the module’s housing use on the
component’s temperature values. All dimensions and distances between the module’s
different semiconductor parts and different materials were obtained from the module
datasheet [33] and used in the software to simulate the target IGBT mmodule as shown
in Figure 19.
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Figure 19. Modeling of the IGBT module in ANSYS Icepack: (a) 3D view; (b) top view; (c) side view 1;
and (d) side view 2.

5.3. Boundary Conditions Setup

Figure 20 shows the IGBT module structure inside the cabinet with the boundary
conditions for the module cabinet airflow and the designed heat pipe system water flow.
The temperature of the water at the inlet point was selected at 60 ◦C and as given in
Figure 17, the water flow at that temperature value is about 0.07 m/s, and the airflow set at
0.01 m/s which is the velocity of the airflow in the place which the target inverter will be
used. The module is enclosed in an isolated cabinet (adiabatic) open on both sides to allow
air to enter and exit. The three water pipes have equal water flow rates and open at the
outlet point. The internal and external boundary conditions for the IGBT module are given
in Table 4.
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(b) internal boundary condition (heat pipes).

Table 4. IGBT Module Boundary Conditions for Thermal Analysis.

Boundary Condition External Boundary Condition Internal Boundary Condition

Inlet Air flow = 0.01 m/s Water flow = 0.07 m/s
Outlet Opening Opening
Wall Adiabatic -

Water temperature - 60 ◦C

6. FEM Thermal Analysis Results and Discussion

Table 5 shows the setup for the thermal analysis of the IGBT module with the designed
heat pipe system to measure the module temperature. The laminar flow model under the
steady state condition was used to solve the water and air flows, and the temperature
(energy) was used as the solving variable with a target convergence of approximately
0.001 for the flow and approximately 1 × 10−15 for the energy. Two running modes of
the software can be used, the first one is that the number of iterations is imposed at the
beginning, considering that the steady state will be reached within that number of iterations,
this method is usually use of the software to conduct the same analysis and find out the
most appropriate iterations number needed to reach the desired solution. The second one
is the free run mode where the convergence criteria of the flow and energy are imposed in
the begaining and the analysis is free running until the convergence criteria is achieved,
and the steady state condition is reached.

Table 5. IGBT module thermal analysis setup.

Condition Value

Ambient temperature 25 ◦C
Variables solved Flow (water, air), Temperature

Analysis time Steady-State
Number of iterations 100

Flow model Laminar
Air flow Force convection

Generated Mesh About 5 million used
Operating pressure 1.013 × 105 N/m2

The heat energy source for each semiconductor component of the IGBT module was
specified for the thermal simulation process, and the residual values (the difference between
the specified and calculated values) of the different variables were monitored with the
iterations. Figure 21 shows the monitoring curves of the velocity, continuity, and energy
residual values with 100 iterations during the thermal loading, showing that the constant
residual value of less than the specified convergence rate was obtained for each variable
after approximately 60 iterations.



Machines 2023, 11, 990 17 of 23

Machines 2023, 11, x FOR PEER REVIEW 18 of 24 
 

 

one is the free run mode where the convergence criteria of the flow and energy are im-
posed in the begaining and the analysis is free running until the convergence criteria is 
achieved, and the steady state condition is reached. 

Table 5. IGBT module thermal analysis setup. 

Condition  Value 
Ambient temperature 25 °C 

Variables solved Flow (water, air), Temperature 
Analysis time Steady-State 

Number of iterations 100 
Flow model Laminar 

Air flow Force convection 
Generated Mesh 

Operating pressure 
About 5 million used 

1.013 × 105 N/m2 

The heat energy source for each semiconductor component of the IGBT module was 
specified for the thermal simulation process, and the residual values (the difference be-
tween the specified and calculated values) of the different variables were monitored with 
the iterations. Figure 21 shows the monitoring curves of the velocity, continuity, and en-
ergy residual values with 100 iterations during the thermal loading, showing that the con-
stant residual value of less than the specified convergence rate was obtained for each var-
iable after approximately 60 iterations. 

 
Figure 21. Solution residuals monitors of the module thermal loading. 
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Figure 21. Solution residuals monitors of the module thermal loading.

Figure 22 shows the temperature point monitoring of the semiconductor chips (transis-
tor (T) and diodes (D)) with iteration numbers, showing that the maximum measurement
temperature for all semiconductor chips was measured at approximately 109 ◦C. This value
is less than the target maximum junction temperature for the design, which is approx-
imately 125 ◦C, and less than the selected IGBT module maximum rating temperature,
which is approximately 150 ◦C.
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Figure 22. Temperature points monitors of semiconductor chips with iteration numbers.

Figure 23 shows the measurement contour for the water flow velocity inside the heat
pipes. The contour shows that the velocity at the inlet point was approximately 0.07 m/s,
as specified in the design. Moreover, the water velocity changes along the heat pipe from
the inlet to the outlet point due to the change in the water temperature value. Figure 24
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shows the measurement contour of the airflow velocity inside the module cabinet, showing
that the velocity at the inlet was approximately 0.01, as specified; the changing velocity
along the cabinet from the inlet to the outlet due to the change in the temperature; and the
effect of the module housing on the airflow shape and velocity inside the cabinet.
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Figure 24. Airflow shape and velocity measurements in the IGBT module cabinet.

To estimate the module’s different components’ temperatures, Figures 25 and 26
show the temperature measurement contour of the IGBT module, including the housing,
which shows that the maximum temperature measured in the transistor semiconductor
chips was approximately 109.60 ◦C in the lower semiconductor switches. Moreover, the
maximum temperature measured in the diode chips in the lower semiconductor switches
was approximately 105.25 ◦C.
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Figure 26. Positions of module’s semiconductor chips and temperature measurement contour.

The module’s housing was removed, and the thermal analysis was performed again
to estimate the temperature values without using the module housing. As shown in
Figure 27, the maximum temperature measured in the transistor semiconductor chips was
approximately 102.7 ◦C with a reduction of approximately 6.90 ◦C compared with using
the module housing. Furthermore, the maximum temperature measured in the diode
chips was approximately 99.10 ◦C, with a reduction of approximately 6.15 ◦C compared
with using the module housing. Table 6 shows the numerical values of the temperature
measurements in the semiconductor chips in the IGBT module with and without using the
module housing.
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Table 6. Temperature measurements of the module’s semiconductor parts.

Semiconductor Part Temp. with Housing (◦C) Temp. without Housing (◦C)

Switch Q1
T1 105.52 99.35
D1 102.27 97.20

Switch Q2
T2 109.62 102.75
D2 105.25 99.10

Switch Q3
T3 105.12 99.15
D3 101.91 97.25

Switch Q4
T4 109.23 102.55
D4 104.85 99.05

Switch Q5
T5 105.80 99.55
D5 102.55 97.45

Switch Q6
T6 109.40 102.60
D6 105.02 99.10

Finally, from the analysis and the results obtained from the proposed estimation
technquie, as compared with the previous temperature measurement technquies of the
IGBT module, the benfits of the proposed technique to estimate the IGBT module junction
temperature can be summarized in the following:

1. The ability to apply for the estimation of the temperature range for any IGBT module,
with any loading condition using simple calculations of the module power losses and
thermal model analysis.

2. Offers the ability to confirm the appropriate selection of the IGBT module for the
target application before the manufacturing process.

3. Saving the time and money required for the testing process to check the module
junction temperature as compared with the other experimental setup techniques.

4. Temperature measurements with high accuracy since no ideal components and no
assumptions (datasheet parameters and the actual model performance are used in the
analysis) are used in the analysis which offers the results closet to the practical reality.

7. Conclusions and Future Work

This study described the implementation of a 3.3 MW traction inverter with parallel
IGBT modules for high reliability and extended lifetime, as well as the estimation of
the module’s junction temperature. This paper presented two methods for calculating



Machines 2023, 11, 990 21 of 23

the power loss of IGBT modules: the first is a mathematical calculation based on device
datasheet characteristics, and the second is a simulation estimation based on the loss
modeling of the module including device rating information. The findings using the
two methodologies were compared, and there was a mismatch of less than 8% in the
calculations of the module’s distinct power loss components and of less than 5% in the
calculations of the module’s total power losses. The power losses generated in the IGBT
module were often converted to heat, raising the module temperature, particularly the
switch junction temperature. Therefore, to ensure the high dependability of the design and
module selection before the manufacturing process.

Furthermore, this paper evaluated the module junction temperature under the fol-
lowing operating conditions: The heat energy sources of the IGBT module were estimated
based on the calculated module power losses, the design of the heat pipe system was
proposed to perform the thermal loading process of the IGBT module, the FEM thermal
analysis of the target IGBT module was performed in ANSYS Icepak, and the tempera-
tures of the various components were measured. The thermal analysis revealed that the
maximum junction temperature of the module under the target operation conditions was
approximately 109.60 ◦C when enclosed in the housing and approximately 102.70 ◦C when
not enclosed in the housing, which is less than the target design value (125 ◦C) and also
less than the module’s maximum temperature value (150 ◦C), confirming the appropriate
selection of the employed IGBT module for the target application with simple technique
without needing of the experimental setup which saved the time and money.

In future work, to increase the dependability and useful lifetime of the IGBT module
in our application, a new water-cooling system designed to lower the maximum junction
temperature to less than 100 ◦C will be built. Additionally, replacing the air cooling system
in the planned IGBT module with a water cooling system allows for high power density
operation without the need to add more modules, saving money and allowing for a more
compact design of the target traction inverter. Another technique which can be used to
measure the module junction temperature through an experimental setup such as PWM
power cycling technique will be performed by designing the power and PWM control
circuits of the target inverter and measuring the junction temperature with the full loading
condition. Then, the module lifetime can be estimated, and the temperature measurements
using the power cycling technique and the thermal cycling technique will be compared.
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