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ABSTRACT As the importance of data increases, data is continuously collected from diverse sources such
as sensors, IoT devices, and edge computing devices. To manage these continuously monitored data, it is
often organized chronologically with time which is referred as time-series data. By managing the data using
time, data from different streams can be analyzed in a comprehensivemanner with an identical index which is
time. However, due to the unique characteristics of time-series data, it is essential for the underlying database
systems to understand the characteristics of the time-series data. To handle this, time-series database systems,
which specially target time-series data, are emerging. These database systems have different performance
characteristics due to the unique characteristics of the data which should be investigated to efficiently store
and analyze the data. In this paper, we analyze the time-series database from the perspective of I/O using
various storage devices from HDD, SATA and NVMe SSD. First, we analyze the I/O characteristics such as
runtime, throughput and size of total requests using various storage devices. In addition, we analyze the effect
of unique time-series database features such as data chunk interval, compression and number of workers.
Our analysis results show that adapting high-performance devices can greatly improve the performance of
the database by up to 33.22×.

INDEX TERMS Performance analysis, NVMe SSD, SATA SSD, time-series data, benchmark, database.

I. INTRODUCTION
In modern computing, as the importance of data increases,
collecting and analyzing data to produce new insights is
becoming more and more important [1], [2], [3], [4]. For
a detailed analysis of the problem, it is becoming common
in both industry and academia to collect data from many
types of devices such as IoT and sensor data [1], [5]. These
devices are widely used to collect various types of data such
as manufacturing data from the factory and environmental
data from smart farms [6]. For example, various analyses can
be conducted by analyzing time-series data such as gas sensor
data, CPU data to identify trends or predict future values.

When collecting data from these IoT and sensor devices,
the data is often organized based on time and referred
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to as time-series data. Time-series data has many unique
characteristics compared with traditional data. First, the data
is continuously collected at a uniform time interval and stored
in an append-only manner. Second, since the primary purpose
of time-series data is analysis, update or delete operations
occur relatively less frequently compared to other general
workloads. Finally, time-series data is generated from a large
number of data sources, so the size of data stored in the
database is usually large-scale data. These characteristics of
time series data need to be carefully considered and require
a unique approach when managing the data to improve
performance and reduce capacity overhead.

To handle such time-series data, time-series databases like
TimescaleDB [12] and InfluxDB [7] are widely adopted.
These databases are specifically designed to store and access
time-series data. They process data by taking advantage of
the time-based nature of time-series data and offer unique
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features such as data compression engines to efficiently
utilize disk space. For example, TimescaleDB, which oper-
ates as an extension of PostgreSQL, divides the tables into
small-sized chunks for manageability and processes data
in a column-oriented format, allowing data from each data
source (column) to be managed independently. In addition,
each chunk of data is compressed by time range and then
stored in the storage, reducing the storage overhead. This
append-only nature and compression result in unique I/O
characteristics of time-series data that differ from traditional
relational database systems. Thus, to efficiently handle large-
scale time-series data with these unique characteristics,
it is important to investigate the I/O characteristics of the
database, which is a major factor in the overall database
performance.

There have been many studies that analyze time-series data
with its characteristics. Wang et al. [8] proposed a method for
clustering time-series data based on structural characteristics
of the data from different data sources. In addition, there have
been many studies that analyze performance using different
storage devices. Xu et al. [9] analyzed the performance and
I/O characteristics of both relational and NoSQL databases
using emerging storage devices such as SATA and NVMe
SSD. Iwata et al. [10] proposed a method to maximize
overall system throughput by writing to SATA SSD and
NVMe SSD disks concurrently with RocksDB. Previous
studies analyzed the characteristics of time-series data or
examined the impact of NoSQL databases on emerging
storage devices. In contrast to these previous studies, our
study focuses on time-series data from the perspective of
I/O characteristics using various storage devices, from HDDs
and SATA SSDs to NVMe SSDs. To the best of our
knowledge, this is the first research that analyzes the I/O
characteristics of time-series data using a variety of storage
devices.

In this paper, we analyze and evaluate the time-series
data from the perspective of I/O using various storage
devices such as HDD, SATA SSD, and NVMe SSD.
We target these devices as they are widely adapted and
cover a wide range of devices, from cost-efficient and large-
capacity HDD to high-performance NVMe SSD. We focus
on time-series databases and workloads because they are
write-dominant and append-dominant workloads that require
in-depth investigation using various storage devices. With
these unique characteristics, we aim to answer two research
questions: 1) How do the distinct functionalities (e.g.,
chunking and compression) of time-series databases impact
I/O performance and behaviors? 2) How does adopting
various storage devices (e.g., HDD, SATA SSD, and NVMe
SSD) affect the performance and I/O behaviors of the
underlying storage layers? To do this, we used a widely
used time-series data benchmark (Time Series Benchmark
Suite (TSBS) [11]) and a database (TimescaleDB [12]). With
this setup, we performed an analysis from the perspectives
of runtime, throughput, data and request size, I/O type and
processes, and scalability.

FIGURE 1. Data flows of time-series data.

Through analysis, we present key observations as follows:
• The performance of the database is significantly influ-
enced by the underlying storage device, while chunk
size and compression have minimal impact on the
performance.

• While adopting high-performance devices reduces the
runtime, time-series database is unable to fully utilize
the available bandwidth of the underlying storage
devices across all devices, with utilization ranging from
3.1% to 6.3%.

• Compression is efficient in reducing the total data size,
but it does not alter the total size of I/O requests to the
storage.

• I/O requests aremostly random and primarily dominated
by write synchronization and direct I/O, indicating
potential areas for future improvement to optimize
overall performance.

• Increasing scalability can positively impact high-
performance devices, but it may lead to reduced
performance in slow-storage devices.

This paper is organized as follows. First, in Section II,
we explain time-series data and databases for managing time-
series data. In Section III, we present the results of the
benchmark, covering aspects such as runtime, throughput,
data and request size, I/O type, processes, and scalability.
Section IV describes related work, and in Section V,
we conclude the paper.

II. BACKGROUND
A. TIME-SERIES DATA
As the importance of data grows, many devices such as IoT
and sensors are used to collect data from various sources.
These data are usually used to record the state of each
device at a regular time interval. Through analyzing these
data, new insights can be generated such as forecasting
future values, detecting anomalies or patterns, understanding
trends and seasonality, and making data-driven decisions
based on historical patterns and correlations [13], [14], [15].
Since these data are recorded at regular time intervals, they
share common time-related properties and are categorized as
time-series data. Time-series data is continuous, as time is
represented by a continuous value. Additionally, the values in
time-series data change gradually, as they depend on previous

VOLUME 11, 2023 128999



S. Lee et al.: Analyzing I/O Characteristics of Time-Series Data

FIGURE 2. Cassandra write process.

FIGURE 3. TimescaleDB architecture.

data points. Moreover, because the data is continuously
recorded, time-series data exhibits an append-dominated
workload with infrequent updates and deletions.

Figure 1 shows the overall data flow of time-series data
collected using multiple devices. As shown in the figure,
there are different hardware devices generating time-series
data such as CPU, gas sensors, and car sensors. Data
generated from numerous data sources is first sent to the
database system. Then, the received data is aggregated in
chronological order based on each stream with a single
timestamp. Also, the aggregated data are distinguished by
data sources and stored in various storage devices such as
HDD, SATA SSD, and NVMe SSD. As depicted in the
figure, the overall data flow of time-series data is similar
to other database systems. However, since the data from
multiple streams should be managed independently with
chronological information, it requires unique approaches to
handling time-series data. Thus, having a unique approach
to storing and analyzing time-series data is important for
improving performance.

B. MANAGING TIME SERIES DATA
1) NOSQL DATABASES
NoSQL databases such as Cassandra [16], MongoDB [17],
and RocksDB [18] are emerging to store unstructured data

with various types. In addition, it can be used to store
time-series data which also have different data streams
and types. Figure 2 shows the overall process of write
operations in one of the most popular NoSQL databases,
Cassandra. While we present Cassandra, the figure we
provided is also applicable to other NoSQL systems such
as LevelDB and RocksDB. Cassandra writes three important
data to the storage which are: commitlog, memtable, and
SSTable.

The commit log is an append-only record of all changes
made to a node for data persistence. This allows the database
system to prepare for unexpected shutdowns and recover any
changes that were not yet flushed to disk. After recording
changes into the commit log, the data is first stored in
the memtable. The memtable is an in-memory space where
the database buffer processes write operations. Data is first
written to the memtable, which resides in memory with the
key as the timestamp and the column as the value. When
a memtable is full with key-value pairs, it is flushed to
an immutable SSTable on disk to free up commitlog space
when the memory usage exceeds the set threshold or the
commit-log reaches its max size.

However, when using NoSQL to store time-series data,
it can be challenging to traverse multiple time-series data that
are stored in different SSTables since the data is organized
as key-value pairs. For example, when storing data from
multiple data sources, multiple NoSQL databases should
be created for each source. This is because the key in a
database is unique and cannot be shared among multiple
values. Since multiple sensors record the data at a single
timestamp, they cannot share a single key (timestamp) to store
each of their data. In addition, when analyzing the time-series
data from multiple sources, multiple get operations from
multiple databases are required, significantly increasing
the analysis overhead. Thus, when storing and analyzing
time-series data, an efficient data management scheme is
required.

2) TIME SERIES DATABASES
To support time-series data, time-series database such as
IoTDB [19], InfluxDB [7], OpenTSDB [20], and KairosDB
[21] are emerging. Among these time-series databases,
TimescaleDB [12] is a widely used database as it supports tra-
ditional SQL queries. It is implemented as the extension to the
existing popular Relational DBMS (RDBMS), PostgreSQL
[22]. Its goal is to reflect the characteristics of time-series
data, such as append-only, continuous, and large-scale, while
maintaining the existing data management mechanism of
the RDBMS. Figure 3 shows the overall architecture of
PostgreSQLwith TimescaleDB. First, when data is generated
from the different data sources, TimescaleDB continuously
aggregates data ❶. After data are aggregated, TimescaleDB
categorizes each data by the stream and records the data
into an abstract table called Hypertable ❷. A Hypertable is
composed of multiple chunks, which are subsets of data from
a stream. Each chunk holds data from a specific time range
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of the stream. If a chunk for a specific time range does not
exist when inserting data, Timescale automatically generates
a new chunk for that time range and stores the data within
it. As a result, by creating chunks based on time ranges and
data streams and effectivelymanagingmultiple chunkswithin
the Hypertable structure, time-series data can be analyzed
with both temporal and stream-specific information. This is
achieved while retaining support for the traditional RDBMS
interface.

For example, as illustrated in the figure, the chunk in
Hypertable N is configured to contain data exclusively within
the time range of 2023-06-01 to 2023-06-02 ❸. With this
configuration, data from 2023-06-03 is stored in a separate
chunk. After the chunks are created, if the compression is
enabled, the TimescaleDB compression engine compresses
the chunks to reduce the storage overhead ❹. TimescaleDB
compression engine consists of several compression algo-
rithms for different data types. For example, if the chunk
data is an integer, it is compressed with delta encoding [23],
simple-8b [24], delta of delta encoding [25], and run-length
encoding [26]. Also, in the case of a floating point, it is
compressed with XOR-based compression [25]. Moreover,
TimescaleDB can compress data using dictionary compres-
sion [25] that works by making a list of the possible values
that can appear, and then just storing an index into a dictionary
containing the unique values instead of storing values
directly. With these compression algorithms, TimescaleDB
can reduce the size of data by 80 percent, improving the over-
all storage utilization. The compression process is performed
in TimescaleDB at the application layer before generating
disk I/O requests to the file system layer. The compressed
request, with a reduced request size, is then sent to the
file system. Finally, the chunks are stored in the underlying
storage device such as HDD, SATA SSD, and NVMe SSD ❺.
After the chunks are stored, users can analyze through
Hypertable with SQL queries as they are using conventional
PostgreSQL ❻.
While time-series databases utilize the traditional RDBMS

interface and storage engine, they can exhibit different
characteristics due to their unique features. For instance,
the introduction of Hypertable can introduce complexity
to DBMS software and aggregate I/O operations to the
underlying storage devices, including HDDs, SATA SSDs,
and NVMe SSDs. When the configured time interval of
each chunk changes, it can impact the size of each request,
the processing of I/O requests, and the overall runtime of
the workload. Given the growing demand for storing and
analyzing time-series data, it becomes crucial to assess the
performance of time-series databases using emerging storage
devices such as SATA and NVMe SSDs. Consequently,
we evaluate the performance of a time-series database with
HDDs as traditional storage devices, and SATA and NVMe
SSDs as emerging storage devices, using a time-series data
workload.

FIGURE 4. Experimental procedure.

III. ANALYSIS
Figure 4 shows our overall experimental procedure used in the
paper. In this section, as depicted in the figure, we present the
results of our analysis of time-series databases using various
storage devices, including HDDs, SATA SSDs, and NVMe
SSDs, from the perspective of various I/O characteristics,
including runtime, throughput, data size, and more.

A. EXPERIMENTAL SETUP
1) SYSTEM SETUP
For the evaluation, we utilized a server equipped with
an Intel i9-9900K featuring 16 physical cores and a
maximum frequency of 5.0 GHz. It is equipped with
DDR4 DRAM, offering a capacity of 16GB. For storage
devices, we employed a Seagate BarraCuda Pro 7200 HDD
with a capacity of 1TB [27], a Transcend SSD230S 2.5 SSD
with 128 GB [28], and an Intel Optane 900P Internal
NVMe SSD with 280 GB [29]. We selected these storage
devices with diverse configurations to analyze the impact of
these devices on time-series data and databases. In terms of
software, the device is operating on Ubuntu 22.04.2 LTS with
the 5.15.0 Linux kernel.

2) WORKLOAD CHARACTERISTICS
For the evaluation, we employed the Time Series Benchmark
Suite (TSBS) [11], a benchmark specifically designed for
assessing time-series databases.Within TSBS, we utilized the
‘dev ops’ workload, which generates, inserts, and measures
time-series data related to system resources (such as CPU,
memory, disk, etc.) from 9 distinct systems (streams).
We used the scale flag of 1000 which generates 10GB of total
data. For the database, we used TimescaleDB [12] which is a
widely used time-series database that operates as an extension
of PostgreSQL [22].
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TABLE 1. Request types from Blktrace.

3) BLKTRACE
To analyze the I/O characteristics of the time-series data,
we collect the trace of I/O requests when the benchmark
and underlying database are running. For the collection of
I/O requests, we use the Blktrace [30] tool, which is a
default I/O traffic tracer for Linux, capturing block I/O
information on block devices at the block layer. By capturing
information at the block layer through Blktrace, we are
able to obtain the I/O characteristics after the requests have
been processed by other layers(e.g., memory management
and file system) and understand how they are issued to
underlying storage devices. For example, after parsing the
collected trace using Blkparse [31], the trace shows the
information of I/O requests such as process name, timestamp
of request that occurred, size of the request, and the type
of request. In addition, it defines various request types and
we focus on the following four request types as defined in
Table 1.

B. RUNTIME
To evaluate the effect of various storage devices on the time-
series database, we first analyze runtime using HDDs, SATA
SSDs, and NVMe SSDs.

1) WITHOUT COMPRESSION
To evaluate the impact of storage devices and compression
engines on time series data insertion performance, we mea-
sured the runtimes of storage devices using a benchmark
that performs write operations on the TSBS (Time Series
Benchmark Suite) with pre-generated 10GB data. For the
evaluation, we disabled the compression to focus solely
on the performance of each device without compression.
Additionally, we set different chunk sizes at 12 hours, 4 hours,
30 minutes, and one minute.

Figure 5 displays the runtime results of using HDD, SATA
SSD, andNVMe SSDwith different chunk sizes. The runtime
is represented as a square root due to the significant variations
observed among storage devices in the results. As depicted in
the figure, the runtime for a one-minute chunk size on HDD is
8538 seconds, which is 1.95 times higher than the runtime of
4371 seconds for the 30-minute chunk size. In contrast, the
runtime using SATA-SSD and NVMe SSD shows minimal
differences when using different chunk sizes. For SATA-SSD,
the result of a one-minute chunk size is 1154 seconds, only
1.05 times higher than the 30-minute chunk size runtime of
1095 seconds. Additionally, for NVMe SSD, the one-minute
chunk size yields 249 seconds, which is even lower than the
30-minute chunk size runtime of 257 seconds. Comparing

FIGURE 5. Benchmark runtime without data compression.

FIGURE 6. Benchmark runtime with data compression.

the slowest HDD runtime, NVMe significantly improves
performance by 33.22× in the case of a one-minute chunk
size.

These results demonstrate that the performance of under-
lying storage devices can significantly impact the overall
performance. While a small chunk size has negative effects
when using a slow storage device (e.g., HDD), the chunk
size does not exhibit any significant impact when it increases
beyond 30 minutes. Additionally, when faster storage devices
such as SATA SSD and NVMe SSD are utilized, the chunk
size has minimal impact on the performance.

2) COMPRESSION
Figure 6 displays the runtime results of utilizing HDD,
SATA SSD, and NVMe SSD with data compression enabled.
Additional experiments were conducted to analyze the effect
of data compression on the overall time-series database
performance. The results show that with data compression,
runtime with HDD and SATA SSD increased. For HDD, the
runtime of one-minute chunk size data is 9933 seconds, which
is 1395 seconds longer (16.34%) than without compression.
Similarly, when using a 12-hour chunk size with SATA
SSD, the runtime is 1712 seconds, representing an increase
of 683 seconds (39.93%) compared to the uncompressed
scenario. However, in the case of NVMe SSD, the runtime
difference between compression and no compression is
minimal, ranging from 1 to 2 seconds. Especially in the case
of a 30-minute chunk size, the runtime with the compression
engine decreased by 0.3 seconds compared to the result of
raw data.
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FIGURE 7. Throughput of storage device with one-minute chunk size compressed data.

TABLE 2. Bandwidth, throughput, and average utilization of devices.

These experiments with data compression enabled demon-
strate that while compression has a significant impact on
performance when utilizing slow storage devices, its effect
is negligible when adapting high-performance devices such
as NVMe SSDs. Therefore, since high-performance devices
are widely adopted for processing time-series data, using
compression can bemore beneficial as it reduces the total data
size while maintaining a similar runtime. These results lead
to our first observation.

Observation 1. The performance of the database is
significantly influenced by the performance of the underlying
storage device, resulting in differences of up to 33.22 times.
While chunk size affects the performance when using HDD,
it does not impact performance when using fast storage
devices (SATA and NVMe SSD). Additionally, utilizing
data compression can be beneficial when employing high-
performance devices, as it reduces the data size while
maintaining similar performance..

C. THROUGHPUT
While previous evaluations demonstrate that using high-
performance storage devices can enhance the performance of
time-series databases and reduce the overall runtime, they do
not indicate whether the time-series database fully utilizes the
potential of the storage devices. To determine whether the
database is fully exploiting the performance capabilities of
the underlying storage devices, we measure the throughput
of each device running identical benchmarks as the previous
section. By analyzing the throughput, we can verify the
extent of storage device utilization and determine whether
the slow performance of devices such as HDD and SATA
SSD is the primary bottleneck for the time-series databases.
To gather the throughput data for each device, we employed
Linux dstat [32], a real-time system resource monitoring tool
capable of collecting total disk I/O utilization.

Figure 7 displays the measured throughput for HDD,
SATA SSD, and NVMe SSD. The X-axis represents time
in seconds, and the Y-axis represents MB per second. Data
points are collected every second. Furthermore, in Table 2,
we provide maximum supported bandwidth by hardware,
recorded average throughput, and average utilization, for
each storage device. For HDD, the average throughput is
5.01 MB per second, with an average utilization of 3.3%.
Although the maximum throughput almost reaches 40 MB
per second, it constitutes less than 25% of the maximum
bandwidth. Regarding SATA SSD, the average throughput
is 16.61 MB per second, with an average utilization of
3.1%, and the maximum throughput is less than 20% of
the maximum bandwidth. Similarly, for NVMe, while the
average throughput is significantly higher at 126 MB per
second, with an average utilization of 6.3%, the maximum
throughput reaches around 800 MB per second, which is
less than 40% of the maximum bandwidth. In all cases,
regardless of the storage device, the time-series database does
not fully utilize the underlying storage devices. Even in the
best-case scenario when storage is maximally utilized, it still
utilizes less than 40% of the bandwidth of the storage devices.
These results highlight the potential bottleneck within the
storage software of time-series databases. Consequently,
optimization is necessary to ensure the full utilization of the
storage bandwidth.

Observation 2.As expected, the I/O performance improves
when adopting high-performance devices such as NVMe
SSD. However, for all the storage devices, the average
utilization remains below 10% and 40%, even when the
utilization is the highest. This shows that simply adopting
high-performance devices cannot resolve the bottleneck and
fully utilize the devices’ performance. Thus, there exists
significant potential for performance improvement through
optimization of the I/O software layer.

D. TOTAL DATA AND REQUEST SIZE
When storing time-series data from multiple streams, it is
organized based on timestamps. As all the data shares
the same timestamp, many time-series databases, such as
TimescaleDB, offer a compression engine to reduce the total
data size and storage capacity overhead. Apart from storage
capacity considerations, data size can influence not only the
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TABLE 3. Total data size in storage device.

FIGURE 8. Request size distribution during runtime with 12-hours chunk
size.

I/O performance during execution but also the lifespan of
the device [33], [34]. Thus, we analyze the impact of data
compression in terms of total data size and request size during
the execution of the benchmark.

Table 3 presents the total data size after the benchmark
finishes executing with compression enabled and disabled.
During the evaluation, the benchmark is configured to
generate 10GB of time-series data. As indicated in the
table, the total data size without compression is 8.2 GB.
However, with the compression engine enabled, the data size
is only 1.5 GB, which is 18% of the total data size without
compression. These results demonstrate the effectiveness
of compression in significantly reducing storage capacity
overhead.

While the total data size differs significantly after the
execution of the benchmark, it is also important to analyze the
total request size that was issued during the execution, as it
determines the I/O processing overhead. Table 4 shows the
changes in total request size with and without compression.
In addition, Figure 8 shows the distribution of requests
using different storage devices and compression. As shown
in the figure, the size of the requests gradually increases
throughout the runtime, irrespective of the storage devices or
compression.

TABLE 4. Changes in total request size with compression compared to
without compression. The unit is in MB.

FIGURE 9. Access pattern of NVMe SSD with 4-hours chunk size.

In terms of total request size, As shown in the table, in most
cases, the request size with compressed enabled is larger
than that without compression. For example, in the case of
an HDD with a one-minute chunk size, the total request
size is 2745 MB larger with compressed data compared to
without compression. Similarly, with a one-minute chunk
size, an NVMe SSD has a difference of 5332 MB in
favor of compression. In contrast, SATA SSD exhibits
smaller differences in a compression-enabled environment
for chunk sizes of 4 hours and 1 minute, showing 8088 MB
and 4310 MB respectively, compared to the scenario without
compression. These results are surprising because, with the
compression engine at the application layer, there should
be fewer requests generated with smaller sizes compared to
when there is no compression. Thus, the results do not align
with the common perception that compression reduces the
I/O amount due to requests with compressed data size. This
leads to our third observation.

Observation 3. Enabling compression can significantly
reduce the total data size by 18%. However, the total
request size during execution is similar or even larger when
compression is enabled. These findings suggest that there
are duplicated or unnecessary I/O requests that disrupt the
performance of storage devices. Nevertheless, it is advisable
to utilize compression to reduce the total data size, as the total
requests do not differ significantly.

E. ACCESS PATTERN, I/O TYPE AND PROCESSES
To further analyze the I/O characteristics of time-series
databases, we present the access pattern, I/O type, and
processes that perform the I/O operations.

1) ACCESS PATTERN
In the aspect of the performance of the storage device,
sequential and random writes are one of the main factors.
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FIGURE 10. I/O request types for different storage devices and chunk sizes.

Thus, we analyze the access pattern and analyze the spatial
locality of the requests. Figure 9 shows the access pattern of
I/O requests of NVMe SSD with a 4-hour chunk size. The
X-axis represents time in seconds, and the Y-axis represents
the block address of I/O requests. Each data point represents
write (W), merged write (WM), and synchronized write (WS)
I/O requests. As shown in the figure, the writing process
is generated randomly. Many of the synchronized write
requests, which incur the most overhead, target the block
requests between 100 million and 200 million, which are
the block addresses of the log file. This result is surprising
because time-series data have strong temporal and spatial
locality due to the shared timestamp, but the write requests
show a random write pattern with no temporal and spatial
locality.

2) I/O TYPE
Figure 10 shows the ratio of each I/O request types collected
from blktrace, as previouslymentioned in Table 1. Each graph
bar consists of a ratio of each event.

In the case of HDD, as depicted in Figure 10a, almost
no read operations occurred throughout all chuck sizes.
In addition, using a smaller chunk size of one minute
increased the write synchronization ratio by 11.2% compared
with 12 hours. Similarly, Figure 10b demonstrates that the
ratio of write synchronization increased by 27.8% when
transitioning from a chunk size of 12 hours to one minute
in SATA SSD. However, NVMe SSD exhibits a different
pattern, as depicted in Figure 10c. For a chunk size of
12 hours, 42.5% of requests are read-ahead operations.
Furthermore, the ratio of write synchronization is notably
higher compared to that of HDD and SATA SSD, accounting
for up to 82.7%.

TABLE 5. I/O request count.

This demonstrates that as the performance of devices
improves, the write requests are synchronized directly by
the database rather than buffered in memory. To further
investigate this, we analyzed the changes in request count

using different storage devices and chunk sizes, as shown
in Table 5. As depicted in the table, the number of I/O
requests increases significantly in all storage devices, by up
to 2.08×. This is because when using a 1-minute chunk size,
the data is issued more frequently to the underlying storage
devices. Thus, the data cannot be buffered in memory and
merged into a few large requests. Additionally, the number of
write requests is higher in general when using NVMe SSD
compared to using HDD and SATA SSD. This conforms with
our previous analysis that requests immediately synchronize
with small request sizes rather than being buffered and
merged into a large request.

3) I/O PROCESSES
In addition to analyzing the types of I/O requests, we also
investigated how these requests are processed by the pro-
cesses. Using blktrace, we collected data on the processes
handling the I/O requests. Upon analyzing the data, we found
that the majority of the requests were managed by three
processes: jbd2, kworker, and postgres. In the ext4 [35]
file system, jbd2 [36] is a journaling module responsible
for backing up metadata and data within the file system.
Kworker [37], which stands for kernel worker, is a kernel
process tasked with handling I/O requests issued to the
kernel. Lastly, postgres refers to the PostgreSQL database that
directly performs I/O operations received from time-series
databases.

Figure 11 shows the process ratio for different storage
devices and chunk sizes. For HDD, as evident in Figure 11a
a significant portion of the requests are managed by the
kworker process, reaching up to 50.2%. In the case of SATA
SSD, as shown in Figure 11b, the kworker process ratio
decreases, accounting for only up to 28.8%. In contrast,
the majority of requests are directly handled by postgres.
Finally, Figure 11c depicts the process ratio of NVMe SSD.
In contrast to HDD and SATA SSD, the kworker process ratio
is only 15.8% or lower. Most of the requests are handled by
postgreSQL directly by up to 92.6%.

These findings demonstrate that when the performance
of the device is lower, writes are indirectly handled by the
kworker process. In contrast, as high-performance devices
are employed, writes are directly executed by the time-series
database. These results lead to our fourth observation.
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FIGURE 11. I/O handling process for different storage devices and chunk sizes.

Observation 4. Time-series workloads are write-dominant
and append-only workloads. However, our analysis results
show that random write requests are generated in the block
layer. Furthermore, as the performance of devices increases,
the ratio of synchronized writes from the time-series database
also increases. Therefore, it becomes crucial to optimize
the write request pattern and minimize synchronization
overhead in order to optimize time-series databases for high-
performance devices.

F. SCALABILITY
In real-world, time-series data is inserted by many different
data sources such as sensors and devices. It is possible for
multiple clients to concurrently issue requests to a single
database system. Therefore, the time-series database system
should be able to provide good performance when using
a large number of clients. To analyze this, we performed
analysis with an increasing number of clients and verified the
scalability of time-series databases.

Figure 12 depicts the runtime with an increasing number
of clients. We enabled compression in all cases, and each bar
graph represents HDD, SATA SSD, and NVMe SSD.

FIGURE 12. Runtime with different number of clients.

As shown in the figure, in the case of HDD, the runtime
decreases as the number of clients increases. The runtime
for a single client is 9657 seconds, while for 16 clients, it is
6360 seconds, decreasing by a factor of 1.52. In the case of
SATA SSD, the runtime increases as the number of clients
increases. For 16 clients, the runtime is 2570 seconds, which
is 1.96× higher than the 1309 seconds recorded for a single
client. In the case of NVMe SSD, the runtime is 250 seconds
with one worker and 61 seconds with 16 workers, resulting in
a performance improvement of 4.09×.

The results indicate that the performance of HDD
decreases at a certain number of clients, while that of
SATA SSD decreases as the number of clients increases.
We believe this is due to the limited parallelism offered
by each device, and a high number of clients creating
I/O request contention. In contrast, when high-performance
storage devices are utilized, the increasing number of clients
enhances the performance, as these devices possess high
device parallelism and can support the high I/O request rates
caused by a large number of clients. This leads to the fifth and
final observation.

Observation 5. When utilizing high-performance devices
with parallelism, the time-series database exhibits strong
scalability. Therefore, an increasing number of clients can
enhance the performance of time-series databases.

IV. RELATED WORK
A. TIME-SERIES DATA ANALYSIS
There have been many studies that analyze time-series data
and its characteristics. Wang et al. [8] proposed a method for
clustering time-series based on data structural characteristics.
This method focuses on global features extracted from the
time series, which are utilized for clustering point values
without relying on distance metrics. Alhnaity et al. [38] adopt
a prediction model that addresses problems arising from
the financial time-series data characteristics, which include
difficulties in capturing states and accurately describing
financial time-series data. Lubba et al. [39] introduces a
method to infer small sets of time-series features that exhibit
strong classification performance across a given collection of
time-series problems while minimizing redundancy.

Our study aligns with these research efforts in terms of
analyzing time-series data based on their data characteristics.
However, in contrast, our research focuses on analyzing the
data from the perspective of I/O characteristics, utilizing
emerging storage devices such as SATA SSD and NVMe
SSD.

B. IMPROVING DATABASE PERFORMANCE USING
EMERGING STORAGE DEVICES
There have been many studies that improved the performance
of database systems using emerging storage devices such
as SATA SSD and NVMe SSD. Xu et al. [9] analyzed the
performance and I/O characteristics of both relational and
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NoSQL databases using emerging storage devices such as
SATA and NVMe SSD. Iwata et al. [10] proposed a method
to maximize overall system throughput by writing to SATA
SSD and NVMe SSD disks concurrently with RocksDB. Kim
and Son [40] proposed a key reshaping technique to improve
the performance of KV stores with high-performance storage
devices such as SATA and NVMe SSD.

Our study aligns with these studies in terms of evaluating
database performance using emerging storage devices. How-
ever, in contrast, our study aims to analyze the performance
of the time-series database and focuses on various I/O char-
acteristics such as runtime, throughput, total data size, total
request count, request type, and request handling processes.
Through this, we aim to identify areas for optimization to
achieve high performance while reflecting the characteristics
of time-series data when adapting high-performance devices
in time-series databases.

V. CONCLUSION
In this paper, we analyze the performance of various types
of storage devices based on time-series data characteristics.
To achieve this, we evaluate and analyze each device across
aspects such as runtime, scalability, throughput, request
size, and request type. The analysis results show that
while adopting high-performance devices can improve the
performance of time-series databases, the utilization remains
under 10% in all devices. This indicates that naive adaptation
of fast storage devices has limited performance improvement
and further optimization is needed to fully exploit the
storage hardware. Additionally, our detailed analysis of I/O
characteristics reveals that synchronization overhead is a key
bottleneck, and improving the scalability of the database can
enhance its performance.

Thus, in future work, we will investigate the reasons for
the low utilization in each device by analyzing database or
kernel-level code, with a particular focus on synchronization
primitives such as the flush operation and scalability
primitives such as locking. Furthermore, we will utilize new
emerging storage hardware, such as Zoned Namespace SSD,
which is composed of several logical zones that store related
data in sequential order, to handle time-series data based on its
characteristics, such as a write-dominant workload and chunk
data structure.
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