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a b s t r a c t

Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive
enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals,
MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated
pharmacological mechanism on brain aging.
Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory
function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a
major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic
parameters, and memory function in aged GPx-1 knockout KOmice.
Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice.
Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFkB DNA binding
activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident
than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and
ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-
immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-
mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phos-
phorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance
cognition.
Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-
mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK
signaling cascade.
© 2023 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Escalating evidence indicated that Korean ginseng (Panax
ginseng Meyer) plays a role as antioxidant [1e4] and anti-
inflammatory agents [4,5]. In general, ginseng supply is mainly
available via the culture in the field [6]. Mountain cultivated
ginseng (MCG), however, is grown in mountains before application.
This wild-simulated method is conducted without additional
agricultural chemicals [7,8]. Therefore, MCG is highly required for
medical use.

Previously we demonstrated that MCG mitigated cognitive
decline [2,3]. More information on MCG application is shown in
Supplementary information (I). In particular, MCG requires up-
regulation of glutathione to protect against cognitive impairment
induced by phencyclidine in mice [3]. It is recognized that GSH is an
essential substrate of glutathione peroxidase (GPx). Importantly,
compelling evidence indicated that glutathione peroxidase-1 (GPx-
1) gene, the major subtype of GPx in most tissues, ameliorated
diverse aging conditions [9e11].

It is recognized that cognitive impairment is considered one of
the most predominant outcomes of aging [12]. Thus, it is mean-
ingful to prevent cognitive impairments for healthy aging [13].
Much of the study on aging and age-related diseases mainly
focused on the role of the cerebral redox system. We [14e22] and
others [23,24] proposed that the GPx-1 gene significantly amelio-
rated diverse conditions of cognitive impairments. We also sug-
gested that ginsenosides might be a GPx-1 inducer against
neuropsychotoxic conditions [1,25]. However, until now, it is un-
clear whetherMCG itself modulates cognitive impairments in aging
organisms. Therefore, we investigated here whether MCG up-
regulates GPx-1-related redox mechanism to modulate memory
dysfunction in agedmice. For the better understanding on the Nrf2/
ChAT/ERK pathway, please refer to Supplementary information (II).

2. Materials and methods

2.1. Animals

All mice used, treated per the National Institutes of Health (NIH)
Public Health Service Policy on Humane Care and Use of Laboratory
Animals (2015 Edition; grants.nih.gov/grants/olaw/references/
PHSPolicyLabAnimals.pdf) and according to the Institutional Ani-
mal Care and Use Committee (IACUC) of Kangwon National Uni-
versity (KW-210803-1). C57BL/6J (wild-type, WT) mice (Bio
Genomics, Inc., Charles River Technology, Gapyung-Gun, Gyeonggi-
Do, Republic of Korea), were bred in a temperature-controlled fa-
cility (24 ± 2 �C) under a 12-h light/dark cycle and fed ad libitum.
Mice were allowed under these conditions for 2 weeks prior to the
experiment. 12 months old (12 M) male mice were used as aged
mice. Glutathione peroxidase-1 knockout (GPx-1 KO) mice were
generated by HO et al [26] (Supplementary Materials and Methods
1.1).

2.2. Drug treatment

MCGwas provided by Prof. Sung Kwon Ko (Semyung University,
Jecheon, Republic of Korea) (Supplementary Fig. S2, and
Supplementary Table S1) and was stored at �20�C.

Since changes in redox and cholinergic parameters were most
significant in agedmice (please refer to Figs.1 and 3), we focused on
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aged mice for further study. Nrf2 inhibitor brusatol (Sigma-Aldrich,
USA), Trk inhibitor k252a (Enzo Life Sciences, Inc., NY, U.S.A.), and
ERK inhibitor U0126 (Tocris Bioscience; Avonmouth, Bristol, UK)
were dissolved in dimethyl sulfoxide (DMSO). The last concentra-
tion of DMSO was 5% (v/v) [27]. Aged GPx-1 and WT mice were
treated with MCG (20 mg/kg, i.p. /day) for 30 successive days. The
dosing term and administration route of MCG are comparable to
those of ginsenoside Re [22].

Brusatol (1mg/kg, i.p.), k252a (0.3 mg/kg, i.p.) or U0126 (20mg/
2ml, i.c.v/brain) was treated 90min after MCG and 90 min before
every memory tests (novel object recognition and passive avoid-
ance tests). The neurochemical assessments were conducted 2 h
after the conclusion of the passive avoidance test (Supplementary
Fig. S1). Simultaneously, double-labeling immunostaining was
conducted using aged GPx-1 KO mice.
2.3. Reactive oxygen species (ROS)

ROS was examined by assessing the conversion of dichloro-
fluorescin (DCF) from 20,70-dichlorofluorescin diacetate (DCFH-DA)
[22,28]. Please refer to Supplementary Materials and Methods 1.3.
2.4. 4-Hydroxynonenal (HNE)

For the extent of lipid peroxidation, HNEwasmeasured using an
OxiSelect™ HNE adduct ELISA kit (Cell Biolabs, Inc., San Diego, CA,
U.S.A.) [22]. Supplementary Materials and Methods 1.4.
2.5. Protein carbonyl

Protein carbonyl level was examined for the understanding of
protein oxidation was examined as demonstrated by Oliver et al
[29]. Please refer to Supplementary Materials and Methods 1.5.
2.6. GSH and GSSG

Hippocampal tissues were dissected immediately after decapi-
tation. Then, GSH and GSSG were examined upon tissue dissection
as previously described [20,22]. As previously described, HPLC-UV/
Vis detection system (Model LC-20AT and SPD-20A, Shimadzu) was
used to separate and analyze the residual aqueous phase containing
derived glutathione [30]. Please refer to Supplementary Materials
and Methods 1.6.
2.7. Nuclear fraction

The extraction of nuclear fraction from hippocampal tissue was
performed in accordance to the manufacturer's instructions of the
Nuclear Extraction Kit (#40410; Active Motif, Carlsbad, CA, U.S.A.)
[31]. Please refer to Supplementary Materials and Methods 1.7.
2.8. NF-kB DNA-binding activity

Following the manufacturer's instructions, the NF-kB p65 DNA-
binding activity was determined by using the TransAM® NF-kB
transcription factor ELISA kit (Active Motif) [16]. Please refer to
Supplementary Materials and Methods 1.8.



Fig. 1. Aging facilitates oxidative burden in the hippocampus of WT and GPx-1 KO mice; effects of MCG. Changes in reactive oxygen species (ROS) (A), 4-hydroxynonenal (HNE) (B),
protein carbonyl (C) over time. Time-course of changes in GSH (D) and GSSG (E). The effects of MCG against alterations in ROS (F), HNE (G), protein carbonyl (H), GSH (I), and GSSG
(J). M ¼months old. Each value represents the mean ± S.E.M. of 8 animals. *P < 0.05 vs. corresponding 3 M. #P < 0.05, ##P < 0.01 vs. correspondingWT. yP < 0.05, yyP < 0.01 vs. Saline
/ WT. xP < 0.05, xxP < 0.01 vs. Saline / GPx-1 KO. Two-way ANOVA followed by Fisher's LSD pairwise comparisons were used to analyze the data.
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2.9. Nuclear factor erythroid-2-related factor 2 (Nrf2) DNA-binding
activity

According to manufacturer's instructions, Nrf2 DNA-binding
activity was measured using a TransAM® Nrf2 Transcription Fac-
tor ELISA Kit (Active Motif) [32]. Please refer to Supplementary
Materials and Methods 1.9.

2.10. Acetylcholine (ACh) level

The hippocampal tissues were homogenated as described pre-
viously [19]. ACh levels in the supernatant were assessed by using
563
an Amplex® Red Acetylcholine/Acetylcholinesterase Assay Kit (A-
12217; Invitrogen, USA) [19]. Please refer to Supplementary Mate-
rials and Methods 1.10.
2.11. Acetylcholine esterase (AChE) and choline acetyltransferase
(ChAT) activities

A spectrophotometer was used to measure the absorbance at
324 nm using an Amplex® Red Acetylcholine/Acetylcholinesterase
Assay Kit (A-12217; Invitrogen) [19]. Please refer to Supplementary
Materials and Methods 1.11.



Fig. 1. (continued).
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2.12. Double-labeled immunocytochemistry

Five mm thickness of brain sections from GPx-1 KO mice were
positioned on the same slide and processed for immunostaining.
Adhered tissues on poly-L-lysine-precoated coverslips, were fixed
in PBS-4% para-formaldehyde (PFA), and were permeabilized with
0.1% Triton X-100 in PBS for 15 min. After saturation with PBS-1%
BSA, tissues were incubated for 40 min with the primary anti-
body and were incubated for 40 min with the secondary antibody
as follows: mouse anti-Nrf2 (1:100) (Santa Cruz, TX, USA), goat
anti-ChAT (1:100) (Sigma-Aldrich, St. Louis, MO, USA). Secondary
antibodies were anti-mouse IgG H&L (Alexa Fluor® 488) (1:200)
(Abcam, Cambridge, MA, USA), anti-goat IgG H&L (Alexa Fluor®
546) (1:200) (Invitrogen, Carlsbad, CA, USA) [33]. Please refer to
Supplementary Materials and Methods 1.12.

2.13. Western blot analysis

Whole proteins extracted from hippocampal tissues were
quantified and electrophoresed as described previously [4]. After
that, the membranes were preincubated with 3% non-fat milk for
564
30 min and incubated overnight at 4 �C with primary antibody
against ChAT (1:1000, Sigma-Aldrich), ERK (1:10000, Cell
Signaling), p-ERK (1:1000, Cell Signaling), Keap-1 (1:1000; Abcam),
HO-1 (1:2000; Abcam), NQO-1 (1:1000; Abcam) or b-actin
(1:30000, Sigma-Aldrich) for 1 night. Membranes were incubated
with HRP-conjugated secondary anti-rabbit IgG (1:5000, GE
healthcare, Piscataway, NJ, USA), anti-goat IgG (1:5000, Sigma-
Aldrich) or anti-mouse IgG (1:5000, Sigma-Aldrich) for 2 h.
Please refer to Supplementary Materials and Methods 1.13.

2.14. Novel object recognition test (NORT)

The NORT was conducted as shown previously [34]. The appa-
ratus consisted of a Plexiglas open-field box (40 � 40 � 40 cm).
Please refer to Supplementary Materials and Methods 1.14.

2.15. Passive avoidance test

Using a Gemini Avoidance System (San Diego Instrument, San
Diego, CA) the passive avoidance test was assessed according to the
protocol described previously [17,35],. The apparatus was divided
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into a two-compartment shuttle chamber with a constant current
shock generator. For both acquisition and retention trials (cut-of
time, 300 s), the latencies in seconds were measured as the time
between placement into the lighted chamber and entry into the
dark chamber [17,35]. Please refer to Supplementary Materials and
Methods 1.15.

2.16. Data analysis

IBM SPSS ver.24.0 (IBM, Chicago, IL, U.S.A) software was used to
analyze data using a one-way ANOVA or two-way ANOVA for
repeated measures followed by Fisher's LSD pairwise comparisons.
P values less than 0.05 were considered statistically significant.

3. Results

3.1. Aging facilitates oxidative burden, GSH, and GSSG in the
hippocampus of GPx-1 KO mice; effects of MCG

As shown in Supplementary Fig. S1A of experimental design,
redox parameters were examined (Fig. 1). Oxidative markers were
significantly increased in aged WT mice (ROS, HNE, and protein
carbonyl; P < 0.05 vs. those of 3 M WT mice) and aged GPx-1 KO
Fig. 2. Aging alters NF-kB DNA binding and Nrf2 DNA binding activities in the hippocampus
and Nrf2 DNA binding activity (B) over time. Effects of MCG against aging-induced changes i
Each value represents the mean ± S.E.M. of 8 animals. *P < 0.05 vs. corresponding 3 M. #P < 0
vs. Saline / GPx-1 KO. Two-way ANOVA followed by Fisher's LSD pairwise comparisons we
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mice (ROS, HNE, and protein carbonyl; P < 0.05 vs. those of 3 MWT
mice) than 3 M WT and GPx-1 KO mice, respectively. Oxidative
parameters of aged GPx-1 KO mice were consistently higher (ROS,
HNE, and protein carbonyl; P < 0.05 vs. those of aged WT mice)
than those of aged WT mice (Fig. 1AeC). On the other hand, aged
WTmice significantly decreased (P < 0.01 vs. 3 Mmice; P < 0.05 vs.
6 Mmice) GSH levels. GPx-1 KO significantly lowered GSH levels (3
M WT vs. GPx-1 KO; P < 0.01.6 M WT vs. GPx-1 KO; P < 0.01. Aged
WT vs. GPx-1 KO; P < 0.01) in aged mice. On the other hand, GSSG
level was significantly increased aged mice (WT or GPx-1 KO;
P < 0.05 vs. 3 M mice) (Fig. 1D and E).

Thus, we focused on aged animals for further study. Although
MCG did not significantly attenuate oxidative parameters of aged
WT mice, MCG significantly attenuated (ROS, HNE, and protein
carbonyl; P < 0.05 vs. those of aged GPx-1 KO mice, respectively)
oxidative parameters of aged GPx-1 KO mice (Fig. 1FeH). MCG
significantly attenuated reduced GSH levels in aged mice. This
attenuation seemed to be more underlined in aged GPx-1 KO mice
(P < 0.01 vs. saline/GPx-1 KO) than aged WT mice (P < 0.05 vs.
saline/WT). Although MCG did not significantly affect GSSG level in
aged WT mice, MCG significantly attenuated GSSG level in aged
GPx-1 KO mice (P < 0.01 vs. saline/aged GPx-1 KO mice) (Fig. 1I and
J).
of WT and GPx-1 KO mice; effects of MCG. Changes in NF-kB DNA binding activity (A)
n NF-kB DNA binding activity (C) and in Nrf2 DNA binding activity (D). M ¼ months old.
.01 vs. corresponding WT. þP<0.05 vs. 6 M. yP < 0.05, yyP < 0.01 vs. Saline / WT. xP < 0.01
re used to analyze the data.
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3.2. Aging alters DNA binding activities of NF-kB and Nrf2 in the
hippocampus of WT and GPx-1 KO mice; effects of MCG

As shown in Fig. 2A and B, NF-kB DNA binding activity of aged
WT (P < 0.05) and GPx-1 KO mice (P < 0.05) were significantly
higher than that of 3 M WT mice, respectively. NF-kB DNA binding
activity of aged GPx-1 KO mice is significantly higher (P < 0.05)
than that of aged WT mice (Fig. 2A). On the other hand, Nrf2 DNA
binding activity appeared to be decreased over time (Fig. 2B). Nrf2
DNA binding activity of aged WT and GPx-1 KO mice was signifi-
cantly lower (P < 0.05) than that of 3 M WT and GPx-1 KO mice,
respectively. Six M (P < 0.05 vs. correspondingWT) and aged GPx-1
KO mice (P < 0.01 vs. corresponding WT) were lower than corre-
sponding WT mice. Thus, it is plausible that alteration of Nrf2 DNA
binding activity is more pronounced than that of NF-kB DNA
binding activity during aging. Since changes in aged animals are
most significant, we focused on aged animals to assess MCG-
mediated activity. As shown in Fig. 2C, NF-kB DNA binding activ-
ity of aged GPx-1 KO mice is higher (P < 0.05) than that of agedWT
mice. As manifested in Fig. 2D, Nrf2 DNA binding activity of aged
GPx-1 KO mice was lower (P < 0.01) than that of aged WT mice.
MCG appeared to be increased Nrf2 DNA binding activity in aged
WT mice. In contrast, MCG significantly increased (P < 0.01) Nrf2
DNA binding activity in aged GPx-1 KO mice. Consistently, MCG
attenuated the alteration in Keap-1, HO-1, and NQO-1 expressions
in aged-WT and aged GPx-1 KO mice (Supplementary Fig. S4).
Fig. 3. Aging alters acetylcholine (ACh) level, choline acetyltransferase (ChAT), and
acetylcholine esterase (AChE) activities in the hippocampus of WT and GPx-1 KO mice;
effects of MCG. Changes in ACh level (A), ChAT activity (B), and AChE activity (C) over
time. M ¼ months old. Each value represents the mean ± S.E.M. of 8 animals. *P < 0.05
vs. corresponding 3 M. #P < 0.05, ##P < 0.01 vs. corresponding WT. þP<0.05 vs. cor-
responding 6 M. Two-way ANOVA followed by Fisher's LSD pairwise comparisons were
used to analyze the data.
3.3. Aging alters acetylcholine (ACh) level, choline acetyltransferase
(ChAT), and acetylcholine esterase (AChE) activities in the
hippocampus of WT and GPx-1 KO mice

As shown in Fig. 3A, ACh level of aged WT (P < 0.05 vs. 3 M WT
mice) and GPx-1 KO mice (P < 0.05 vs. 3 M GPx-1 KO mice. P < 0.05
vs. 6 M GPx-1 KO mice) were significantly lower than that of cor-
responding mice, respectively. ACh levels of aged GPx-1 KO mice
were significantly lower (P < 0.01) than that of agedWTmice. Time
course of change of ACh level might be in line with that of ChAT
activity.

As shown in Fig. 3B, ChAT activity of aged WT (P < 0.01 vs. 3 M
old WT mice) and GPx-1 KO mice (P < 0.01 vs. 3 M GPx-1 KO mice)
were significantly lower than that of corresponding mice, respec-
tively. ChAT activity of 6 M old GPx-1 KO mice was lower (P < 0.01)
than that of 6 MWTmice. Consistently, ChAT activity of aged GPx-1
KO mice was significantly lower (P < 0.01) than that of aged WT
mice. In contrast, AChE activity of aged GPx-1 KO was significantly
higher (P < 0.05) than 3 M GPx-1 KO or aged WT mice (Fig. 3C).
Thus, ChAT activity seems to be more sensitive than AChE activity
during the aging process.
3.4. MCG enhances Nrf2- and ChAT-immunoreactivities (IRs) in the
same cellular population of aged GPx-1 KO mice

Because we found that MCG significantly increased Nrf2 DNA
binding activity and ChAT activities mainly in aged GPx-1 KO mice,
we conducted double-labelling immunocytochemistry to under-
stand the immunodistribution of Nrf2 and ChAT-IRs.

As shown in representative photomicrograph on the double-
labelling immunocytochemistry of Nrf2 and ChAT (Fig. 4A), MCG
significantly increased Nrf2-IR in the dentate gyrus (DG) (P < 0.01)
and in the CA1 (P < 0.01) and CA3 (P < 0.01) regions in the aged
GPx-1 KO mice (Fig. 4B). Consistently, ChAT-IR in the DG (P < 0.01)
and in the CA1 (P < 0.01) and CA3 (P < 0.01) in the aged GPx-1 KO
mice (Fig. 4C). Most Nrf2-IR was significantly co-localized in the
ChAT-immunoreactive cells (Fig. 4D).
566
3.5. MCG requires hippocampal activation of Nrf2, ChAT, and ERK
signalings in aged GPx-1 KO mice

Because we [27] and others [36e38] suggested that BDNF re-
ceptor tyrosine kinase B (TrkB) inhibitor k252a also inhibits ChAT,
we used k252a to inhibit ChAT level.

As shown in Fig. 5A and B, we asked whether MCG-related
pharmacological activity is associated with Nrf2 signaling for
inducing ChAT. Although aged GPx-1 KO showed significantly
reduced ChAT activity in mice, MCG significantly attenuated this
reduction. This attenuation was significantly counteracted by bru-
satol or k252a suggesting that Nrf2 mediates up-regulation of ChAT
activity in the presence of MCG (Fig. 5A). On the other hand, MCG-
mediated attenuation was not altered by U0126. This profile of
ChAT activity is comparable to that of ChAT expression in the cur-
rent experimental condition (Fig. 5B). ERK inhibitor U0126 did not
affect MCG-mediated ChAT induction (Fig. 5A and B). As shown in
Fig. 5C, Gpx-1 KO itself significantly decreased ERK



Fig. 4. MCG enhances co-localized immunoreactivities of Nrf2- and ChAT in the same hippocampal cells of GPx-1 KO mice. The representative photomicrograph of the double-
labeling immunocytochemistry of Nrf2 and ChAT (A). Effects of MCG on aging-induced changes in Nrf2-IR (B), ChAT-IR (C), and co-localization of Nrf2 and ChAT (D). Each value
represents the mean ± S.E.M. of 4 animals. *P < 0.01 vs. corresponding Saline. One-way ANOVA followed by Fisher's LSD pairwise comparisons were used to analyze the data.
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Fig. 5. Effects of brusatol, k252a, and U0126 on MCG-mediated pharmacological ac-
tivity against ChAT activity (A) and ChAT expression (B) and effect of k252a on MCG-
mediated pharmacological activity against ERK phsphorylation in the hippocampus
of aged GPx-1 KO mice. Each value represents the mean ± S.E.M. of 5 animals (ChAT
activity) and 3 animals (ChAT and ERK expressions). *P < 0.05, **P < 0.01 vs. Saline /
WT. #P < 0.05 vs. Saline / GPx-1 KO. xP < 0.05 vs. MCG / GPx-1 KO. One-way ANOVA
followed by Fisher's LSD pairwise comparisons was used to analyze the data.

Fig. 6. Effects of brusatol, k252a, and U0126 on MCG-mediated pharmacological ac-
tivity against novel object recognition (A) and passive avoidance tests (B) in aged GPx-
1 KO mice. Each value represents the mean ± S.E.M. of 8 animals. *P < 0.05 vs. Saline /
WT. #P < 0.05 vs. Saline / GPx-1 KO. xP < 0.05 vs. MCG / GPx-1 KO. Two-way ANOVA
followed by Fisher's LSD pairwise comparisons were used to analyze the data.
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phosphorylation (P < 0.05 vs. aged WT mice) in aged mice. MCG
significantly mitigated (P < 0.05) this decrease. This mitigation was
significantly counteracted by k252a (Fig. 5C), suggesting that ChAT
can be an upstream molecule for ERK signaling.
3.6. MCG-mediated memory enhancement is associated with
activations of Nrf, TrkB/ChAT, and ERK in aged GPx-1 KO mice

As shown in Fig. 6. we asked whether MCG modulates signaling
cascades of Nrf2, ChAT, and ERK for attenuating cognitive
dysfunction in aged GPx-1 KO mice. As shown in Fig. 6A, GPx-1 KO
showed impaired (P < 0.05 vs. agedWTmice) performance in novel
object recognition test (NORT) in aged mice. MCG significantly
ameliorated (P < 0.05 vs. Saline/aged GPx-1 KO mice) memory
impairment in NORT in aged GPx-1 KO mice. The memory function
with or without MCG as evaluated by passive avoidance tests
(Fig. 6B) is comparable to that by NORT. MCG-mediated memory-
enhancing effects were significantly inhibited by brusatol, k252a, or
U0126, indicating that MCG requires activations of Nrf2, ChAT, and
ERK for cognitive enhancements in aged GPx-1 KO mice. In
568
addition, please refer to Supplementary Fig. S3 for behavioral data
in the absence of MCG.

4. Discussion

Unexpectedly, we observed that GPx-1 KO did not show any
compensative induction in Nrf2 DNA binding activity in the aged
mice, but GPx-1 KO showed significant inhibition of Nrf2 DNA
binding activity [For the better understanding, please refer to
Supplementary information (III)]. The degree of inhibition in Nrf2
system induced by GPx-1 KO in aged mice appeared to be more
pronounced than that of activation in NFkB system. In addition,
altered activity in ChAT was more pronounced than that in AChE
activity in the aged GPx-1 KO mice. MCG significantly attenuated
reductions in Nrf2 system and ChAT level in aged GPx-1 KO mice.
Co-localization of Nrf2-IR and ChAT-IR was noted in the same cell of
the hippocampus. Therefore, we suggest that GPx-1 KO is a pre-
requisite for cognitive impairment in the aging organism and that
MCG-mediated cognition enhancement is associated with the
activation of the Nrf2, ChAT, and ERK signaling cascade.

Since cerebral catalase activity is low [39], GPx is deemed as one
of the most important peroxide (i.e., H2O2) scavengers in the brain
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[16]. Particularly, the Se-dependent GPx-1 isoform is the major one
in the brain [16,40,41]. Previously, we [16] and others [42]
demonstrated that GPx-1 depletion increased systemic oxidative
stress in mice. Furthermore, increased senescence was demon-
strated for fibroblasts from GPx-1 KO mice [42]. Similarly, we
showed mechanistic links between hippocampal alteration of
redox and cholinergic systems in aged GPx-1 KO animals. Impor-
tantly, we demonstrated that GPx-1 gene-encoded adenoviral
vector significantly blocked b-amyloid (1-42)-induced cholinergic
decline in GPx-1 KO mice [17,19], suggesting that the GPx-1 gene is
an endogenous factor for enhancing cognitive/cholinergic functions
[16,17,19].

Consistently, compelling evidence suggested that the regula-
tions of GPx levels by ginseng treatment can be responsible for
protecting ROS-associated disorders [43], suggesting that ginse-
nosides attenuate oxidative burden, via GPx induction [44]. Simi-
larly, we reported that MCG significantly attenuates recognition
memory impairments induced by psychotoxic insult (i.e. phency-
clidine treatment) via a GSH synthetic system including GPx in the
prefrontal cortex of mice [3]. More importantly, we demonstrated
that the phencyclidine-induced recognition memory deficit is
associated with the inhibition of the GPx/GPx-1-mediated Nrf2/
GSH synthetic pathway [20] and that ginsenoside Re plays a major
role in MCG-mediated efficacy [1,3].

We showed the major component of ginsenosides in MCG
expressed an anti-inflammatory potential by antioxidant activity
[4,45]. By theway, it was considered that Nrf2 induced anti-oxidant
and anti-inflammatory genes. Consistently, here we showed that
Nrf2 inhibitor brusatol counteracted MCG-mediated signaling
cascade, suggesting that MCG facilitates Nrf2-mediated memory-
enhancing signaling in aged GPx-1 deficient conditions. Indeed,
the Nrf2 system has been declared not only as an essential modu-
lator of aging and species longevity but also as a critical molecular
target against senescence [46]. Furthermore, it was also suggested
that the Nrf2 was necessary for the antiaging gene klotho itself to
protect against senescence [47,48]. Therefore, we propose that both
GPx-1 and Nrf2 can be potential protective targets of MCG for up-
regulating GSH-related antioxidant capacity and attenuating
cognitive dysfunction of the aging process.

ChAT is significantly reduced with increasing age in the hippo-
campus [49] and cerebral cortex [50]. Importantly, the loss of ChAT,
but not alteration of AChE, in agingmay be critical for abnormalities
of cholinergic nerve terminals [51]. Here we also observed that
alteration of ChAT ismore sensitive than that of AChE in response to
the aging process, although it remains to be further clarified.

Indeed, ChAT activity was reduced after exposure to H2O2
in vitro [52]. Therefore, it is plausible that H2O2 formation by GPx-1
depletion might mediate free radical processes and significantly
inhibit ChAT activity probably via ROS acting on ChAT level in the
brain [19]. We [53] and others [54] showed that exposure to
ginseng up-regulated cholinergic parameters including ChAT level
in the mice model. Here, we for the first time demonstrate that
MCG also consistently up-regulates ChAT/ACh levels in aged GPx-1
KO mice, suggesting that MCG requires ChAT/ACh and GPx-1 in-
ductions for anti-aging and cognitive enhancing potential.

Consistently, it has been demonstrated that the genetic over-
expressing ChAT into the neural stem cells significantly enhanced
the cognitive function of aged mice [27]. This finding is, at least in
part, in line with the current result using MCG.

Indeed, we also found that aging-mediated oxidative stress
mainly affects the impairment of Nrf2 transcription factor, followed
by down-regulation of ChAT, suggesting that GPx-1 deficiency
triggers oxidative stress, followed by inhibitions of Nrf2 and ChAT
during the aging process. We observed that Nrf2- and ChAT-IRs
were co-localized in the same neuronal populations as [55]
569
reported in a different neurotoxic animal model, and MCG signifi-
cantly enhanced these co-localizations [55]. Thus, it is considered
that Nrf2-immunoreactive cells significantly release the ChAT gene
in the presence of MCG for enhancing cognitive function, although
the cellular scenario between Nrf2 and ChAT remains to be fully
explored.

Importantly, we showed that MCG-induced Nrf2-IR, ChAT-IR,
and co-localization of Nrf2 and ChAT-IRs were most conspicuous
in the CA3 region out of CA1, DG, and CA3 regions in aged GPx-1 KO
mice. Similarly, Bae et al [56] demonstrated that ginsenosides
modulate CA3 neurons to modulate the physiological function of
the hippocampus. Indeed, the CA3 neurons are important for
modulating BDNF [57] and ERK [57] signaling, and long-term
potentiation [58]. We observed here that k252a, a BDNF receptor
tyrosine kinase B (TrkB) inhibitor, counteracted MCG-mediated
ChAT/ERK levels and memory dysfunction in aged GPx-1 KO
mice. As reflected by the previous reports [57,58], we cannot rule
out the possibility that MCG might up-regulate and BDNF-, and
ERK-signaling in the CA3 to protect against cognitive impairments,
and that MCG improves memory in aged mice via enlargement of
long-term potentiation in the CA3 region [58], However, it remains
to be elucidated.

In conclusion, we propose that genetic depletion of GPx-1 might
be an optimal model for studying geriatric memory dysfunction in
aged mice via consistent oxidative burden in the hippocampus and
that MCG ameliorates cognitive impairments mainly via up-
regulation of Nrf2, ChAT, and ERK signaling pathway
(Supplementary Fig. S5) However, the precise mechanism medi-
ated by the critical component in the MCG remains to be further
explored.
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