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Animal models of bone metastatic prostate cancer
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Metastatic disease is a main cause of mortality in prostate cancer and remains to be incurable despite emerging new treatment 
agents. Development of novel treatment agents are confined within the boundaries of our knowledge of bone metastatic prostate 
cancer. Exploration into the underlying mechanism of metastatic tumorigenesis and treatment resistance will further expose novel 
targets for novel treatment agents. Up to date, many of these researches have been conducted with animal models which have 
served as classical tools that play a pivotal role in understanding the fundamental nature of cancer. The ability to reproduce the 
natural course of prostate cancer would be of profound value. However, currently available models do not reproduce the entire 
process of tumorigenesis to bone metastasis and are limited to reproducing small portions of the entire process. Therefore, knowl-
edge of available models and understanding the strengths and weaknesses for each model is key to achieve research objectives. In 
this article, we take an overview of cell line injection animal models and patient derived xenograft models that have been applied 
to the research of human prostate cancer bone metastasis.
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INTRODUCTION

Prostate cancer is the second most common cancer and 
fifth leading cause of cancer death in men, with a low mor-
tality rate in the non-metastatic stage (15-year cancer spe-
cific mortality rates for ranging between 0.5% and 5.7%) [1,2]. 
However, unlike localized prostate cancer, metastatic pros-
tate cancer has a poor prognosis (5-year survival rate, 29.8%) 
[3,4]. Therefore, in the future, inhibiting and treating the 
progression to metastatic prostate cancer will be an effec-
tive strategy to increase the overall survival rate of prostate 
cancer along with novel treatment agents that are currently 
on the way to even further enhance survival in the latter 
stages of prostate cancer.

An effective treatment strategy to prevent metastatic 
disease will be to target detachment, migration and infiltra-

tion of cancer cells to metastatic lesions and their migration 
through the lymphatic or vascular system. Especially, target-
ed therapies directed to dormant cancer cells may alleviate 
treatment resistance, recurrence and metastasis of prostate 
cancer to some degree. 

Animal models of bone metastatic prostate cancer are 
essential tools to understand the characteristics of  pros-
tate cancer and to find novel targets for future treatment 
agents. However, there are no sole bone metastatic animal 
model that can cover the full spectrum of metastatic disease 
from cancer cell migration and infiltration to progression 
and acquisition of treatment resistance. Every model has its 
own strengths and weaknesses associated to its model design 
and will bypass certain steps of the metastatic cascade. For 
example, subcutaneous injection of prostate cancer cell line 
into the flanks of mice or rats may be suitable for studying 
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primary tumor lesions but will rarely progress to metastatic 
disease. In addition, direct injection of prostate cancer cell 
lines into the blood stream can be used to study hematog-
enous metastasis but inevitably omits the initial stages of 
metastasis.

Patient derived xenograft (PDX) models are clinically 
invaluable tools that reflect natural human prostate cancer 
genetics and cellular heterogeneity of patients by direct en-
graftment of cancer tissue into immunodeficient mice. These 
models have been used to better recapitulate the cellular 
heterogeneity and characteristics of human prostate cancer. 
However, a model that accurately replicates the whole spec-
trum of metastasis remains elusive.

In this review, the changes occurring in the intraosseous 
microenvironment of bone metastatic prostate cancer is de-
scribed from a molecular biological perspective. In addition, 
models of bone metastatic prostate cancer are reviewed, and 
future directions of next-generation bone metastatic prostate 
cancer models are presented.

STAGES OF BONE METASTASIS

After the initial stages of proliferation of prostate can-
cer at the primary site, detachment and migration of cancer 
cells to distal sites of metastasis occur through the lymphat-
ics or peripheral vessels. Normal prostate cancer epithelial 
cells form cohesive connections with adjacent cells and the 
extra-cellular matrix. In contrast, prostate cancer cells have 
weakened connections with adjacent cells and extracellular 
matrix (ECM) that result in the detachment and migration 
of cancer cells. These changes have been described in theory 
and so called epithelial-to mesenchymal transition (EMT). 
EMT consequently reduces the cell-to-cell adhesion and pro-
motes intravasation. This is presumed to be mainly due to 
mutations in the cytoskeletal protein [5], the decrease in the 
expression of E-cadherin which is a cell adhesion molecule, 
and the increase in the expression of N-cadherin [6].

Chemotaxis of prostate cancer cells to the bone marrow 
are mediated by CXC-chemokine receptor 4 [7,8] which bind 
with CXC-chemokine ligand 12 secreted by bone marrow epi-
thelial cells, stem cells and bone marrow derived interstitial 
cells [9]. Integrins such as αVβ3 and α2β1 mediate prostate 
cancer cell adhesion to bone marrow endothelial cells and 
ECM [10-12].

Matrix metalloproteinases produce a bone niche to har-
bor prostate cancer cells that interact with the bone micro-
environment. Factors that induce the migration of prostate 
cancer cells to the bone marrow are derived from osteoclasts 
[13,14]. In the process of metastasis, successful migration and 

metastatic progression are achieved in a limited portion of 
cells that detach from the primary site [15,16]. The low rate 
of successful metastasis of detached cancer cells is due to the 
low survivability and failure of growth initiation in the site 
of metastasis. 

Most of  the non-progressive and solitary metastatic 
cancer cells remain in a cell cycle arrest or dormant status 
which is known to contribute to treatment resistance and 
further metastatic progression when latter activated. The 
underlying mechanism behind dormancy is uncertain. There 
have been reports identifying prostate cancer cells to remain 
in dormancy in the bone microenvironment where osteoblas-
tic cells are abundant and relatively scarce of hematopoietic 
stem cells (HSCs) due to competition of prostate cancer cells 
and HSCs for the endosteal HSC niche; until conditions are 
favorable for reactivation and cancer progression [17]. Reac-
tivation of dormant cancer cells are assumed to be triggered 
by reactivation of osteoclasts or by self-induction of cancer 
cells [18]. 

Interaction of cancer cells with the bone microenviron-
ment gradually proliferates abnormal bone formation (Fig. 1). 
Prostate cancer cells secrete factors that activate osteoblasts 
to generate abnormal bones which sequentially induces ac-
tivation of osteoclasts through receptor activator of nuclear 
factor κB ligand (RANKL) secretion by osteoblasts. Acti-
vated osteoclasts in turn resorb bone which releases growth 

Vicious cycle of bone metastasis
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Fig. 1. Vicious cycle of cancer proliferation in the bone microenviron-
ment. Tumor cells secrete several factors such as transforming growth 
factor beta (TGFβ), insulin growth factor (IGF), platelet-derived growth 
factor (PDGF), endothelin-1 (EDN1), vascular endothelial growth factor 
(VEGF) that activate osteoblast (OB)s. Activated osteoblasts secrete 
receptor activator of nuclear factor κB ligand (RANKL) and interleukin 
6 (IL-6) to activate osteoclast (OC)s which in turn resorb bone and 
release growth factors and calcium ions to accelerate cancer cell prolif-
eration. Created with BioRender.com.
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factors such as transforming growth factor β (TGFβ) that 
promote further tumor growth in a vicious cycle that accel-
erates progression. Similarly, bone metastatic breast cancer 
studies have shown to produce osteolytic bone lesions where 
tumor cells secrete factors that stimulate osteoclast differen-
tiation [19]. In addition, expression of parathyroid hormone-
related proteins, jagged1, tumor necrosis factor, interleukin 
(IL)-6e, IL-8, granulocyte-macrophage colony-stimulating 
factor (GM-CSF) in tumor cells may contribute to osteoclast 
differentiation and bone resorption directly or indirectly 
through activation of osteoblasts which in turn secrete fac-
tors such as IL-6, GM-CSF or RANKL [19-21]. Skeletal demin-
eralization results in release of growth factors, particularly 
TGFβ, insulin growth factor (IGF) and calcium ions which 
stimulate tumor growth [20,21]. However, prostate cancer 
bone metastatic lesions are osteoblastic in nature, causative 
of unstably woven bone [22]. It is presumed that osteoblastic 
bone lesions are induced through Dickkopf-related protein 
1 which suppresses the Wnt signaling pathway [23]. In ad-
dition, Wnt ligands, bone morphogenetic proteins, fibroblast 
growth factors (FGFs), IGF secreted by tumor cells stimulate 
the differentiation and activation of osteoblasts at the sur-
face of the bone marrow [20,24,25].

The interaction between the microenvironment and can-
cer cells in bone metastases is a highly complex process, and 
it is assumed that various cells participate in the process 
of tumor proliferation and suppression of cancer cells. Al-
though the process of bone metastasis in prostate cancer has 
been studied for decades, the full spectrum of the disease 
and its underlying mechanism is still poorly understood. To 
comprehend the full scope of the disease, innovative and ef-
fective preclinical models must be developed to further shed 
light on the mechanism and participating factors that can 
arise as future targets for novel treatment agents.

BONE METASTATIC ANIMAL MODELS

1. Early animal models
The Dunning rat is one of the early animal models of 

prostate cancer, and succeeded in isolating and preserv-
ing cancer cells named R3327 cells, and was the first model 
to reinject tumor cells subcutaneously into other rats [26-
29]. However, subspecies of R3327 only metastasized to the 
lymph nodes and lungs and did not form bone metastasis, 
limiting its usefulness in research of bone metastatic disease 
[30]. Dogs were also found to spontaneously acquire prostate 
cancer, and studies found that prostate cancer in dogs were 
not only rare, but lacked the membrane androgen receptor 
(AR) [31,32]. As a result, prostate hyperplasia seen in dogs 

always occur independently of ARs, which limits its applica-
tion to human prostate disease research [33,34].

2. Animal models using human cell lines
Prostate cancer models using cell lines account for the 

majority of  current in vitro and in vivo models. In 1991, 
Wang and Stearns first developed a mouse model of bone 
metastatic prostate cancer, which was developed by injecting 
the highly invasive PC3 cell line into the lateral tail vein of 
severe combined immunodeficient (SCID) mice [35]. Through 
the repetitive process of extracting cancer cells from the 
metastatic lesion and re-injecting them into the lateral tail 
vein of a new mouse, extraction of a new strain of PC3 cell 
line that caused bone metastasis in more than 80% was de-
veloped [36]. 

Techniques for extracting cell lines exhibiting high 
metastatic potential in vitro or in vivo have become com-
monplace, and numerous human prostate cancer cell lines 
currently exist. Haq and colleagues devised a model by in-
tracardiac injection of R3327-Mat-LyLu cells, a subspecies of 
the Dunning cell line, into Copenhagen rats [37]. Intracardiac 
injection of cell lines have been reported to cause spinal 
metastases in 100% of inoculated mice, eliminating the need 
for continuous inoculation and invasive cell selection as in 
conventional mouse models [37]. Bone metastatic lesions with 
intracardiac injection is hypothesized to occur by bypassing 
the pulmonary capillaries through the left ventricle of the 
heart [37]. This inoculation technique is one of the most com-
monly used methods for developing bone metastasis in mice, 
and is more advanced than the lateral tail vein injection 
with vena cava occlusion [38,39]. In addition, bone metastasis 
induced by intracardiac injection are pathologically more 
similar to human bone metastasis than conventional lateral 
tail vein injection and vena cava occlusion models [40]. Since 
the most common sites for bone metastasis are the central 
skeleton and spine, which are rich in red bone marrow, the 
intracardiac injection model has advantages of  similarly 
replicating bone metastasis observed in humans.

Preclinical models of  prostate cancer bone metastasis 
are made by directly injecting an appropriate cell line into 
immunodeficient animals. If  the origin of the cell line is 
different from that of the host, the use of immunodeficient 
animals is essential [41]. In general, a measure of the model’s 
success is the tumor take rate, which is determined by the 
type of cell line, mouse strain, and injection method. Each 
cell line has its own unique genetic characteristics such as 
hormone sensitivity, metastatic ability, and antigenicity. 
The most commonly used human prostate cancer cell lines 
are the PC3, DU145, and LNCaP cell lines. They differ from 
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each other in biochemical characteristics such as AR depen-
dence and expression of prostate-specific antigen (PSA); thus 
selection of an appropriate cell line should be determined 
based on the objectives of the experiment.

The PC3 cell line was identified in 1979 from a patient 
with bone metastatic prostate cancer [42]. It is highly meta-
static, hormone resistant and PSA negative [43-46]. In addi-
tion, the PC3 cell line has stronger characteristics of neu-
roendocrine or small cell carcinoma. Currently, derivatives 
of various PC3 cell lines exist, which have been identified 
through several generations of serial injection and extrac-
tion of cancer cells from metastatic lesions. For example, in 
1984 Kozlowski et al. [47] injected PC3 cells into the spleen of 
nude mice and harvested cells from liver nodules, and these 
metastatic strains were named PC3M cells [48]. In 1996, in a 
study by Pettaway et al. [49], PC3M cells were collected from 
metastatic lymph nodes to establish the PC3M-LN4 cell line. 
All cell lines derived from the PC3 cell line form osteolytic 
bone lesions [50]. Considering that human prostate cancer 
bone metastases are generally osteoblastic, the PC3 cell line 
does not fully reflect the nature of human prostate cancer. 
Nonetheless, PC3 cell lines are still one of the most com-
monly used cell lines, because of its highly aggressive nature 
to rapidly grow in vivo [51].

The DU145 cell line originated from a brain metastatic 
lesion of human prostate cancer [52]. Like PC3 cells, DU145 
cells are hormone refractory and do not express PSA [41,52]. 
In addition, the DU145 cell line produces osteolytic bone le-
sions when injected via intratibial or intracardiac [50]. While 
the PC3 cell line has strong characteristics of neuroendo-
crine cancer or small cell carcinoma, the DU145 cell line has 
characteristics of adenocarcinoma and is advantageous for 
prostate cancer research because it can generate bone me-
tastases in vivo. However, similar to the PC3 cell line, when 
bone metastasis is formed, it mainly causes bone degrada-
tion, which varies from the osteoblastic lesion observed in 
bone metastatic lesions of human prostate cancer.

The LNCaP cell line is a commonly used cell line in pre-
clinical prostate cancer models. Unlike PC3 and DU145 cells, 
LNCaP cells are hormone sensitive (AR positive) and ex-
press PSA. It is similar to the phenotype of prostate cancer 
observed in humans [41,53]. LNCaP cells also express EGFR, 
TGFα receptor, FGF receptor, and IGF1 receptor, and have 
wild type p53 and nonfunctional PTEN [54-57]. In addition, 
AR expressed in LNCaP cells have a T877A mutation that 
allows it to have specificity for various androgens in addi-
tion to testosterone [58]. A subspecies of LNCaP cells, C4-2B, 
was cultured in castrated mice and then passaged by repeat-
ed injection into castrated mice until cells could be harvested 

from the bone metastatic lesions [59]. LNCaP C4-2B cells are 
hormone refractory, have superior metastatic ability than 
the original LNCaP cell line, and produce osteoblastic or 
osteoblastic-osteolytic mixed bone lesions inside immunode-
ficient mice upon intraosseous or intracardiac injection [41]. 
This is very similar to the most undifferentiated state of 
prostate cancer.

All naturally occurring tumors and their metastases 
have molecular and cellular heterogeneity [60]. However, in 
the process of developing a cell line, cell culture and selec-
tion over several generations results in loss of the original 
molecular and cellular heterogeneity. Despite shortcoming of 
losing tumor heterogeneity, the use of cell lines guarantees 
reproducibility and predictability. In addition for research 
purposes, cell line animal models have the advantage of uti-
lizing in vivo imaging through the attachment of specific 
luciferases and the expression of fluorescent marker genes. 
However, since genetic mutations can possibly occur over 
time, testing for changes in the characteristics of cancer cells 
through in vivo experiments should be performed before 
use.

In order to select a model suitable for the purpose of 
the experiment, the characteristics and limitations of each 
model should be considered (Table 1) [50,61-67]. For example, 
since the method of directly injecting a cell line into the long 
bones of rodents omits the process of bone metastasis, it can 
be used to study the interaction with the microenvironment 
in the state of bone metastasis. Similarly, the method of in-
jecting cell lines into the systemic circulation will enable the 
study of extravasation and development of metastatic tu-
mors. The choice of cell line should also be carefully consid-
ered (Table 2) [47,68-75]. The PC3 cell line would fit the phe-
notype of an aggressive late-stage prostate cancer, more like 
a neuroendocrine differentiated tumor than the commonly 
observed adenocarcinoma. On the other hand, the DU145 cell 
line preserves the characteristics of adenocarcinoma, and the 
experimental results obtained using it have the advantage 
of better predicting the clinical effects of human subjects 
than the PC3 cell line. However, both cell lines are androgen 
insensitive and have the disadvantage of forming osteolytic 
lesions which limits their use in the research of hormone 
sensitive prostate cancer and osteoblastic bone lesions.

3. PDX models
A PDX model, also known as a tumor graft model, of 

prostate cancer is made by directly transplanting patient 
tumor tissue into immunodeficient mice. The success of the 
PDX model is highly dependent on the implantation site. 
Commonly used implantation sites include the subcutane-
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ous space, the prostate, and the subcapsular space of the 
kidney. Implantation into the kidney subcapsular space has 
the highest take rate due to high blood flow, and have been 
used to study the process of progression to castration-resis-
tant prostate cancer following hormone deprivation therapy 
[76]. In addition, the degree of immunodeficiency has been 
reported to influence the success rate of PDX models [77,78]. 
The more severely immune-deficient mice are better suited 

for PDX generation [79]. In general, commonly utilized 
mouse strains include nude mice (lacking functional T cells), 
SCID and NOD-SCID mice (lacking functional T and B cells) 
or NOD-SCID/IL2γ-receptor null (NSG) mice (lacking func-
tional T, B, and NK cells). Among the existing prostate can-
cer models, the PDX model most closely reproduces prostate 
cancer observed in humans and have been used to provide 
predictive insights when evaluating the efficacy of novel 

Table 1. Strength and weaknesses according to inoculation methods and sample types

Advantages Disadvantages
Inoculation sample type
    Human cell line Numerous established human derived prostate cancer 

cell lines are available to match research objectives 
(prostate-specific antigen expression, androgen 
sensitivity, bone lesion type, etc.)

Bioluminescent imaging through luciferase tagged 
cell lines are available

Maintenance and preservation of cell line is relatively 
simple

Limited in reflecting the heterogenous characteristics of 
naturally occurring prostate cancer

Requires immunodeficient mice strains, thus inappro-
priate for studying immunobiology

    Mouse derived cell line Can use immune intact mice allowing study of im-
munobiology of prostate cancer

Poorly reflects the human disease

    Patient derived xenograft Heterogeneity of the original tumor is well main-
tained [61]

Reflects tumor pathology observed in patients [62]
Genetic integrity of parental tumor is preserved after 

serial engraftments [63]

Requires in vivo cell culture for maintenance 
Cryopreservation could be an alternate option
Requires immunodeficient mouse strains

Inoculation method 
    Subcutaneous Useful for primary tumor studies

Technically simple to inject and monitor
Rarely metastasizes to bone

    Orthotopic Best module for primary tumor research Injection technique requires surgery
Rarely metastasizes to bone

    Subrenal capsule Provides the best take rate (gold standard)
High vascularization, good interstitial fluid pressure, 

high lymphatic flow ensure even nutrient, growth 
factor and oxygen supply [64]

Although the technique is straight forward, may require 
surgery

    Tail vein Earliest form of injection resulting in bone metastasis
Technically simple
Studies the circulation and growth of metastatic 

cancer cells

Does not bypass the lungs, thus primary metastasis to 
lungs are mainly observed [65]

    Intracardiac Bypasses the lungs and produces vertebral metastasis
Studies the circulation and growth of metastatic 

cancer cells

Requires high technical proficiency; only limited num-
ber of cancer cells can be injected at one time [50]

Cancer cells are preferably delivered to organs other 
than bone, such as the lungs and liver; often develop 
into lethal cancers causing early termination of bone 
metastatic study

    Intraosseous Controlled bone metastatic lesions can be formed 
reliably

Good for investigating interaction of cancer cells with 
bonemicroenvironment

Technically difficult and possible bone damage may 
interfere with results

Limited to longbone metastasis, whereas prostate can-
cer usually occurs in vertebrae

    Intra-arterial Uses intrafemoral and intracaudal arteries as access 
sites; targets bone marrow of hind limbs

Studies the circulation and growth of metastatic 
cancer cells

Reduced incidence of lethal metastasis in other 
organs [66]

Technically challenging due to small size of artery
Success rates are variable and need further investiga-

tion [67]
Intrafemoral artery injection may cause necrosis to the 

leg due to major vessel injury [67]
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cancer therapies and are invaluable tools that may provide 
personalized medicine in the future [80]. However, the cur-
rent state of PDX models have a limited role in the clinic 
due to its time consuming nature.

In the case of  the PDX model, tumor specimens are 
cryopreserved or must be continuously cultured in vivo. 
For example, the LuCaP prostate cancer model was estab-
lished by individually identifying the metastatic sites of 21 
patients, and is traditionally maintained by subcutaneous 
injection into mice [35,81]. The tumor heterogeneity is well 
preserved in the PDX model, however, with repeated culture 
over generations, a portion of the heterogeneity can be lost 
[39]. Nevertheless, because external forces do not act to favor 
or detriment specific cells, a significant portion of tumor 
heterogeneity is preserved [78,82]. PDXs are known to retain 
the morphology and have the same immunohistochemical 
profile of the original human prostate cancer donor [79,80,83]. 
As is the issue with cell line derived animal models, in order 
to create a spontaneous bone metastatic prostate cancer PDX 
model, repeated inoculation of extracted cancer cells over 
several generations is mandatory [43]. In a study by Wang 
and colleagues [43], patient tumor samples were transplanted 
into the subrenal capsule of SCID mice for cell culture, and 
then reinjected into the prostate of mice until the mice de-
veloped lymph node metastasis. Cancer cells retrieved from 
the metastatic lymph nodes thereafter showed to spontane-
ously develop metastatsis to various organs including the 
bone when inoculated into the prostate of mice [43]. Howev-
er, creating a bone metastatic PDX model in this fashion can 
result in the disruption of the original tumor heterogeneity 
due to selection of highly aggressive cancer cells [39].

Unlike other PDX models, the PCSD1 model was created 
by direct injection of tumor cells into the femur of immune-
deficient mice [44]. Despite the fact that this process omits 
the earlier stages of metastatic development, this method 
can preserve the original tumor heterogeneity observed in 

patients and provide insight into the mechanism of meta-
static progression in the bone [44]. In addition, intra-femoral 
injection of tumor cells may be used to investigate the un-
derlying mechanism of treatment resistance observed in 
bone metastatic prostate cancer patients. When treated with 
anti-hormonal agents such as bicalutamide, PSA and AR 
expressions were significantly reduced [44]. However, caution 
must be taken as direct injection of tumor cells into the bone 
niche may inadvertently cause damage to the bone result-
ing in local inflammatory responses which may influence 
experimental results [45].

In conclusion, the PDX model of bone metastatic prostate 
cancer are powerful tools that have the potential to reca-
pitulate most if not all of the disease observed in humans. It 
has the advantage of preserving tumor heterogeneity and is 
highly applicable to human prostate cancer research. How-
ever, the take rate may vary depending on the method of 
tumor injection and site of transplantation, and results may 
vary depending on the skills of the technician. In addition, 
since experimental animals must be immunodeficient to pre-
vent tissue rejection, it cannot be used for immunobiological 
studies of prostate cancer [82].

FUTURE DIRECTION

Despite various types of  animal models applicable to 
bone metastatic prostate cancer research, it is inevitable for 
most models to utilize immunodeficient animals to suppress 
rejection of xenografts limiting research in the field of im-
munobiology. In hand with the expansion and development 
of novel immunotherapy agents in the clinic, innovative 
models such as transgenic mouse models have been devel-
oped to elucidate the complex immunobiological interactions 
observed in cancers. Transgenic mouse models have been 
utilized to identify several molecular drivers of metastasis 
and treatment resistance explained by lineage plasticity, a 

Table 2. Characteristics of commonly used prostate cancer cell lines

Cell line Origin Type of bone metastasis Androgen sensitivity PSA expression Reference
PC3M Human Osteolytic - - [47]
PC3 Human Osteolytic - - [68-71]
LNCap Human Mixed + + [69,71]
LNCapC4-2B Human Mixed - + [69,71]
DU145 Human Osteolytic - - [70,71]
Ace-1 Dog Mixed - N/A [72]
RM-1 Mouse Mixed (predominantly osteolytic) - N/A [73]
R-3327 Rat N/A + - [74,75]

PSA, prostate-specific antigen; +, positive; -, negative; N/A, not available.
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concept of the ability of a cell to substantially modify its 
identity and take on a new phenotype such as the transition 
of adenocarcinoma to neuroendocrine differentiated pros-
tate cancer. Pten-knockout mouse model of prostate cancer 
with ablation of  TGFβ type II receptor (TGFBR2) led to 
more proliferative and invasive phenotype enriched in early 
metastases, supporting a role for TFGBR2 as a suppressor 
of lineage plasticity [46]. Recent studies utilizing transgenic 
mouse models with combinant Pten/TRP53/Rb1 loss have 
suggested that Rb1 suppresses metstatic dissemination of 
prostate adenocarcinoma initiated by Pten loss and Trp53 
mutation cooperates with Rb1 loss to confer an castration 
resistant phenotype [48]. However, there are still limitations 
in their application to human prostate cancer research due 
to their non-human origin. To conduct more in-depth studies 
on the efficacy of immunotherapy in bone metastatic pros-
tate cancer, animal models utilizing human prostate cancer 
cells that mimic the metastatic cascade and form osteoblastic 
bone lesions while maintaining immune capacity are needed. 
Researches regarding immunodeficient mice with human-
ized immune systems are under development and may help 
to alleviate the hardships of studying immunotherapy with 
animal models [32].

Positive outcomes of preclinical drug screening via ani-
mal models are not always reproducible in clinical trials. 
Differences in the immune system of humans and animals 
have been reported to be a significant hurdle in translating 
outcomes [28,84]. Currently, many studies are trying to engi-
neer the mouse immune system to resemble that of humans 
and use it as a model for preclinical drug testing [29]. In the 
future, immunodeficient animal models engineered to re-
semble the human immune system will allow further inves-
tigation into the immunobiology of prostate cancer and more 
accurately predict drug efficacy in clinical trials. Currently, 
a good alternative will be to use a transgenic mouse model 
that spontaneously progresses to bone metastasis. It provides 
a good overall representation of the metastatic process and 
enables the study of prostate cancer immunobiology.

CONCLUSIONS

Among the currently available animal models of pros-
tate cancer, no single model can fully reproduce the whole 
process of bone metastasis. Therefore, careful consideration 
into the strengths and weaknesses of each animal model 
should be taken prior to selecting an adequate model for 
pursuing research objectives. In addition, research into the 
immunobiology of prostate cancer using animal models are 
limited to using non-human cell lines or transgenic mice 

because models that mimic the human immune system are 
technically difficult to obtain and not common place. How-
ever, transgenic mouse models are known to be relatively 
easy to maintain after the initial model formation. However, 
bone metastases occurring in transgenic mice are known to 
only develop neuroendocrine differentiated cells.

Cell lines are commonly used to create animal models 
of prostate cancer due to its ease in accessibility and main-
tenance. However, cell lines are homogenous and do not 
fully represent the complexity and heterogeneity of tumors 
observed in patients. In contrast, PDX models reflect tumor 
heterogeneity but are not easily accessible and must be 
cultured in vivo for maintenance. Nevertheless, the PDX 
model is an indispensable tool for prostate cancer research. 
Ultimately, a bone metastatic prostate cancer animal model 
with a fully intact or humanized immune system with pres-
ervation of tumor heterogeneity will yield a more accurate 
preclinical drug screening result and a more predictable out-
come of clinical trials. 
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