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ABSTRACT Multi-task learning (MTL) is a field in which a deep neural network simultaneously learns
knowledge from multiple tasks. However, achieving resource-efficient MTL remains challenging due to
entangled network parameters across tasks and varying task-specific complexity. Existing methods employ
network compression techniques while maintaining comparable performance, but they often compress
uniformly across all tasks without considering individual complexity. This can lead to suboptimal solutions
due to entangled network parameters and memory inefficiency, as the parameters for each task may be
insufficient or excessive. To address these challenges, we propose a framework called Dynamic Model
Optimization (DMO) that dynamically allocates network parameters to groups based on task-specific
complexity. This framework consists of three key steps: measuring task similarity and task difficulty,
grouping tasks, and allocating parameters. This process involves the calculation of both weight and loss
similarities across tasks and employs sample-wise loss as a measure of task difficulty. Tasks are grouped
based on their similarities, and parameters are allocated with dynamic pruning according to task difficulty
within their respective groups.We apply the proposed framework toMTLwith various classification datasets.
Experimental results demonstrate that the proposed approach achieves high performance while taking fewer
network parameters than other MTL methods.

INDEX TERMS Multi-task learning, resource-efficient learning, model optimization.

I. INTRODUCTION
Multi-task learning (MTL) [1], [2] has gained attention as a
way to handle multiple tasks simultaneously and efficiently.
The primary objective of MTL is to enhance generalization
performance by sharing beneficial knowledge among tasks.
MTL can be categorized into two main approaches: hard
parameter sharing [1], [3], [4], [5], [6] and soft parameter
sharing [7], [8], [9], [10], [11]. Hard parameter sharing
[1], [3], [4], [5], [6] employs a single shared network,
which offers the advantage of efficient resource utilization.
Nevertheless, sharing knowledge between unrelated tasks in
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hard parameter sharing can result in task interference, leading
to a suboptimal solution. Soft parameter sharing [7], [8], [10],
[11] shares information across tasks through task-specific
networks. Unlike hard parameter sharing, this approach
shares information across tasks using task-specific networks,
which reduces interference among tasks. Nevertheless, as the
total number of tasks grows, memory consumption also
increases, limiting the applicability of this approach in
real-world situations with restricted resources.

The constraints of resource-limited applications have led
to an increased need for resource-efficient MTL methods.
However, achieving this efficiency is difficult due to several
factors. Entangled parameters across tasks can negatively
impact performance. Neglecting to address task-specific
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FIGURE 1. Overview of single-task and multi-task learning approaches. (a) represents a model (network) for a task. (b), (c) and (d) represent the
models for performing multiple tasks, respectively. (b) represents a typical hard parameter-sharing approach with a single shared network learned for
all tasks. The layers shared across tasks are represented by a gray box, while other color boxes represent task-specific layers. (c) represents a soft
parameter-sharing approach, which contains task-specific backbones. (d) represents our method, dynamic model optimization (DMO), one of the
soft-parameter sharing approaches. DMO leverages task-wise pruning to dynamically allocate network parameters based on the measured task-wise
difficulty tailored to the specific requirements of each task. The colored box corresponds to the parameters that survive in the layer, while the white
dotted box represents pruned parameters that contribute little to the network.

complexities may lead to resource inefficiency. These com-
plexities involve different levels of detail across tasks, possi-
bly requiring distinct network structures. Some tasks might
need resource-intensive deep neural networks, while others
can achieve satisfactory results with simpler, shallower mod-
els. To address these challenges, variousMTL approaches [5],
[6], [12] have been proposed. These studies focus on network
compression through hard parameter sharing, addressing
parameter entanglement between tasks. However, they learn
a common representation for all tasks with a single shared
network and are prone to task interference.

To address this limitation, we propose a task-aware
Dynamic Model Optimization (DMO) framework based on
a soft parameter-sharing model while adapting to the diverse
complexities of individual tasks. The structure is illustrated
in Figure 1. Our approach consists of 1) measuring task
similarity and difficulty, 2) grouping tasks according to their
similarity, and 3) allocating parameters based on their diffi-
culty. We measure task-wise difficulty with sample-wise loss
and calculate weight and loss-based similarity across tasks.
We group tasks based on similarity and allocate parameters
accordingly with dynamic pruning based on task difficulty.
The proposed framework enables memory-efficient MTL
that can handle varying complexity for different tasks by
subnetworks that consume minimal parameters.

We evaluate the proposed framework to a wide range
of MTL scenarios, including CIFAR-10 [13], STL-10 [14],
MNIST [15], USPS [16], CIFAR-100 [13], and the Visual
Decathlon Challenge datasets [17]. Experimental results
show that the proposed method can achieve better memory
efficiency compared to existing MTL methods [4], [6],
[8], [10]. Specifically, our approach achieves an average
reduction of over 80% in the total number of parameters
compared to the soft parameter sharing approaches [7], [8],
[10] while achieving competitive performance. The main
contributions of our work are as follows:

• We propose the Dynamic Model Optimization (DMO)
method that optimizes multiple tasks according to their
complexity.

• DMO groups tasks based on inter-task similarity,
determined by both weights and losses, enabling tasks
within the same group to share knowledge.

• We produce memory-efficient subnetworks by dynami-
cally allocating network parameters based on the relative
difficulty of each task within a group.

• We demonstrate the effectiveness of DMO through
extensive experiments on various benchmarks, showing
that it outperforms existing MTL methods in terms of
memory-accuracy trade-off.

II. RELATED WORK
A. MULTI-TASK LEARNING
In MTL, the overall loss is typically calculated as a weighted
sum of task-specific loss functions, with the loss of each
task being assigned a specific weight that denotes its relative
importance. Previous works in the literatures [9], [12],
[18], [19], [20], and [21] have aimed to optimize model
parameters across all tasks simultaneously, considering the
importance of each task in the overall learning process.
Uncertainty [20] estimates task uncertainty using noise
parameters for task weight assignment and demonstrates
effective task balancing. Gradnorm [18] stabilizes MTL
training by dynamically adjusting gradient magnitudes for
task balance. Dynamic Priority [19] prioritizes tasks based
on difficulty and improves learning efficiency compared to
previous methods (e.g., Uncertainty and Gradnorm) through
adaptive weight updates. BMTL [21] advances this by
dynamically balancing tasks based on difficulty assessed via
training loss values, optimizing tasks with high losses and
potential for improvement. Motivated by Dynamic Priority
[19] and BMTL [21], we aim to develop a memory-efficient
regularization technique that allocates network parameters
based on task complexity.

B. RESOURCE-EFFICIENT LEARNING
Resource-efficient learning aims to minimize model size,
making it suitable for environments with limited resources.
Model-level resource-efficient learning techniques, such
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FIGURE 2. A visualization of the DMO framework. DMO groups tasks based on task similarity, and dynamically allocates network parameters to each
group according to the measured task difficulty. In the first stage, task difficulty level d t is measured using loss Lt

ce, as shown in the green rounded
rectangle. The weight similarity matrix SW, and the loss similarity matrix SL, are determined using weight w t and loss Lt

ce, as shown in the blue
rounded rectangle. In the second stage, tasks of high similarity are grouped into a graph structure using maximal cliques for identification and
grouping. During the parameter allocation stage, indicated by a gray rounded rectangle, colored rectangular boxes symbolize allocated task parameters.
In contrast, white boxes represent pruned parameters that have made minimal contributions to improving model performance or accuracy. Finally, each
yellow rounded box provides group-specific models, which are allocated with corresponding weights from previous stages.

as pruning, quantization, and ensembling of local and
global features [2], [22], [23], effectively reduce memory
usage while maintaining performance comparable to that
of the original dense networks. Recent studies propose
resource-efficient MTL methods targeting three aspects:
sharing mechanisms [5], [24], interference reduction [6],
and task grouping [25]. Sharing mechanisms enable tasks to
share model components, reducing model size and resource
usage. Interference reduction mitigates the negative effects of
shared resources between tasks. Task grouping investigates
the effective clustering of tasks to reduce interference and
enhance performance. Sparse Sharing [24] improves per-
formance with fewer parameters using task-specific masks.
DiSparse [5] evaluates task importance for pruning but
struggles to prevent task interference. TAPS [6] minimizes
task interference with a small subset of layers but may lead
to resource inefficiency. TAG [25] identifies task groups, but
its heuristic approach may cause performance decline.

To address these challenges, we propose a technique that
shares parameters based on task difficulty, accounting for
the diverse complexities of each task. Additionally, we mit-
igate task interference by utilizing a soft parameter-sharing
model and grouping similar tasks based on measuring their
similarity.

III. METHOD
A. OVERALL FRAMEWORK
The DMO framework, shown in Figure 2, groups tasks based
on similarity and dynamically allocates network parameters

according to the difficulty of each task. Additionally, the pro-
posed method is performed without requiring human inter-
vention. It addresses parameter entanglement and memory
inefficiencies by considering task similarity and complexity
during grouping and allocation. The framework comprises
three stages: measuring task difficulty and similarity, group-
ing tasks, and allocating parameters based on difficulty.
Initially, task difficulty and similarity are measured using
weight and loss metrics obtained by training individual task-
specific networks. Subsequently, tasks are grouped based
on these calculated similarities, where parameters within
each group-specific network are shared among the tasks.
Lastly, the measured task difficulty is mapped into a sparsity
ratio to discard redundant parameters within each group-wise
network. In conclusion, we derive memory-efficient sparse
subnetworks.

B. MEASURING THE TASK SIMILARITY AND DIFFICULTY
To group similar tasks, we measure task similarity using
two approaches: one based on task weights and the other
on training losses. We employ loss as an indirect metric
to evaluate the behavior of the network on various tasks.
We utilize the Pearson correlation coefficient to identify
linear relationships in task weight distributions, which helps
us group tasks that could benefit from shared information.
Specifically, we calculate the similarity between the weights
wi of the task i and wj of the task j using the Pearson
correlation coefficient, where i ̸= j, i, j ∈ {1, . . . , t, . . . ,T },
and T denotes the total number of tasks. This computation
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produces a symmetric matrix of dimensions T × T , denoted
as SW, representing the similarity scores for all task weight
pairs. Note that we can calculate the similarity between
weights of different dimensions using [26], [27]. Similarly,
we define the loss for the task t as L t . By calculating the
Pearson correlation coefficients for all task losses, we derive a
symmetric T × T correlation matrix, denoted as SL. Finally,
we introduce a combined task similarity measure, S, which
integrates the two types of similarities, weight and loss. The
formulation is as follows:

S = αSW + (1 − α)SL, (1)

where α is a parameter to balance two similarities.
To measure the relative difficulty of each task, we measure

the difficulty of each sample. To differentiate relatively
difficult samples among samples of the tasks, we use the
average training loss across all task samples as a criterion.
Specifically, we denote Ltn as the training loss for the n-th
sample of task t . We calculate the average training loss across
tasks as

µ =
1
T

1
N t

T∑
t=1

N t∑
n=1

Ltn, (2)

where N t represents the number of samples for task t .
We define the difficult sample if the loss of the sample is
greater than a predefined value µ. The difficulty of task t is
calculated by the ratio of difficult samples in task t as

d t =
1
N t

N t∑
n=1

1[Ltn≥µ]. (3)

C. TASK GROUPING
To group tasks that share similar features, we use a
graph-based approach to capture relationships between tasks.
Each of these groups is associated with its distinct network.
By doing so, we reduce the parameter redundancy of the
model and promote knowledge sharing between tasks within
the same group. We use a graph-based approach [28] to
capture relationships between tasks. To create task groups
based on similarity, we construct graph G = (T,E), where T
denotes a set of tasks represented by nodes and E comprises
edges connecting tasks with similarity scores S exceeding a
threshold τsim, i.e.,

E = {(i, j) | Si,j > τsim, ∀i ̸= j, i, j ∈ T}. (4)

We define nodes as tasks in T and edges using similarity
scores S, allowing for efficient grouping that captures task
relationships. In a graph, a clique is defined as a subset of
nodes in which every node is directly interconnected with
all other nodes within that subset. During the task grouping
process, we form groups by identifying the largest cliques
within the graph, representing strongly connected tasks with
high similarity. We utilize the Bron-Kerbosch algorithm [29]
to identify these largest cliques, denoted as C, based on the

similarity scores and a threshold value τBK . We set τBK as
0.8 in all experiments. From the discovered cliques in C,
we specify distinct task groups. For each clique from C,
we establish a new group consisting of tasks that have not
yet been assigned to any existing group. Specifically, tasks
from a particular clique, denoted as Ck ∈ C, are assigned to a
groupGk . A task t is included in the group if it has not already
been assigned to other groups. The task assignment process
continues until all cliques in C have been examined, thereby
ensuring that all tasks with shared knowledge are assigned to
their appropriate groups.

D. GROUP-SPECIFIC MODEL
We allocate parameters considering task-specific complexity
by performing dynamic pruning to improve memory effi-
ciency.We adopt unstructuredmagnitude-based pruning [30],
[31], which facilitates the removal of redundant parameters
without adhering to a specific structural pattern. Due to its
flexibility in removing weights from any location, unstruc-
tured pruning offers higher compression rates. Subsequently,
we merge the pruned parameters of tasks within a group into
a group-specific model.

Specifically, for the tasks in the k-th group Gk , we prune
parameters in their respective networks and subsequently
unionize the survived task-specific parameter sets into the
parameters of the group-specific network. For pruning the
t-th task, we prune parameters in element-wise [31], with
a difficulty-aware ratio of 1/ exp(d t ). This shows that the
higher the difficulty, the lower the pruning ratio. Finally,
the parameters for the network of the k-th group, wGk , are
formed by merging the survived task-specific parameter sets
belonging to the k-th group. Note that when the positions of
these surviving parameters overlap, we prioritize parameters
from tasks with a higher difficulty.

E. TOTAL LOSS
The proposed method trains multiple tasks simultaneously
by summing the losses for all tasks. The total loss Ltotal
comprises the sum of cross-entropy losses for group-specific
models and a regularization term for the weights. We define
Ltotal as

Ltotal =

g∑
k=1

LGkce + ∥wGk∥2, (5)

where Gk is the k-th group, g is the total number of
groups, and wGk is the set of weights for group Gk .
DMO aims to improve memory efficiency by obtaining
group-wise subnetworks that measure task difficulty and
reduce unnecessary network parameters accordingly.

IV. EXPERIMENTS
A. SETUP
To demonstrate the effectiveness of the proposed method,
we compared our method and other competitors to various
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TABLE 1. Performance of various methods using ResNet-18 on four different tasks. Avg, #P, and Ratio denote the average accuracy, the number of model
parameters expressed in millions, and the relative ratio of parameters compared with single-task learning.

MTL scenarios. For the first scenario of multi-task learning,
we experimented with four classification datasets. We define
each task as a dataset. We uniformly resized all images
from the tasks CIFAR-10, STL-10, MNIST, and USPS
into 72 × 72 pixels following [17]. CIFAR-10 and STL-
10 have 10 classes with colored images, while MNIST
and USPS have grayscale handwritten digit images. For the
MTL scenario where we need to train with both color and
grayscale images simultaneously, we converted the grayscale
images into a 3-channel format. In the second scenario,
we used the CIFAR-100 dataset [13], which consists of
50,000 training and 10,000 test color images of 32×32 pixels
with 100 classes. To evaluate the effectiveness of the method
in an MTL scenario with more tasks, we divided CIFAR-
100 into 20 tasks based on the superclasses provided in the
dataset. Here, a task corresponds to a five-class (superclass)
classification task.

We also conducted another experiment using 10 datasets
for the large-scale visual recognition challenge known as
Visual Decathlon Challenge [17]. This challenge aims to
address 10 image classification tasks simultaneously; each
task belongs to a different visual domain. The datasets used
in this challenge are FGVC-Aircraft Benchmark (Aircraft)
[33], CIFAR-100 [13], Daimler Pedestrian classification
(DPed) [34], Describable Textures Dataset (DTD) [35],
German Traffic Sign Recognition Benchmark (GTSRB) [36],
ILSVRC12 (ImageNet) [37], Omniglot [38], Street View
House Numbers (SVHN) [39], UCF101 Dynamic Images
(UCF101) [40], [41] and VGG-Flowers (Flowers102) [42].

We evaluated the proposed method and various MTL
approaches, including single-task learning, hard parameter
sharing [1], soft parameter sharing [7], and soft-parameter
sharing method that groups tasks based on RSA [32] (we
denote it as Soft RSA). We report on the accuracy of
individual tasks and the average accuracy (Avg) across
multiple tasks. Additionally, we present the relative ratio
of parameter usage in comparison to single-task learning.
Single-task learning involves separate learning for each task.
We also compared our method to other recent MTL models,

TABLE 2. Performance of DMO and the other compared methods on
20 tasks from CIFAR-100. The table reports average accuracy (Avg), the
number of parameters expressed in millions (#P), and the parameter
ratio compared to the usage in single-task learning (Ratio).

including cross-stitch [8], MTAN [4], NDDR [10], and
TAPS [6]. We utilized the ResNet-18 network [43] as the
backbone for the first two scenarios and an ImageNet pre-
trained ResNet-18 for the last scenario. We used the SGD
optimizer and set the momentum of 0.9. In the first scenario,
we trained for 25 epochs with a batch size of 64 and an
initial learning rate of 0.1. We trained for 200 epochs with the
same parameters in the second scenario. In the third scenario,
we trained for 25 epochs with a batch size of 128 and an initial
learning rate of 0.01. We implemented using PyTorch [44].

B. FOUR TASKS WITH DIFFERENT DIFFICULTY LEVELS
We compared the proposed method with existing approaches
using four classification tasks, namely CIFAR-10, STL-10,
USPS, and MNIST, whose results are shown in Table 1.
Hard parameter sharing results in unsatisfactory performance
compared to single-task learning due to task interference.
Soft parameter sharing shows negligible improvement in
the trade-off between average accuracy and parameter
consumption compared to single-task learning. The proposed
method, DMO, not only significantly reduces the number
of parameters for performing each task compared to soft
parameter sharing but also achieves performance similar to
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TABLE 3. Performance on Visual Decathlon Challenge. The table provides details on the average accuracy (Avg) across all tasks, the number of
parameters (#P) expressed in millions, and the relative ratio of parameters (Ratio) compared to the parameters of single-task learning.

FIGURE 3. Performance of DMO in comparison to various MTL methods.
We use multiple colors to represent different tasks: red for CIFAR-10,
yellow for STL-10, green for MNIST, and blue for USPS. The x-axis
indicates the number of parameters.

the hard parameter sharing approach. Specifically, DMO
outperforms NDDR and simultaneously shows a substantial
decrease of approximately 95% in the total number of
parameters. This is achieved by grouping similar tasks, such
as USPS and MNIST, and allocating parameters based on the
task difficulty.

Figure 3 shows the accuracy and parameter consumption
for each task. The proposed method consumes 94% fewer
parameters than single-task learning, with only a marginal
performance drop. For STL-10, MNIST, and USPS, DMO
significantly reduces parameters while maintaining similar
performance. On average, DMO results in an 84% parameter
reduction across various tasks. Notably, it achieves a
significant 97% decrease in parameters on the USPS dataset.

C. CIFAR-100: 20 TASKS
In Table 2, we evaluate the performance of various multi-task
learning approaches on 20 tasks derived from the CIFAR-
100 dataset. Single-task learning achieves an average accu-
racy of 80.47% by using 223.5M parameters. While hard
parameter sharing [1] effectively reduces the parameter
count to 11.1M, it comes at the cost of a noticeable
decline in average accuracy, dropping it to 75.48%. MTAN

FIGURE 4. Performance of DMO and the other compared methods on
20 tasks from CIFAR-100. Identical symbols represent results with respect
to accuracy and parameters for a task.

[4] enhances an average accuracy of 82.88% by using
35.9M parameters. Conversely, soft parameter sharing [7]
and Cross-stitch [8] give an average accuracy of 82.16%
and 78.00%, respectively, employing 223.5 and 447.1M
parameters. NDDR [10], with its substantial parameter count
of 691.3M, only achieves an accuracy of 68.23%. This has
approximately 20 times more parameters than the proposed
method. TAPS [6] demonstrates a higher average accuracy
than NDDR while using 130.5M parameters. However,
it consumes about 3.9 times greater parameters than the
proposed DMO and shows unsatisfactory performance com-
pared to ours. Remarkably, DMO outperforms other existing
methods concerning the trade-off between performance and
parameter. It achieves an average accuracy of 83.10% while
utilizing a significantly lower total number of parameters
at 33.5M.

Figure 4 shows the number of parameters and the accuracy
for each task. We demonstrate our method’s accuracy and
number of parameters compared to other MTL approaches.
The figure shows that DMO performs better generalization
across tasks than hard parameter sharing while maintaining
parameter counts. DMO also achieves comparable perfor-
mance to other methods that utilize significantly larger
parameters.
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FIGURE 5. Correlation between task difficulty and pruning ratio for the
scenarios 1 and 2 with respect to different values of τ . We report the
average accuracy (Avg) and the parameters (#P). We denote different line
colors for different values of τ . The symbols on each line represent the
pruning ratio corresponding to the difficulty of a task.

D. VISUAL DECATHLON CHALLENGE
In Table 3, we compare the performance of various MTL
methods on Visual Decathlon Challenge. Note that in single-
task learning, the average accuracy is 74.69%, with a
baseline parameter count of 101.68M. This method achieves
high accuracy because it focuses on individual tasks. Soft
parameter sharing [7] attains a similar accuracy of 65.24%
with a similar parameter count to single-task learning. This
method shares parameters among tasks, enabling better
generalization. Cross-stitch [8] surpasses the soft parameter
sharing approach with an average accuracy of 76.33%, but it
increases the parameter count to 203.36M. It creates separate
models for tasks and learns task-specific information but
requires more parameters due to added complexity. NDDR
[10] shows a slightly lower average accuracy of 59.76%
and an increased parameter count of 252.86M compared
to the cross-stitch method. This can be attributed to its
design focus on tasks related to semantic segmentation and
surface normal prediction. TAPS [6] is memory-efficient
but shows an unsatisfying average accuracy of 59.11%
compared to other MTL approaches. Compared to existing
approaches, DMO demonstrates an average accuracy of
74.40% while using a significantly lower parameter count of
11.48M. This memory-efficient method offers the benefits of
parameter sharing by task grouping and parameter allocation
within each group. The performance of the proposed method
is slightly lower compared to the hard-parameter sharing
method, MTAN, due to our focus on memory efficiency,
which led us to use fewer parameters. However, when
considering the trade-off between parameter usage and
accuracy, our proposed method employs 58.45% fewer
parameters than MTAN, with a marginal decrease in average
accuracy.

E. ANALYSIS
1) CORRELATION BETWEEN TASK DIFFICULTY AND
PRUNING RATIO
We analyzed the correlation to explore the relationship
between task difficulty and the pruning ratio. To compare the

TABLE 4. Performance according to the number of filters of DMO and the
other compared methods on the first and second scenarios. The table
reports the number of filters used in the first layer (#filters), the number
of layers (#layers), and average accuracy (Avg), the number of parameters
expressed in millions (#P).

performance and parameter usage associated with our pro-
posed difficulty-aware pruning, we introduced a temperature
hyperparameter τ . We set the difficulty-aware pruning ratio
as 1/ exp( d

t

τ
) and conducted experiments with varying values

of τ . Figure 5 presents the difficulty and pruning ratio for
each task in experiments conducted in the scenarios 1 and
2. This demonstrates that easier tasks are assigned higher
pruning ratios, while more difficult ones have lower ratios,
aligning the pruning ratio with task difficulty. Even at the
same difficulty level, our default setting with τ = 1.0 achieves
a higher average accuracy despite a higher pruning ratio
compared to other values of τ . This suggests that our method
effectively eliminates unnecessary parameters and facilitates
information sharing among grouped tasks.

2) IMPACT OF NETWORK HYPERPARAMETERS
To analyze the memory-accuracy trade-off of our proposed
method for various network sizes, we experimented with the
scenarios 1 and 2 by varying the sizes of the network’s filters
and the number of layers. Table 4 shows the average accuracy
(Avg) and parameter usage (#P) for different network
configurations. The proposed method demonstrates a higher
memory-accuracy trade-off compared to other methods, even
when adjusting the network’s filters and layers.

V. CONCLUSION
In this paper, we have proposed Dynamic Model Opti-
mization (DMO), a novel approach to multi-task learning
that optimizes tasks according to their complexity. DMO
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produces memory-efficient subnetworks by grouping tasks
based on similarity and allocating network parameters based
on task difficulty. The experiments demonstrated that DMO
effectively diminishes the number of model parameters by
more than 80% while exhibiting similar performance com-
pared to the soft parameter-sharing approach. Furthermore,
DMO uses significantly fewer parameters than recent MTL
methods while maintaining similar accuracy or improving
upon it. Thus, DMO can be a strong candidate as a practical
approach for designing efficient MTL networks. In this study,
we acknowledge that the graph-based task grouping method
has limitations, as the multitude of potential combinations
may not always yield optimal results. Future work will focus
on enhancing this approach and the efficiency of resource
allocation by formulating more sophisticated algorithms and
incorporating a broader range of influential factors beyond
task difficulty.
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