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Abstract

Gout—a very painful inflammatory arthritis caused by the deposition of monosodium urate

crystals in the joints—is influenced by several factors. We identified the association of sin-

gle- nucleotide polymorphisms (SNPs) that link gout with health-related lifestyle factors

using genomic data from the Korean Genome and Epidemiology Study. We conducted a

genome-wide association study (GWAS) on 18,927 samples of 438 Korean patients with

gout and 18,489 controls for the discovery stage. For the replication stage, another batch

containing samples of 326 patients with gout and 2,737 controls were analyzed. Lastly, a

meta-analysis was performed using these two cohorts. We analyzed the effects of health-

related lifestyle factors, including eating habits, physical activity, drinking behavior, and

smoking behavior, on gout. After identifying the association between GWAS-derived SNPs

and health-related lifestyle factors, we confirmed the interaction between the polygenic risk

score (PRS) and health-related lifestyle factors. We identified 15 SNPs related to gout,

among which rs1481012 of ABCG2 located on chromosome 4 has been newly discovered

(P = 2.46e-11). On examining the interaction between SNPs and health-related lifestyles,

rs3109823—located in ABCG2—was found to be associated with smoking status. In addi-

tion, rs11936395—located in SLC2A9—was significantly associated with the average

momentum of exercise per session, whereas rs11066325 located in PTPN11, showed a sig-

nificant association with the number of exercise sessions per week, smoking status, drinking

status, and amount of soju drink per session. rs9421589—located in FAM35A—was signifi-

cantly associated with the duration of smoking. In addition, we verified that the association

between PRS and duration of smoking affects gout. Thus, in this study, we identified novel

SNPs that link gout with health-related lifestyle factors in the Korean population.

Introduction

Gout is a very painful inflammatory arthritis caused by the deposition of monosodium urate

crystals in the joints due to abnormal purine metabolism and underexcretion of serum urate,

causing inflammation and pain in the joints and the surrounding tissues [1]. It is influenced
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by a combination of genetic variations and environmental factors, and genetic factors being

the key reason for renal excretion of serum urate. The change in serum urate concentration

can be primarily (40–80%) attributed to genetic factors [2]. One of the genetic factors related

to uric acid excretion by the kidneys is single nucleotide polymorphisms (SNPs). A SNP is a

germline substitution of a single nucleotide occurring at the same location in a gene for differ-

ent individuals. These genetic mutations have a varied prevalence depending on race and

group [3].

With the advancement of genome-wide association study (GWAS), several genes associated

with gout have been reported [4]. According to previous GWAS, the representative genes

related to gout include ABCG2 (encodes the strongest renal apical urate secretion transporter),

SLC2A9 (encodes renal basolateral GLUT9, the only urate reabsorption transporter that trans-

ports urate from proximal tubule epithelial cells to blood stream), SLC17A1 (encodes NPT1,

an apical renal urate secretion transporter), SLC17A3 (encodes NPT4, an apical renal urate

secretion transporter), SLC22A11 (encodes OAT4, an apical renal urate reabsorption trans-

porter), SLC22A12 (encodes URAT1, the strongest apical renal urate/nicotinate exchanging

reabsorption transporter), and PKD2 (encodes polycystin-2, an integral membrane protein

having characteristics of a calcium-permeant cation channel) [4–10]. Effects of the interaction

between PKD2 and ABCG2 on gout has been studied in Chinese and Japanese male popula-

tions, respectively [5]. In addition, the genetic association between gout and rs2230054 of

CXCR2 in Chinese Han men has been recently studied [8]. In Korea, the association between

electric genes and the interaction between genes in Korean gout was investigated through the

Korean Association Resource (KARE) cohort [11]. Sull et al. [12] also investigated the impact

of SLC2A9 mutations on serum urate levels in Koreans. Additionally, a significant association

between rs2231142 or rs2054576 of ABCG2 and Korean gout was revealed [6, 13]. Conse-

quently, prior studies on gout have had varied results based on race or study group.

In Korea, the number of patients with gout is increasing rapidly, and it is prevalent not only

among those in their 50s and 60s but also among those in their 20s and 30s owing to the

increase in meat intake and sedentary lifestyles, which leads to obesity [14]. The average serum

urate concentration of the entire population is increasing in Korea, attributed to multifaceted

factors such as lifestyle and dietary habits [15].

Epigenetics asserts that differences in the environment can modify gene expression. It also

shows that expression of genes varies depending on the environment, diet, and behavioral hab-

its [16]. Moreover, the gene–environment correlation does not exist independently, and

changes in one affect the characteristics of the other through a feedback loop [17, 18]. There-

fore, it is necessary to promote good health by enhancing environmental factors owing to the

role the interaction of genetic and environmental factors play in human diseases. In addition,

although gout is a disease affected by both genetic variations and environmental factors, previ-

ous studies on genetic variations related to gout in Korean patients with gout focused on only

the genetic aspect without considering environmental factors. Therefore, detailed research

considering both environmental and genetic factors in Korean gout is urgently needed.

In this study, we conducted a GWAS analysis on patients with gout in Korea based on the

Health Examinees study (HEXA) cohort and KARE cohort of the Korean Genome and Epide-

miology Study (KoGES). Furthermore, the polygenic risk score (PRS) was calculated as a

weighted sum of the risk alleles of the SNPs to assess the risk level of the SNPs identified in the

GWAS analysis [19]. PRS has been used extensively to predict the genetic predisposition

toward diseases, since it was established that the genetic risk for schizophrenia is a predictor of

bipolar disorder [20]. Ultimately, this study seeks to identify the SNPs related to gout in Kore-

ans, analyze their interactions with health-related lifestyle factors, and determine whether

these interactions affect gout. In addition, this study calculated the PRS to analyze the genetic
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risk of gout in Koreans and assessed the interaction between PRS and health-related lifestyle

factors.

Material & methods

Data collection

We used the epidemiologic and genomic data from the first HEXA-based survey conducted

from 2004 to 2013 from the KoGES, as well as the genomic data from the first KARE-based

survey conducted from 2001 to 2002, from the KoGES, conducted by the Korea Centers for

Disease Control and Prevention. The Korean Biobank Array (also called the K-Chip or Kor-

eanChip) was used to process the HEXA and KARE genomic data.

Study participants

This study included data from subjects in the age group of 40 to 69 years, recruited by the

KoGES. Among the 173,208 people who were included in the HEXA-based survey, the epide-

miologic and genomic data of 58,700 people, including their genetic information, were used.

Similarly, the genomic data of 5,493 people out of the 10,031 people studied in the KARE-

based study were used.

In the discovery stage, a total of 18,927 subjects were analyzed, including the 438 self-

reported subjects with gout in the HEXA cohort. It was assumed that gout is diagnosed by

rheumatologists according to the American College of Rheumatology diagnostic criteria [21].

Subjects who met any of the following criteria were excluded: “No response” (n = 7,624)

and “Other diseases” (n = 32,149) such as chronic, metabolic, cardiovascular, cerebral, and

respiratory diseases, detected through disease history investigation. In the replication stage, a

total of 3063 subjects were analyzed, including the 326 subjects with gout in the KARE cohort

(S1 Fig). This study was conducted according to the guidelines of the Declaration of Helsinki

and approved by the institutional review boards of Chung-Ang University (approval no.:

1041078-202005-HRBR-137-01) and Korean center for Disease Control and Prevention

(KBN-2020-080). All participants provided their written informed consent voluntarily.

General and clinical characteristics

The data in this study were investigated using self-reported questionnaires and clinical exami-

nations. The questionnaire was developed by including items from a semi-quantitative food

frequency questionnaire, socio-demographic status, lifestyle (i.e., diet, smoking, drinking, and

physical activity), and disease history for the KoGES [22].

Parameters like gender, age, marital status, occupation, education, monthly household

income, medical history (hypertension/diabetes), age during gout diagnosis, height, weight,

body mass index (BMI), systolic blood pressure, diastolic blood pressure, pulse, fasting blood

sugar, blood urea nitrogen, creatinine, uric acid, total cholesterol (TC), low density lipoprotein

cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglycerides (TG), aspar-

tate transaminase (AST), alanine transaminase (ALT), and high sensitivity C-reactive protein

(hs-CRP) were analyzed. Bio-specimens included fasting blood samples that were collected in

a serum separator tube and two ethylenediaminetetraacetic acid (EDTA) tubes, and a 10 ml

midstream urine sample. For long-term storage, both serum and plasma were prepared and

aliquoted in 6–10 vials (300–500 μl per vial), and 80–100 μg samples of blood DNA were also

prepared [22].

PLOS ONE Genetic polymorphisms and health-related lifestyle factors in gout

PLOS ONE | https://doi.org/10.1371/journal.pone.0295038 December 7, 2023 3 / 17

https://doi.org/10.1371/journal.pone.0295038


Health-related lifestyle factors

Health-related lifestyle factors are environmental factors such as eating habits, physical activ-

ity, drinking behavior, and smoking behavior. Eating habits included the number of regular

meals per day and the average frequency of food intake over the past year. Physical activity

included the exercise status, number of exercise sessions per week, and average momentum of

exercise per session. Drinking behavior included drinking status, duration of drinking, average

frequency of alcoholic beverages (soju/beer) consumed over the past year, and quantity of alco-

hol consumed (average of the amount soju/beer drink per session: one bottle of soju = 6.5

cups, 50 cc per cup/one bottle of beer = 2.5 cups, 220 cc per cup). Smoking behavior included

smoking status, duration of smoking, and number of cigarettes smoked per day.

Genetic data refinement and extraction

Data purification and SNP detection along with the analysis of the interaction between SNPs

and health-related lifestyle factors were performed using the Plink (v.1.9, http://pngu.mgh.

harvard.edu/purecell/plink/) genome analysis program. Functional Mapping and Annotation

of Genome-Wide Association Studies was used to interpret the genomic data results and

express them through Manhattan plot and Q–Q plot [23]. The SNPs for meta-analysis results

were visualized using PhenoGram [24]. Locuszoom version 1.1 (http://csg.sph.umich.edu/

locuszoom) was utilized to confirm the association between SNPs of ABCG2 on chromosome

4 and to create regional plots [25].

Genomic DNA samples were genotyped using the Korea Biobank Array (K-chip). The K-

chip is a new array, a Korean-customized dielectric chip developed by the Korea National

Institute of Health in 2015. The K-chip consists of approximately 830,000 markers, including

more than 247,000 rare-frequency and functional variants estimated through the sequencing

data of more than 2,500 Koreans [26]. In this study, genotyping was conducted to determine

the genotypes of 64,193 people and investigate the genotypes for 6,176,658 SNPs. In addition,

SNP quality control (QC) was performed to purify genomic data to analyze 18,927 of the

58,700 subjects from the HEXA study included in the K-chip. Finally, 5,442,390 SNPs were

used for actual analysis after QC by applying minor frequency (MAF) <0.05, SNP call rate

<0.95, and Hardy–Weinberg equilibrium (HWE) P-value < 1E-6.

Discovery stage: HEXA

In this study, the genomic data from the HEXA study included in the K-chip were analyzed to

perform GWAS. Similar to that in a previous study [11], age, gender, and BMI were used as

covariates and GWAS was performed using logistic regression analysis. We analyzed 18,927

out of 58,700 subjects in the HEXA study, and 15 lead SNPs significant for gout were detected.

Lastly, the identified SNPs (n = 15) were assigned points (0, 1, or 2) based on the number of

risk alleles present; the total score was equivalent to PRS.

Replication stage: KARE

A replication study was performed on 3,063 subjects from the KARE cohort, with 326 subjects

in the gout group and 2,737 subjects in the control group, to examine whether the 15 SNPs

derived from the HEXA study were reproduced in this cohort. As with the discovery stage,

age, gender, and BMI were adjusted as covariates. A meta-analysis was performed after the

replication stage. Lastly, the PRS calculation method was the same as that in the discovery

stage.
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Statistical analysis

Meta-analysis was performed by logistic regression analysis using PLINK by combining the

discovery stage and replication stage of GWAS. The combined subject was composed of 764

cases and 21,226 controls.

Health-related lifestyle factors with SNPs of HEXA were analyzed by univariate logistic

regression using PLINK. Binary logistic regression was performed with health-related lifestyle

factors and PRS as independent variables, and the presence or absence of gout as a dependent

variable.

Results

General and clinical characteristics

Based on gender, the gout subjects were categorized as male (369, 84.2%) and female (69,

15.8%), with relatively higher male subjects and significant differences between gout and

healthy control group (χ2 = 559.32, P<0.001). The age of gout diagnosis was in the range of

50.31±9.02 years in the gout group. The serum urate concentration was 6.67±1.84 mg/dl in the

gout group and 4.51±1.18 mg/dl in the control group, with significantly higher serum urate

levels in the gout group (t = -24.46, P<0.001). The TC and LDL-C levels were significantly

higher in the control group than in the gout group. HDL-C level was significantly lower in the

gout group than in the control group (t = 14.33, P<0.001), whereas the TG, AST, ALT, and hs-

CRP levels were significantly higher in the gout group (S1 Table).

GWAS

Discovery stage. GWAS analysis, which was conducted to identify the genetic variants associ-

ated with gout in all the subjects in the discovery stage, revealed the presence of 15 SNPs. The

most significant SNP was rs1481012 (P = 1.12e-14) located in ABCG2, based on the GWAS

results. The second most significant SNP was rs11936395 (P = 1.37e-06) located in SLC2A9 and

rs200888518 (P = 1.84e-06) located in APP. The rest of the SNPs in order of their significance

are as follows: rs11066325 (P = 2.00e-06) of PTPN11, rs3798728 (P = 2.80e-06) of RP3-510L9.1,

rs9532070 (P = 5.71e-06) of RP11-14O22.1, rs3109823 (P = 6.02e-06) of ABCG2, rs339405

(P = 6.50e-06) of TRIP10, rs28674878 (P = 6.72e-06) of CHST15, rs56205418 (P = 6.98e-06) of

CLPS, rs17794144 (P = 7.90e-06) of CWC22, rs17013965 (P = 7.98e-06) of PPM1, rs59517147

(P = 8.00e-06) of KADAMTS9, rs9421589 (P = 9.42e-08) of FAM35A, and rs146386352

(P = 9.76e-06) of ROBO2 (S2 Table) (Figs 1 and 2).

Replication stage. In this stage, it was confirmed whether the 15 SNPs derived from the

HEXA study in the discovery stage were reproduced in the KARE study as well (S3 Table).

Meta-analysis results. Table 1 shows details regarding the most significant SNP in Korean

patients with gout. A meta-analysis was conducted using the 15 SNPs identified from the two

cohorts. The rs1481012 SNP of the ABCG2 gene (4:89039082_A/G) located on chromosome 4

satisfying the GWAS signature p threshold (P<5e-8) was discovered (P = 2.46e-11) (Figs 3

and 4).

Differences in PRS between the two groups

The PRS for the 15 lead SNPs was significantly higher for HEXA (P = 7.56E-63), and a higher

PRS has been shown to affect gout (OR = 1.48, 95% CI = 1.41–1.55; P = 7.56e-63). However, for

KARE, there was no significant differences between control group and patients with gout

(S4 Table).
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Fig 1. Manhattan plot of GWAS on HEXA. Manhattan plot showing the results of the GWAS analysis of patients

with gout in the HEXA study. The X-axis of the plot shows the genomic location and the Y-axis shows the level of

association and each dot represents an SNP. Significant SNPs associated with gout were identified in the genetic region

associated with gout by the appearance of SNPs with a p-value of 1e-5 or less rising upward. The red line shows critical

values for genome-wide statistical significance (P<1e-5).

https://doi.org/10.1371/journal.pone.0295038.g001

Fig 2. Q–Q plot of GWAS on HEXA. Q–Q plot showing the results of the GWAS analysis of patients with gout in the

HEXA study. The blue dots representing SNPs coincide with the red oblique line below. They then deviate from the

oblique line around the middle. SNPs that do not coincide with the oblique line are considered to be associated with

gout.

https://doi.org/10.1371/journal.pone.0295038.g002
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Table 1. Significant SNPs related to gout established through meta-analysis.

CHR POS Gene SNP A1 A2 MAF P
2 180988966 CWC22 rs17794144 A G 0.06221 6.81E-05

3 64640212 ADAMTS9 rs59517147 T G 0.2628 0.001627

3 77388130 ROBO2 rs146386352 T G 0.05175 1.07E-05

4 9929575 SLC2A9 rs11936395 G A 0.1355 0.004062

4 89039082 ABCG2 rs1481012 G A 0.2723 2.46E-11

4 89064602 ABCG2 rs3109823 C T 0.1607 0.000315

4 89170730 PPM1K rs17013965 A G 0.294 0.001446

6 11194628 RP3-510L9.1 rs3798728 A T 0.3983 0.000356

6 35762473 CLPS rs56205418 C T 0.1601 4.34E-05

10 88879803 FAM35A rs9421589 C T 0.243 1.79E-05

10 125762202 CHST15 rs28674878 G A 0.09973 0.002764

12 112930475 PTPN11 rs11066325 C T 0.164 3.13E-06

13 38078153 RP11-14O22.1 rs9532070 T C 0.4534 0.000986

19 6744762 TRIP10 rs339405 A C 0.2231 6.89E-05

21 27296451 APP rs200888518 G C 0.1215 2.44E-05

P-value<5e-8

CHR chromosome, POS position, SNP single nucleotide polymorphism, A1 minor allele, A2 major allele, MAF minor allele frequency, P = P-value

https://doi.org/10.1371/journal.pone.0295038.t001

Fig 3. PhenoGram plot of gout. PhenoGram plot of the SNPs associated with gout. The long bars represent the 9 out

of 22 chromosomes in which gout-related SNPs were found. The position of the SNP on each chromosome is indicated

by a line and the line is connected to colored circles; Each different colored circles represent gout-related SNPs.

https://doi.org/10.1371/journal.pone.0295038.g003
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Health-related lifestyle factors associated with gout

With respect to the number of exercise sessions per week, daily exercise was positively associ-

ated with the risk of gout (P = 0.036). For drinking behavior, past drinking and current drink-

ing showed a 3.53-fold and 1.74-fold higher risk of gout, respectively (P = 5.23e-10, P = 2.56e-

05, respectively). In particular, consuming more than 0.5 bottles of soju and beer increased the

risk of gout by 0.30-fold and 0.38-fold, respectively (P = 0.000, P = 0.002, respectively).

Furthermore, current smoking was positively associated with risk of gout (P = 0.042). Sub-

jects who had smoked for>41 years developed a 0.44-fold higher risk of gout than those who

smoked for less than 5 years (P = 0.042). No significant differences in the risk of gout develop-

ment were found with respect to eating habits (S5 Table).

Interactions between 15 SNPs and health-related lifestyle factors

The interactions between SNPs and health-related lifestyle factors are presented in Table 2.

The minor allele of rs3109823 located in ABCG2 interacted with smoking status (OR = 0.73,

95% CI 0.54–0.98; P = 0.037). rs11936395 located in SLC2A9 interacted with the average

momentum of exercise per session (OR = 0.76, 95% CI 0.59–0.97; P = 0.033). The interaction

between rs11066325 located in PTPN11 and the number of exercise sessions per week, smok-

ing status, drinking status, and amount of soju drink per session was significant. Duration of

smoking was found to interact with rs9421589 located in FAM35A (OR = 1.18, 95% CI 1.01–

1.39; P = 0.036).

In KARE, the interaction between rs146386352 located in ROBO2 and smoking status was

significant (OR = 2.16, 95% CI 1.42–3.28; P = 0.000). In addition, rs11936395 located in

SLC2A9 was significantly associated with physical activity during the day (middle-intensity

activity) as well as smoking status (P = 0.041, P = 0.008, respectively).

Fig 4. Regional plot of SNPs of ABCG2 on chromosome 4. Regional plots were based on hg 19 version ASN (Asian

population). A high r2 SNP was observed around rs1481012, which has the highest statistical significance. The purple

diamond is an SNP that is the standard for regional plots, and rs1481012 showed the highest level of significance as a

result of association analysis. One SNP circled in red has a high r2 and is found in the same region, indicating that the

SNPs are highly correlated.

https://doi.org/10.1371/journal.pone.0295038.g004
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Interaction between PRS and health-related lifestyle factors

Table 3 shows the analysis results of the interaction of PRS and health-related lifestyle factors.

Among them, the duration of smoking did interact with PRS for the risk of gout (OR = 1.06,

95% CI = 1.00–1.11; P = 0.030).

Similarly, in KARE, the duration of smoking showed a significant association with gout risk

(OR = 1.18 95% CI = 1.02–1.35; P = 0.019). Furthermore, the average number of soju drinks

per year and smoking status were also significantly related with the risk of developing gout

(P = 0.023, P = 0.048, respectively).

Table 2. Interaction between 15 SNPs and health-related lifestyle factors.

CHR BP Gene Minor

allele

SNP Health-

related

lifestyle

factors

HEXA CHR BP Gene Minor

allele

SNP Health-

related

lifestyle

factors

KARE

OR

(95%

CI)

P OR

(95%

CI)

P

3 77388130 ROBO2 T rs146386352 smoking

status

2.16

(1.42–

3.28)

0.000

4 89064602 ABCG2 C rs3109823 smoking

status

0.73

(0.54–

0.98)

0.037 4 89064602 ABCG2 C rs3109823 smoking

status

0.87

(0.61–

1.25)

0.474

4 9929575 SLC2A9 G rs11936395 the average

momentum

of exercise

per session

0.76

(0.59–

0.97)

0.033 4 9929575 SLC2A9 G rs11936395 physical

activity

during the

day

(middle-

intensity

activity)

1.19

(1.00–

1.41)

0.041

10 88879803 FAM35A C rs9421589 duration of

smoking

1.18

(1.01–

1.39)

0.036 smoking

status

1.52

(1.11–

2.07)

0.008

12 112930475 PTPN11 C rs11066325 the number

of exercise

sessions per

week

1.32

(1.02–

1.70)

0.031 12 112930475 PTPN11 C rs11066325 physical

activity

during the

day

(middle-

intensity

activity)

0.94

(0.78–

1.13)

0.555

smoking

status

0.67

(0.51–

0.89)

0.006 smoking

status

0.77

(0.54–

1.11)

0.171

drinking

status

0.79

(0.62–

0.99)

0.048 drinking

status

0.75

(0.53–

1.06)

0.110

the amount

of soju drink

per session

0.76

(0.58–

0.99)

0.042 21 27296451 APP G rs200888518 Amount of

drinking

once of

soju

1.415

(0.300–

6.653)

0.660

P-value<0.05

CHR chromosome, BP base pairs, SNP single nucleotide polymorphism, OR odds ratio, CI confidence interval, P P-value

covariants: age, sex, BMI

https://doi.org/10.1371/journal.pone.0295038.t002
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Discussion

SNPs related to gout

We identified 15 SNPs related to gout in the Korean population. rs1481012 was one of the 24

SNPs in ABCG2 screened for their association with gout in the Chinese population [27], but its

presence in Koreans was detected for the first time in this study. In previous studies,

rs1481012 in ABCG2 has been associated with risk of hyperuricemia, gout, coronary artery

disease (CAD), B-cell non-Hodgkin lymphoma (B-NHL), and chronic lymphocytic leukemia

(CLL) [28–30]. Rs2728121 in PKD2 and rs1481012 in ABCG2 affect the etiology of diseases

and are associated with elevated serum urate, hyperuricemia, and gout [5], which was in agree-

ment with our findings that rs1481012 affects gout. We also identified rs3109823 in ABCG2
and rs11936395 in SLC2A9. Several studies have established that ABCG2 and SLC2A9 are

related to serum urate levels [6, 31]. Rs3109823 of ABCG2 was also detected as one of the SNPs

related to serum urate levels in Koreans [32]. Moreover, rs4529048 in SLC2A9 affects serum

urate levels. This is an iSNP located in the intron (DNA segment that does not contain genetic

information or code for proteins) of SLC2A9, which also contains rs11936395 found in this

study, and is associated with increased serum urate levels and risk of gout [33].

A study on Chinese patients revealed that the epistatic interactions between PKD2 and

ABCG2 affect serum urate concentration and gout risk. This study confirmed that pairs of

rs2728121 in PKD2 and rs1481012 in ABCG2 can impact the etiology of elevated serum urate,

hyperuricemia, and gout [5], which supports the fact that rs1481012 discovered in this study

influences gout. In addition, this study identified APP, PTPN11, RP3-510L9.1, RP11-14O22.1,

TRIP10, CHST15, CLPS, CWC22, PPM1, KADAMTS9, FAM35A, and ROBO2 as genes related

to gout.

The amyloid precursor protein (APP) is located on chromosome 21 and is linked to gout as

a genetic risk factor for Alzheimer’s disease, which can induce disease through interaction

with the mutated HPRT1 [34, 35]. Additionally, HPRT (hypoxanthine-guanine phosphoribo-

syltransferase) deficiency can be caused by a mutant HPRT1 [36]. In absence of HPRT enzyme,

hypoxanthine and guanine cannot be converted to nucleotides and are disintegrated in the

form of uric acid, leading to an increase in serum urate concentration and abnormal accumu-

lation of urate crystals in the kidneys and joints [37]. Ultimately, mutations in HPRT1 can

result in manifestation of disease through variations in the interaction between HPRT1 and

Table 3. Interaction between PRS and health-related lifestyle factors.

Categories HEXA KARE

OR (95% CI) P OR (95% CI) P
the number of exercise sessions per week 0.99 (0.94–1.05) 0.885 - -

the average momentum of exercise per session 0.97 (0.92–1.04) 0.492 - -

physical activity during the day (middle-intensity activity) - - 0.99 (0.95–1.03) 0.646

drinking status 1.03 (0.98–1.08) 0.221 1.00 (0.95–1.06) 0.793

the average frequency of soju consumed over the past year 1.02 (0.98–1.06) 0.268 1.14 (1.01–1.27) 0.023

the amount of soju drink per session 1.08 (0.96–1.22) 0.177 0.79 (0.54–1.12) 0.196

the amount of beer drink per session 0.97 (0.76–1.22) 0.795 0.81 (0.34–1.91) 0.634

smoking status 1.05 (1.00–1.10) 0.510 1.07 (1.00–1.16) 0.048

duration of smoking 1.06 (1.00–1.11) 0.030 1.18 (1.02–1.35) 0.019

P-value<0.05

OR odds ratio, CI confidence interval, P P-value

https://doi.org/10.1371/journal.pone.0295038.t003
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APP [38]. Protein tyrosine phosphatases (PTP) are known to regulate various processes such

as cell growth, differentiation, division cycle, and tumor conversion [39]. We found in this

study that PTPN11 (protein tyrosine phosphatase non-receptor type 11), located on chromo-

some 12, interacts with three health-related lifestyle factors. In addition, mutations in PTPN11
modulate serum HDL-C and are associated with hemostatic pathways such as platelet activa-

tion, aggregation, and sensitization [40, 41], as well as major genes associated with hyperten-

sion, ischemic heart disease, leukemia, and breast cancer [42]. Meanwhile, PTPN11 encodes

the Src homology 2 domain–containing protein phosphatase 2 (SHP-2), which mediates cell

responses to various growth factors, hormones, and cytokines and is crucial for the migration

and invasion of fibroblasts and tumor cells [42, 43]. SHP-2 enhances the survival and invasion

of fibroblast-like synoviocytes (FLS) and the responsiveness to platelet-derived growth factor

(PDGF) and tumor necrosis factor (TNF) in rheumatoid arthritis through the activation of

focal adhesion kinase (FAK). It was shown that SHP-2 promotes the aggressiveness of FLS in

rheumatoid arthritis [44]. These findings demonstrate that the PTPN11 is associated with

rheumatoid arthritis and that SHP-2 contributes to the development of rheumatoid arthritis

[43]. FAM35A (family with sequence similarity 35 member A), located on chromosome 10,

encodes proteins with 835 amino acids and is ubiquitous, including the kidneys and other

organs such as thyroid, duodenum, and small intestine [45]. Recently, it was confirmed that

rs7903456 of FAM35A was associated with hyperuricemia and gout in Japanese and Chinese

populations [7]. Currently, there is no GWAS analysis on FAM35A in the Korean population.

In this study, rs9421589 of FAM35A was identified as a significant lead SNP in the gout group.

ROBO2 on chromosome 3 encodes a transmembrane receptor for ligands and is essential for

ureteric bud formation [46]. Mutations in this gene are associated with ureter reflux in the

bladder, which is characterized by urine reflux from bladder to ureter or kidney [47]. Regard-

ing this urinary reflux, mutations in the ROBO2 are thought to be a potential genetic factor in

patients with hyperuricemia and gout.

Minor allele frequency (MAF), the lower frequency of allelomorphic characters (alleles) in

one SNP, is widely used in genetics because it distinguishes between common and rare variants

in a population. MAF can vary in any population distribution as genetic variation and distribu-

tion vary with race [48]. Therefore, the prevalence of the disease may also vary with genetic

variation and distribution can vary with race. According to a GWAS analysis in Han Chinese

and Solomon Islanders, SNPs rs3733591, rs3733589, and rs1014290 in SLC2A9 affect gout in

Han Chinese but not in Solomon Islanders [49]. rs3733591 does not affect Polynesian or Cau-

casian gout patients [50]. Hence, the effect of SNPs in the same gene differ based on race, eth-

nicity, and region. Identification of SNPs through K-Chip provides a clearer understanding of

the genetic factors of gout unique to Koreans. Further studies on other Korean population

cohorts are needed to discover other genetic factors affecting gout in Koreans.

Health-related lifestyle factors related to gout

The high purine content in beer may be partly responsible for increased risk of hyperuricemia/

gout [51]. The major purine component in beer is guanine, and the increase in serum urate

caused by purines contained in beer is sufficient to boost the effect of alcohol elevating serum

urate levels [52, 53]. Ethanol from excessive consumption of soju/beer/distilled spirit causes

hyperuricemia by decreasing urate excretion and increasing its production by enhancing ATP

degradation to uric acid precursors [54]. Excessive ethanol consumption also causes a swift

increase in alcohol metabolism (SIAM) thus inducing a hypermetabolic state with increased

oxygen consumption in the liver cells primarily mediated by Kupffer cells, the resident hepatic

macrophages [55]. Ethanol was reported to induce Kupffer cells to release prostaglandin E2
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(PGE2), which stimulates glucose production from endogenous hepatic glycogen and

increases oxygen uptake in hepatocytes leading to pericentral hypoxia [55]. Experimental hyp-

oxia, correlated with preeclampsia, reportedly causes hyperuricemia [56]. In addition, previous

studies have indicated that excessive consumption of soju (Korean distilled spirits) or other

distilled spirits has been linked with an increased risk of gout, which supports our findings [52,

57]. Therefore, refraining from alcohol consumption can prevent gout.

Notably, we found that current smokers and those who have smoked for more than 41

years had a substantial positive correlation with gout-related SNPs. This differs from the find-

ings of some studies on the association between gout and smoking. Previous research has

found that the incidence of gout was 20–30% greater in nonsmokers than in smokers [58–60].

However, these studies did not consider genetic factors, limitedly considered the sex of the

subjects, and the environmental factors considered were different for each study. Furthermore,

several studies have noted the harmful effects of smoking and concluded that smoking was not

recommended in patients with gout [58–60]. Therefore, the findings of this study are signifi-

cant, suggesting that long-term smoking may increase the risk of gout-related genetic

modification.

Purines are abundant in foods such as pork and beef, meat by-products (organ meat, blood,

etc.), fish, shellfish, high-fructose fruits, and sugar or fructose-rich drinks [4]. Although several

epidemiological studies have indicated that purine intake is associated with the incidence of

gout [53, 61], purine intake and the number of regular meals per day were not associated with

the gout-related SNPs in this study As purines are water-soluble, their concentration can be

reduced by discarding the water during the cooking process. Moreover, by drinking more

water, uric acid excretion can be increased by increasing urine discharge [62]. Hence, even if

purine-rich foods are consumed, the degree of absorption may differ depending on the water

intake pattern and cooking methods [63]. Therefore, to analyze the relationship between

purine intake and gout more accurately, further studies focused on water intake and detailed

cooking methods should be conducted.

In physical activity, the risk of gout was higher for those exercised for 61–120 min or for

more than 120 min per session compared to those who exercised for less than 30 min. These

results support those of a previous study in which people who exercised had a higher preva-

lence of gout than those who did not [64]. Furthermore, the prevalence of hyperuricemia was

the highest when vigorous exercise was performed and decreased as exercise intensity

decreased with moderate and mild exercise [65]. Several studies indicated that high-intensity

exercise increases uridine and hypoxanthine levels in the blood, leading to an increase in

serum urate concentration [65–67]. Therefore, it is recommended that patients with gout pay

special attention to their exercise intensity and that further studies are needed on exercise

interventions that consider the exercise intensity of patients with gout.

Gout-related gene–lifestyle interactions and significance of PRS

The PRS of 15 SNPs related to gout were calculated, and their interactions with 8 health-

related lifestyle factors were analyzed. The PRS associated with the duration of smoking, and if

the smoking period was long, the genetic risk of gout increased, whereas if the smoking period

was short, the genetic risk of gout was relatively low.

The PRS for the 15 gout-related lead SNPs was significantly higher in the gout group than

in the control group (12.68±2.26 points in the gout group and 10.82±2.23 points in the control

group in the HEXA cohort). Therefore, it is useful for predicting the genetic risk and its impact

and for investigating gene–environment interactions. A single SNP that is associated with the

outbreak of a disease has a low influence on diseases, whereas PRS assigns scores according to
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risk alleles for multiple SNPs and has a higher influence [68]. However, no gene–lifestyle inter-

action studies on gout have been reported in Korea. This study is significant as this study iden-

tified SNPs, for the first time, linking gout with health-related lifestyle factors.

Conclusions

In conclusion, this study found, for the first time, that rs1481012 of ABCG2 was associated

with the risk of gout in Koreans. We also showed that genetic factors interact with health-

related lifestyle factors such as lifestyle and have a significant impact on gout. In particular, the

duration of smoking and amount of drinks consumed were shown to increase gout risk. These

results suggest treatment and intervention require consideration of both genetic and lifestyle

factors.
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