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ABSTRACT The task of Visual Commonsense Generation (VCG) delves into the deeper narrative behind a
static image, aiming to comprehend not just its immediate content but also the surrounding context. The VCG
model generates three types of captions for each image: 1) the events preceding the image, 2) the characters’
current intents, and 3) the anticipated subsequent events. However, a significant challenge in VCG research
is the prevalent yet under-addressed issue of dataset bias, which can result in spurious correlations during
model training. This occurs when a model, influenced by biased data, infers associations that frequently
appear in the dataset but may not provide accurate or contextually appropriate interpretations. The issue
becomes even more complex in multimodal tasks, where different types of data, such as text and image, bring
their unique biases. When these modalities are combined as inputs to a model, one modality might exhibit a
stronger bias than others. To address this, we introduce theDynamicDebiasingNetwork (DDNet) for Visual
Commonsense Generation. DDNet is designed to identify the biased modality and dynamically counteract
modality-specific biases using causal relationship. By considering biases from multiple modalities, DDNet
avoids over-focusing on any single modality and effectively combines information from all modalities. The
experimental results on the VisualCOMET dataset demonstrate that our proposed network fosters more
accurate commonsense inferences. This emphasizes the critical need for debiasing in multimodal tasks and
enhances the reliability of machine-generated commonsense narratives.

INDEX TERMS Multimodal reasoning, visual commonsense generation, VisualCOMET, dataset bias,
debiasing, causal inference.

I. INTRODUCTION
Humans, in our cognitive processes, don’t rely solely on
presented data when reasoning; we naturally employ our
commonsense to fill gaps, draw inferences, and make
context-aware decisions. Emulating this quintessential aspect
of human cognition is crucial for artificial intelligence
models, enabling them to enhance their understanding and
decision-making capabilities by incorporating commonsense
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reasoning. By harnessing commonsense, models can tran-
scend data-driven limitations and adapt more effectively
to novel situations, addressing complex challenges across
diverse domains.

To address these challenges, [1] introduced the task
of Visual Commonsense Generation (VCG). This novel
framework aims to understand event beyond provided visual
and textual inputs, generating captions about events that
might have occurred previously, potential future events, and
the current intentions of the appeared people in the image.
Unlike earlier works in visual commonsense inference, such
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TABLE 1. An example from the VCG dataset: When provided with an
image and two types of corresponding textual information, the model
generates commonsense inferences about three aspects: before, after,
and intent.

as Visual Commonsense Reasoning (VCR) [2], which mainly
focused on comprehension from given data, VCG pushes
models to go beyond mere presented inputs and requires
inference grounded in commonsense. For example, as shown
in Table.1, the model is presented with an image depicting
a woman and a man working on the floor in front of a
bed. Along with the image, the model receives two types
of textual information about the woman: a description of an
event and a place. The model is asked to generate three types
of inferences: (1) past events (e.g., order Chinese takeout),
(2) future events (e.g., argue with a man about her being
disorganized), and (3) the woman’s intent (e.g., eat some
dinner).

Nevertheless, current research on VCG tasks [1], [3], [4]
has yet to tackle the crucial concern of dataset bias, which
can lead to spurious correlations during training. Commonly,
their approaches rely on Empirical Risk Minimization
(ERM), which over-depends on the frequently occurring
co-occurrences in the dataset. This over-reliance tends to
create shortcuts from input to output, resulting in models
that are biased towards frequently occurring patterns and
potentially neglect the comprehensive information necessary
for accurate results. Unaddressed, this bias can lead to
inaccurate or unfair predictions. In particular, given that
multi-modal models handle various data types like text and
images, each of which may potentially carry different biases,
it is crucial to take extra precautions to address bias in VCG,
three modality task. When integrating multiple modalities as
inputs, certain modality might exhibit a stronger bias than
others. Identifying and understanding the modality-specific
biases associated with each type of input data is an essential
step in the process of bias mitigation in multimodal tasks.

Fig.1 illustrates examples of spurious correlations
observed in the two modalities within the VCG dataset. In the
top example, because of the frequent pairing of the object
‘room’ with certain output sentences in the training set, the
model generate potentially inaccurate sentences, relying on
the object ‘room’ without considering the whole description
or the image, as seen. This shows the case where the input
data is biased more toward the text modality than the image
modality. On the other hand, the bottom example reveals a
different kind of bias. When ‘multiple people’ appear in an

FIGURE 1. Examples about the spurious correlation in a VCG dataset. Two
examples for each modality : (a) text and (b) images. Given an image and
its corresponding description, the model generates a biased sentence
(represented as ‘Pd’ in the figure) compared to the ground truth
(represented as ‘Gt’ in the figure).

image, the model tends to generate biased prediction like
‘break in woman’s house’ or ‘play with a man’, even if
the accompanying text modality suggests otherwise. In this
particular case, a bias towards the image modality becomes
evident. These examples demonstrate that due to the biases
present in the dataset, the model tends to overly focus on one
particular biased modality, consequently overlooking other
crucial information that it should consider. Furthermore, it’s
evident that each modality exhibits a distinct type of bias.
In other words, the components that co-occur frequently vary
between modalities. Some data show a bias towards the text
modality, while others demonstrate a stronger inclination
towards the image modality.

Fig. 2 provides quantitative evidence demonstrating the
distinct modality-specific bias present in each data sample.
As depicted in (a), when the object ‘truck’ appears in
the input text, the predicted sentence by the baseline
model (represented as ‘pred’ in Fig. 2) closely aligns
with co-occurrence patterns observed in the training dataset
(represented as ‘train’ in Fig. 2) rather than with the ground
truth of the test set. For example, when the word ‘truck’
is provided in text modality, the sentence ‘get out’ appears
frequently in the training dataset (29%). Due to this bias
associating ‘truck’ with ‘get out’ in the training data, the
phrase emerges with a similar frequency in the predicted
sentences of the baseline model (35%), even though it is
less common in the test ground truth (5%). This can be
attributed to the model’s strong reliance on co-occurrence
patterns observed during training. Conversely, in the example
shown in (b), when the object ‘truck’ is represented visually
and not in text, the influence of dataset bias is diminished.
As a result, the baseline model produces predictions that are
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FIGURE 2. Comparison of the co-occurrence distributions between the
word ‘truck’ and its corresponding output sentence (first bigram) across
three different sources: (1) the training dataset, (2) the ground truth in
test dataset, and (3) the predicted sentences from the baseline model of
the VisualCOMET dataset. (a) When ‘truck’ is represented in text modality,
the distribution of the baseline model’s predictions tends to align more
with the training dataset’s distribution than with the ground truth of the
test dataset. (b) Conversely, when the same object is represented in
image modality, the distribution of predictions aligns more closely with
the ground truth of the test dataset. To maintain clarity, only the top
14 pairs are visualized.

more aligned with the test ground truth. This suggests that
the objects causing bias, known as confounder, differ for each
modality.

Drawing from our observation, we propose Dynamic
Debiasing Network (DDNet) for Visual Commonsense Gen-
eration, addressing the above crucial issue ofmodality-specific
biases that may affect the accuracy and fairness of the
model. The DDNet is designed to discern the biased
modality of input data and subsequently remove bias for
the corresponding modality, considering modality-specific
bias. The operations of DDNet is divided into two stages:
(1) Modality-specific Bias Detection, (2) Dynamic Bias
Mitigation. Specifically, to effectively identify and address
bias in input data, we initially focus on determining which
modality in the input data exhibits bias. To do so, we measure
bias as a direct causal effect on the output of each modality,
motivated by [5]. To assess a direct causal effect in each
modality, we first train a biased model for each individual
modality. Rather than feeding all modalities simultaneously,
we input a single modality at a time. This ensures that the
model emphasizes and magnifies the inherent biases of that
specificmodality. The output of this specializedmodel, which
reveals its intrinsic bias, is considered a bias score. Once we
have identified the biased modality through its bias score, the
next step is tomitigate this bias. This is achieved by disrupting

the ‘shortcut path’ often created by frequent co-occurrence
patterns in the dataset. This disruption is specifically tailored
to the identified biased modality, ensuring a more targeted
and effective debiasing process. We perform this process
using causal inference [6], [7]. The detailed process for this
will be explained in the following sections.

DDNet’s dynamic approach adeptly identifies and coun-
teracts biases, by carefully considering the characteristics
of each input data and modality, resulting in commonsense
inferences that are both precise and minimally affected by
modality-specific biases. Our contributions are summarized
as follows:

(1) To the best of our knowledge, we are the first to delve
into the exploration of biases in the dataset for VCG.We offer
both qualitative and quantitative insights, establishing the
existence of biases within the VCG dataset.

(2) Considering the fluctuating nature of biased modalities
across distinct input data, we introduce a novel debiasing
framework, DDNet, tailored for the VCG.

(3) DDNet, our proposed model-agnostic solution, dis-
cerns and dynamically addresses biases across different
modalities. This approachmarks a notable stride towards gen-
erating more precise and impartial commonsense inferences.

II. RELATED WORK
A. CAUSAL INFERENCE
Causal inference [6], [7] has emerged as a vital aspect of deep
learning, aiming to discern and model the intricate cause-
and-effect relationships inherent within neural networks.
Instead of relying solely on traditional statistical approaches,
where relationships are often inferred from correlations
stemming from unbalanced co-occurrences in datasets, causal
inference delves deeper, seeking to uncover genuine causal
effect.

As causal inference techniques in deep learning have
evolved, recent research in multimodal tasks has leveraged
them to effectively debias models, eliminating spurious
correlations stemming from inherent biases. In Visual
Question Answering (VQA), a task that merges visual and
textual information, [5] proposed a counterfactual inference
framework, focusing on the fact that the VQA model easily
relies on language bias. This framework, influenced by causal
effects, identifies language bias as a direct result of the
questions influencing the answers and subtract this direct
language effect to reduce bias. Recently, [8] delves into a
causal representation of VQA data, introducing a framework
that capture causally related real association for both visual
and textual data to boost model generalization. Recent
researches in Video Moment Retrieval (VMR) [9], [10] has
also utilized backdoor adjustment [6], [7], one of techniques
in causal inference, to remove spurious correlation.

While a few of substantial and valuable research for Visual
Commonsense Generation (VCG) has been conducted, the
crucial challenge of dataset bias remains largely unaddressed,
not truly looking into the multimodal inputs. In this regard,
we leverage causal inference to identify sample-specific
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modality bias and subsequently remove misleading correla-
tion for each modality.

B. VISUAL COMMONSENSE GENERATION
The Visual Commonsense Generation (VCG) [1] task aims
to reason about the intricate stories behind a still image,
understanding not just the immediate content but also the
context spanning before, after, and beyond the given input.
This requires a shift from basic image recognition to a deeper,
cognitive-level understanding, leveraging visual common-
sense reasoning informed by extensive knowledge of the
visual and social worlds. Reference [1] first provide strong
baseline, which extend the GPT-2 model [11] to incorporate
both visual and textual information. Reference [3] introduced
the Knowledge Enhanced Multimodal BART (KM-BART),
which adapt BARTmodel [12] for pretraining on vast external
datasets to draw knowledge from them. KM-BART was
subsequently fine-tuned on the VisualCOMET benchmark.
However, these previous studies had two limitations in that
they neglect intricate intra and inter-modality relationships
and treated each caption (i.e. captions for ‘‘before’’,‘‘intent’’
and ‘‘after’’) as independent. In response, [4] suggested
Cause-and-Effect BART (CE-BART) comprised of Struc-
tured Graph Reasoner to interpret relationships within
and between modalities and Cause-and-Effect Generator
to consider the causal relationships among three types of
generated captions.

Nevertheless, while these studies provide valuable insights,
the models still predominantly rely on statistical patterns in
dataset. Instead of understanding the data in a deeper, more
semantic or cognitive manner, these frameworks are likely
looking for patterns that frequently appear in the dataset
and basing their decisions on these patterns. To address the
above issue, we propose the novel method which discerns and
dynamically addresses biases across different modalities.

III. PRELIMINARIES
In this section, we introduce the foundational concepts of
causal inference, setting the groundwork for our proposed
method.

A. CAUSAL GRAPH
The causal graph [6], visualized in Fig. 3, serves as
a foundational tool in causal inference to represent the
interactions between variables. Formally defined, a causal
graph is expressed by a directed acyclic graph G = {N , E},
where N signifies the set of variables in consideration, and
E , represented as arrows, indicates the causal relationships
between these variables. In essence, if there’s an arrow from
variableX to variable Y , denoted asX→Y , this implies thatX
acts as a causal driver for Y . In other words, the outcome or
manifestation of Y is influenced or precipitated by X . Such
a graphical representation provides an overarching view of
the causal interdependencies among the variables, making
it a pivotal tool for understanding and inferring causality,
especially in complex systems.

FIGURE 3. Example of the causal graph. The causal intervention
P(Y |do(X )) cut off the short-cut caused by confounder C .

B. CAUSAL INTERVENTION
In causal inference, a confounder is a lurking variable that
can introduce bias, potentially skewing or misrepresenting
the actual causal relationship between the primary variables
of interest. Taking Fig.3(a) as an illustration, suppose a model
is designed to identify a specific feature, let’s call it ‘towel
texture’, represented by X . In the training dataset, numerous
instances of this feature might frequently appear against a
particular backdrop, say, a ‘bedroom’, denoted as confounder
c ∈ C . Due to this prevalent co-occurrence, the model
could inadvertently associate the presence of c (bedroom)
with Y (detection of the towel texture), even if the direct and
logical indicator is X . This unintended correlation makes it
problematic to rely solely on P(Y |X ) to determine the causal
effect, as it doesn’t account for the potential influence of
confounder c ∈ C .
To address the confounder’s influence and extract the true

causal relation between variables, we utilize the backdoor
adjustment, as conceptualized in the do-calculus from [6].
The ‘‘do’’ operation, a unique form of intervention, severs
all incoming connections to the chosen variable, ensuring
its independence from antecedent variables. In other words,
as visualized in Fig.3(b), executing do(X ) entails disregarding
external influences on X . The accurate causal relationship
between X and Y is best represented as P(Y |do(X )),
as this operation neutralizes confounding pathways such as
C→X and C→Y . The backdoor adjustment formula can be
expressed as:

P(Y |do(X )) =
∑
c

P(Y |X , c)P(c|X )

=

∑
c

P(Y |X , c)P(c) (1)

Here, the equation averages over all possible states of the
confounder c ∈ C , weighing by their likelihood. P(c|X )
transitions to P(c), ensuring it remains uninfluenced by
X . The term P(Y |X , c) considers the joint effects of X
and c on Y , and by summing over c, we are effectively
integrating out its effects to focus solely on the influence of
X on Y .
In this work, we employ the backdoor adjustment to

address dataset biases stemming from such spurious corre-
lations in the task of Visual Commonsense Generation [1].
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FIGURE 4. A brief overview of Dynamic Debiasing Network (DDNet) for VCG, comprised of (1) Modaility-specific Bias Detection, with
modality-specific bias model fv , fe, fp and (2) Dynamic Bias Mitigation, containing a causal intervention process. Here, V ,E , and P represent
the embeddings for image, event, and place modalities, respectively. The outputs of each modality-specific bias model, bsv , bse, and bsp,
denote the bias scores for their respective modalities. Additionally, M refers to the output from the final decoder layer of the backbone, which
is utilized during the causal intervention.

IV. METHOD
In this section, we introduce Dynamic Debiasing Network
(DDNet), which identifies and counteracts modality-specific
biases dynamically. As illustrated in Fig.4, Dynamic Debi-
asing Network (DDNet) is divided in two main steps:
(1)Modality-specific Bias Detection: capture whichmodality
has the bias in input data, (2) Dynamic Bias Mitiga-
tion: dynamically mitigate bias to that particular modality,
untilizing causal inference, which can remove spurious
correlation and uncover true causal effect between variables.
We elaborate each steps in following sections.

A. INPUT REPRESENTATION
The Visual Commonsense Generation (VCG) [1] takes three
types of inputs comprised of an image, the event description,
and the place description to generate three captions about
before, after, character’s intent. In terms of input represen-
tation, we adopt approaches from prior research on VCG for
both visual and textual inputs. For each image, a sequence of
visual embeddings, V , is constructed. This sequence includes
a representation of the entire image as well as separate
representations for each person identified within the image.
The Region of Interest (RoI) Align features [13] from Faster-
RCNN [14] are employed as the visual embeddings. The
final sequence, V , is expressed as V = {v0, v1, .., vk} where
v0 ∈ Rdv represents the embedding of the whole image and
{v1, . . . , vk} ∈ Rdv are embeddings for each detected person.
Here, dv is the embedding dimension, and k denotes the total
number of people detected in the image.

For two textual inputs, event and place descriptions,
we derive the embeddings of event E = {e0, e1, ..eLe}, and
place P = {p0, p1, .., pLp} from word-embedding layer of
pre-trained GPT-2 [11]. Here, Le, Lp are the length of event,

place description, and ei ∈ Rde , pi ∈ Rdp are the embeddings
for i-th token in event and place description, where de, dp is
the dimension of embedding.

B. MODALITY-SPECIFIC BIAS DETECTION
Our DDNet focus on the fact that when integrating multiple
modalities as inputs, certainmodality might exhibit a stronger
bias than other. Therefore, we introduce a method to measure
the bias of each modality in input data and identify the
modality with the pronounced bias. We measure bias as a
direct causal effect on the output of each modality, motivated
by [5], which perceives language bias as the direct causal
effect of questions on answers, disregarding other inputs.
To assess the direct causal effect, our approach involves
training a biased model for each modality, biased specifically
towards that modality, and then comparing their outputs
to discern which modality exhibits the most significant
bias. Instead of feeding all modalities into the model
simultaneously, we input only one modality individually at
a time. This strategy ensures the model learns and produces
outputs primarily influenced by that particular modality,
highlighting its inherent biases. For instance, when training
for image modality bias model fv, we use only the visual
embedding V as input data. During training bias model, the
output of model’s last layer is then compared to the ground
truth sentence to determine its degree of bias, which we term
as the bias score bsm, wherem represent the type of modality.
The same process is applied for other modalities, namely
embeddings of event description E and place description P
as follow :

bsv = fv(V ),

bse = fe(E),

bsp = fp(P), (2)
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FIGURE 5. (a) A causal graph of baseline for VCG, (b) A causal graph of
our proposed DDNet, which applies causal intervention to remove
spurious correlation caused by the confounder Cm.

where fv, fe, and fp denote modality-specific bias models
learned with only image V , event E , and place P inputs,
respectively, and bsv, bse, bsp is bias score for that modality.
Lastly, to ascertain the modality with the highest bias,
we compare three bias score and detect a target modality.

target modality = argmax([bsv, bse, bsp]) (3)

C. DYNAMIC BIAS MITIGATION
After pinpointing the primary modality exhibiting bias in
input data, illustrated in section IV-B, we employ causal
intervention to that data, as detailed in section III, targeting
the confounder associated with this identified modality.
In this section, our initial step is to formulate the task of
VCG within the framework of a causal graph. Subsequently,
we address biases present in each data instance by employing
causal intervention on the confounders specific to the target
biased modality, determined in the stage of IV-B.
Further insights into the construction of the causal graph

and the process of the intervention process will be provided
in subsequent subsections.

1) CAUSAL GRAPH FOR VCG
As depicted in Fig. 5, our causal graph representation for
VCG incorporates six variables. These include the image
V , event description E , and place description P. Combined,
these three elements constitute the unified multimodal inputs
M . Additionally, we introduce a confounder Cm, where
depends on the type of modality : confounder Cv for image
modality, Ce for event modality, Cp for place modality. Its
determination is based on the modality that exhibits the most
pronounced bias for each dataset instance, as detailed in
IV-B. Lastly, the variable Y stands for the generated word
in the output sentence. Specifically,the relationship M → Y
captures the direct causal effect of the unified embeddings
from the three inputs (V ,E,P) on the generated word in the
output sentence. On the other hand, the causal path M ←
Cm → Y illustrates that the confounder Cm, stemming from
co-occurrence patterns in the training data for the modality
m, induces a spurious correlation betweenM and Y .

2) CAUSAL INTERVENTION FOR VCG
In order to infer the true causal effect from M to Y ,
we implement causal intervention as discussed in section III

and visualized in Fig.5(b). To tailor (1) to the VCG domain,
we reformulate it as:

P(Y |do(M )) =
∑
c

P(Y |M , c)P(c), (4)

where c ∈ Cm stands for a confounder that pertains to a
specific modality m.
Given the challenge of observing every potential con-

founder, we only focus on the aspect that frequently
co-occurrence pattern cause spurious correlation. Therefore,
we approximate this by creating three confounder matrices
Cm, each specifically designed for a modality m: image,
event, and place. Each matrix adheres to the dimensions
N × dm, where N represents the number of manually
selected confounders, namely the top-N most frequently
appearing objects within each modality’s training set, and
dm represents the feature embedding dimension for those
objects. For the image modality’s confounder, inspired by
[15], we derive each element using a pre-trained Faster
R-CNN model [14], utilizing ground truth bounding boxes to
calculate the average of RoI features from each object in the
training set. In contrast, for the event and place modalities,
we establish textual confounder dictionaries, denoted as
Ce,Cp, respectively. These dictionaries are obtained using
embeddings from a pre-trained BERT model [16].

3) IMPLEMENTATIONS
From (4), since the last layer of our nework for word predic-
tion is the softmax layer : P(Y |M , c) = softmax(f (M , c)),
whereM is the embedding of unified multimodal inputs, c is
the entry of confounder Cm, and f represents the linear layer
before softmax layer. Using this, (4) cab be rewritten as :

P(Y |do(M )) = Ec[softmax(f (M , c))]

≈ softmax(Ec[f (M , c)]) (5)

Given the computational cost associated with sampling for
c in (5), we employ the NWGM approximation [17], [18],
allowing us to efficiently integrate the expectation within the
softmax function. In our network, wemodel f (M , c) = M+c,
where M is the embedding of unified multimodal input, the
hidden state of the last decoder layer of backbone network.
With this, we can calculate Ec[f (M , c)] to M + Ec[Cm].
To enhance the overall model’s representational capability,
we set c to be conditioned on the multimodal input M [19] :
Ec[Cm] ≈ E[c|M ][Cm]. Finally, we use dot-product attention
and obtain : E[c|M ][Cm] = softmax(LTK ) ⊙ Cm, where
L = w1M ,K = w2Cm and w1, w2 is learnable parameters,⊙
is element-wise product, and M is the embedding of unified
multimodal input.

V. EXPERIMENTS
A. DATASET
The VisualCOMET dataset, a benchmark for Visual Com-
monsense Generation [1] provides a unique and large-scale
resource with over 1.4 million textual captions detailing three
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types of visual commonsense inferences : before/after and
character’s intent in a image. These inferences are annotated
across 59,000 images paired with 139,000 event descriptions.
The dataset comprises 1,174K training examples, 146K
validation examples, and 145K test examples. Following
prior works [1], [3], [4], we present our model’s performance
on both the validation and test sets.

B. METRICS
To evaluate performance on the VisualCOMET benchmarks,
we employed three standard evaluation metrics for generative
tasks: BLEU-2 [20], METEOR [21], and CIDEr [22]. The
BLEU score measures precision between generated and
reference captions using n-gram overlap. The METEOR
score computes a weighted F-score considering unigram
mappings and penalizes out-of-order correct words. Latly,
the CIDEr score evaluates image captioning by calculating
cosine similarity between TF-IDF features of generated and
reference captions based on n-grams.

C. IMPLEMENTATION DETAILS
Our approach is model-agnostic, emphasizing flexibility and
compatibility with various model architectures. We choose
the pretrained GPT-2 framework as our backbone, as network
proposed by [1]. Not only was it among the first to
establish a robust baseline, but its clear design principles
also guarantee reproducibility. For three modality-specific
bias model, we utilize Transformer model [23] by pretraining
for 10 epochs. When these three models are integrated
into DDNet with a backbone, their parameters are frozen
and not subjected to further updates during training. Our
computational framework comprised 4 NVIDIA Quadro
RTX 8000 GPUs, each with 48 GB of memory. During
the training phase, we set the learning rate as 5e-5 and
utilized the Adam optimizer [24]. The training regimen
spanned 30 epochs with a batch size of 256. To decode
the output sequences, we employed a beam search strategy,
which is well-regarded for producing accurate predictions by
analyzing a wide array of sequence hypotheses. For all three
pre-defined confounder dictionaries, we set a matrix for N as
100 and for dm as 768.

D. QUANTITATIVE RESULTS
Table.2 presents the outcomes of applying various con-
founders to the validation and test sets of the VisualCOMET
dataset. Initially, we applied a singular type of confounder
to all data without using a modality-specific bias model.
Subsequently, by incorporating DDNet, we dynamically
mitigated bias across data. Across the board, our results
indicate that the introduction of confounders signifiantly
improves the performance of the base models. Moreover,
the use of DDNet proves to be more effective in bias
reduction compared to the application of a single type of
confounder (e.g., only event, place, or image confounder).
This underscores the benefit of customizing the choice of

TABLE 2. Results of applying our method to the baseline model on
validation and test set of VCG dataset. Evaluation metrics ‘‘B@2’’, ‘‘M’’, ‘‘C’’
denote BLUE2, METEOR, CIDEr, repectively. ‘‘Event conf’’, ‘‘Place’’, and
‘‘Image conf’’ refer to confounders in each respective modality. The
results shown are from applying only one type of confounder to all
samples in the dataset. For instance, ‘+Event conf’ indicates the
application of the event modality confounder to all data, without a
modality-specific bias model.

TABLE 3. Comparison with state-of-the-arts methods on validation and
test set of VCG dataset.

confounder based on the unique requirements of each data
sample, as opposed to a uniform application of a single
confounder across all data.

In Table 3, we compare DDNet with other state-of-the-
art methods [3], [4] on validation and test set of VCG
dataset. Notably, we can observe that DDNet achieves the
highest BLEU2, and CIDEr scores on both validation and
test set. Even when DDNet simply fine-tunes the pre-existing
GPT-2 architecture applying causal inference, it surpasses
KM-BART in performance across both validation and test
sets. It’s noteworthy that KM-BART requires specialized pre-
training for VCG using various external data, whereas DDNet
does not. On the other hand, while CE-BART necessitates the
construction of additionals graphs for each modality, DDNet
may offers a compelling alternative, boasting both ease of
implementation and superior interpretability. Considering
that the DDNet proposed in this study is model-agnostic,
we foresee potential enhancements in performance when
combined with methods like KM-BART and CE-BART.

E. QUALITATIVE ANALYSIS
In Fig.6, we present a qualitative comparison of DDNet
with the baseline model. Our objective with DDNet is to
address and reduce the modality-specific bias observed in
the VCG dataset. For the image modality, the confounder
is ‘multiple people’, example mentioned in Fig.1. Unlike
the baseline model [1] which generates sentences biased
towards the confounder, such as ‘play games in his room’
and ‘play with a man’, DDNet creates captions that are less
influenced by this bias, effectively leveraging information
from diverse modalities. Notably, when generating the before
event, DDNet produce more accurate inference, i.e. be told
by a man to read the paper, not relying solely on the image.

139712 VOLUME 11, 2023



J. Kim et al.: Dynamic Debiasing Network for Visual Commonsense Generation

FIGURE 6. Qualitative comparison between the baseline model and our DDNet. Examples of mitigating the modality-specific bias in three modalities :
image, event, place. In inputs of theses examples, a red bold box in image, and red bold text in event and place description, highlight one of
modality-specific confounders, leading to spurious correlation during training.

It utilizes textual information, like ‘she looks disappointed’,
which is crucial for generating accurate predictions.

For event and place modality, it can be seen that DDNet
effectively combines information from the three modalities
to produce sentences that are more accurate than baseline,
removing the influence of specific confounders, namely
‘book’ for the event modality and ‘bedroom’ for the place
modality.

VI. LIMITATIONS
We recognize that our DDNet has certain limitations, and
we anticipate that future experiments can provide solutions
to address these issues. As DDNet focuses on identifying
and mitigating the modality with the highest bias for
each data sample, it may overlook biases present in other
modalities. Consequently, while the dominant bias in a
particular modality may be reduced, residual biases in other
modalities might remain unaddressed. In future work we
extend the debiasing framework to simultaneously address
biases in multiple modalities, even if they are not the most
dominant. This can be done by employing a weighted
debiasing approach, where each modality is debiased based
on its degree of bias.

In the context of the visual commonsense generation
task, words are generated sequentially. Applying causal
intervention at each step of word prediction would sig-
nificantly increase the computational overhead, leading to
prolonged training times. To address this, our future direction

will focus on developing an framework that measure the
bias automatically associated with each word during the
generation process. This approach aims to provide a more
dynamic and efficient means of bias mitigation.

VII. CONCLUSION
In this study, we introduced DDNet, an novel debiasing
approach for Visual Commonsense Generation. While pre-
vious research has largely neglected the impact of causal
perspectives in this domain, DDNet brings this critical aspect
to the forefront.

DDNet is architected to identify the modality that exhibits
the most prominent bias in data sample. Once detected,
it initiates a tailored debiasing process for the identified
modality, ensuring that the generated outputs are free from
each modality-specific confounder’s influence. A notable
advantage of our approach is its model-agnostic nature,
which ensures compatibility with a wide array of existing
methodologies. This versatility translates to enhanced per-
formance when integrated with other models. Additionally,
a distinctive feature of DDNet, setting it apart from its
contemporaries, is its ability to dynamically counteract
spurious correlations accross each modality. By invoking
causal intervention mechanisms, it not only refines the output
but also significantly bolsters the model’s resilience against
biases.

Our empirical evaluations, conducted on the VCG dataset,
provide robust evidence of DDNet in enhancing the fairness
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and accuracy of visual commonsense generation tasks.
Promising results from extensive experiments on VCG
dataset demonstrate the effectiveness of our debiasing
method. In essence, this research marks a pioneering
stride towards fostering fairness in visual commonsense
generation by actively countering dataset-induced biases.
As we continue to evolve our methodologies and delve deeper
into this domain, we direct readers to section VI for insights
into our prospective directions.
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