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ABSTRACT Since the emergence of device-to-device (D2D) communications, an efficient resource
allocation (RA) scheme with low-complexity suited for high variability of network environments has been
continuously demanded. As a solution, we propose a RA scheme based on deep reinforcement learning
(DRL) for D2D communications exploiting cluster-wise non-orthogonal multiple access (NOMA) protocol
underlay cellular networks. The goal of RA is allocating transmit power and channel spectrum to D2D links
to maximize a benefit. We analyze and formulate the outage of NOMA-enabled D2D links and investigate
performance measures. To alleviate system overhead and computational complexity with maintaining high
benefit, we propose a sub-optimal RA scheme under a centralized multi-agent DRL framework. Each agent
corresponding to each D2D cluster trains its own artificial neural networks in a cyclic manner with a timing-
offset. The proposed DRL-based RA scheme enables prompt allocation of resources to D2D links based on
the observation of time-varying environments. The proposed RA scheme outperforms other schemes in terms
of benefit, energy efficiency, fairness and coordination of D2D users, where the performance gain becomes
significant when the mutual interference among user equipments is severe. In a cell of radius 100-meter with
target rates for D2D and cellular links of 2 and 8 bits/s/Hz, respectively, the proposed RA scheme improves
normalized benefit, energy efficiency, fairness and coordination of D2D users by 18%, 23%, 75% and 80%,
respectively, over a greedy scheme. The improvements in these performance measures over a random RA
scheme are 152%, 164%, 87% and 77%, respectively.

INDEX TERMS Device-to-device communications, cellular network, deep reinforcement learning, resource
allocation, non-orthogonal multiple access.

I. INTRODUCTION
As the demand for mobile and wireless communication
services grows at a rapid pace, the overload on network and
the shortage of communication resources become inevitable
and they are regarded as critical issues for designing and
operating wireless communication systems [1]. As a result,
there exist increasing needs for developing communication
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technologies providing a large number of users with high
quality of services (QoS) without imposing heavy load on
networks and requiring extra spectrum resources. Device-
to-device (D2D) communication was proposed as one of
promising solutions to prevent network overload problem and
to alleviate spectrum shortage phenomenon when serving an
increasing number of mobile users in cellular networks [2],
[3]. In a D2D communication protocol, mobile users in
proximity can communicate with each other directly over
the channels which are assigned to cellular users in the

140270

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0000-4100-6319
https://orcid.org/0000-0002-6117-7489
https://orcid.org/0000-0002-8804-2787


Y. J. Jeong et al.: DRL-Based RA for NOMA-Enabled D2D Communications Underlay Cellular Networks

network [4]. D2D communication, especially, underlay
cellular networks, is considered one of key technologies in
the fifth-generation (5G) wireless communications [5], and
its scope has been extended to vehicle-to-vehicle (V2V) and
vehicle-to-everything (V2X) systems [6].
Since D2D links share spectrum resources with cellular

links, and sometimes with other D2D links as well, there
exist inherent mutual interferences among user equipments
(UEs) in the cell, which degrades the overall performance
of network. Thus, communication resources for D2D com-
munications underlay cellular networks need to be allocated
such that the performance of D2D links improves with the
QoS of cellular links maintained at a desired level. It follows
that resource allocation (RA) is a crucial issue for D2D
communications in both theoretical and practical aspects.
A huge number of research activities have been conducted
to design and analyze RA schemes for D2D communications
underlay cellular networks [7], [8], [9], [10], [11], [12]. Joint
RA framework using convex optimization [7] and iterative
power control algorithm [8] were introduced for D2D links.
RA strategy in cooperative D2D communications was investi-
gated [9], and interference management through D2D power
allocation and shared channel assignment was proposed [10].
In [11], optimal power control and resource sharing mode
selection algorithm depending on the application of D2D link
were proposed. When different channels are allocated to dis-
tinct D2D links, efficient one-to-one mapping strategies can
be applied to RA [12]. However, in case that multiple D2D
links are allowed to utilize an identical cellular channel, RA
becomes NP-hard and optimal RA solution cannot be found
in an analytical manner. Accordingly, reduced-complexity
sub-optimal RA mechanisms have been investigated to
be applied to practical D2D communication systems [13],
[14], [15], [16]. Two-phase channel assignment scheme
with low complexity [13] and alternating optimization of
subchannel and power allocation [14] were proposed for D2D
communications underlay cellular network. Efficient RA
scheme using convex optimization with reduced complexity
was proposed for unmanned aerial vehicle (UAV)-assisted
cellular network [15], and a joint RA scheme with simple
lower-bound-based power control was applied to D2D-based
V2X communications underlay cellular networks [16].
When multiple D2D links utilize a common cellular

channel, the multiple access of D2D users becomes an
important issue for a spectrum efficient network opera-
tion. Recently, non-orthogonal multiple access (NOMA)
techonology has been proposed to improve the performance
of multi-user communication systems in terms of spectral
efficiency, transmission latency and user fairness at the cost of
increasing complexity [17], [18], [19]. Multiple user signals
are multiplexed into a single signal and transmitted over a
single channel, then, each user detects its own signal with
the aid of successive interference cancellation (SIC) at the
receiver. In power-domain NOMA, which is a widely used
mechanism, different power levels are assigned to distinct

user signals according to which the order of detection and SIC
is determined [20], [21], [22]. The performance of NOMA
networks has been analyzed in various aspects. Outage
probability of downlink NOMA network was analyzed [23],
[24], [25], where ergodic sum rate was also analyzed in [23]
and cooperative NOMA system with imperfect SIC was
considered in [25]. In [26], the outage probability of uplink
and downlink NOMA system over different fading channels
was analyzed. RA mechanisms for NOMA networks have
also been investigated [23], [27], [28], [29]. User pairing
and its impact on the performance of NOMA networks were
analyzed [27], [28], and iterative algorithm for channel and
power allocation in NOMA system was proposed [29].

To enhance the massive connectivity of D2D UEs with
maintaining a high level of spectral efficiency, it is desirable
to employ a NOMA protocol for D2D communications
underlay cellular networks. As a result, a NOMA-enabled
D2D communication scheme was introduced and many
research works have been conducted to show the potential
benefits of using this technology [30], [31], [32], [33], [34].
RA algorithm based on matching theory was proposed for
NOMA-enabled D2D communication systems [30], [31].
A resource management scheme using licensed and unli-
censed spectrum was studied [32], and Hungarian algorithm
was applied to RA for NOMA-based D2D communica-
tions [33]. Optimal channel and power allocation for D2D
cluster with NOMA principle was also studied [34].
In case of considering UEs with mobility, we need a

dynamic RA scheme suitable for networks whose set-up
varies continuously. Dynamic RA requires a much higher
network overhead and computational complexity than a
static RA because resources need to be adaptively allocated
according to varying network set-up. Data transmissions may
be conducted over multiple time steps due to segmentation of
long data frame into multiple short ones. The number of time
steps may be determined by various factors, e.g., data rate,
channel bandwidth and battery life of UEs. The RA becomes
more complex if a sequence of resources needs to be allocated
to users over multiple time steps. Thus, a sub-optimal RA
scheme with low complexity is more demanding in mobile
communication networks.

Recently, deep learning (DL) and reinforcement learning
(RL) have attracted many researchers in a wide range of
engineering fields. Deep RL (DRL) incorporates DL into
RL, in which suitable decisions are made from unstructured
input data, where deep Q-network (DQN) is a well-known
example [35]. Various forms of learning mechanisms have
been actively applied to optimization problems including
RA for D2D communications [36], [37], [38], [39], [40],
[41], [42], [43]. DL-based power allocation was applied to
MIMO-NOMA system [36], and deep neural network (DNN)
was used for sub-channel and power allocation of network
with low complexity [37]. DRL-based RA schemes were
proposed for D2D communications in various scenarios [38],
[39], [40], [41], [42], [43], [44], where distributed DRL was
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employed in [38], D2D pairs were focused in [39], unicast
and broadcast in V2V communications were considered
in [40], and double deep-Q-network (DDQN)-based dynamic
spectrum access algorithm was proposed in [41]. Joint
sub-channel and power allocation scheme based on DRL
was proposed for NOMA cellular network [42], and deep
deterministic policy gradient (DDPG) scheme was utilized in
RA for NOMA-based V2X communications [43].
Depending on who performs RA, we categorize RA

mechanism into a centralized one and a decentralized one.
Centralized RA achieves high QoS of communication links
at the cost of high amount of system overhead and high
computational complexity. On the other hand, decentralized
RA requires low amount of system overhead and complexity
resulting in a degraded QoS. In general, a single-agent
framework is used for centralized RA [41], [42] while a
multi-agent framework is used for decentralized RA [43],
[45]. To obtain a high QoS with a low computational
complexity, we adopt a multi-agent DRL framework in the
centralized RA scheme. Agents reside in a central coordinator
of the cell, where each agent corresponds to each D2D link.
The ANN in a single-agent DRL is segmented into multiple
smaller ones, where each agent has its own ANN. Then,
each agent in multi-agent DRL requires lower computational
complexities in both the training phase and testing phase than
the single agent.

In this paper, we consider D2D cluster communications
underlay cellular networks to serve much more D2D users
than the number of available channels, where D2D links
in each cluster operate with NOMA protocol. Considering
randomly varying small-scale fading gain of channels,
we investigate the outage to evaluate the quality of com-
munication links. We also consider random variation of
UEs’ positions to reflect the high mobility of UEs in the
cell. We formulate the operation of NOMA-enabled D2D
communications and derive outage probabilities of D2D links
as well as cellular links. To obtain D2D outage probability,
we analyze the influence of success and failure of SIC for
preceding D2D user signals under the NOMA framework.
Then, we define an effective throughput and provide a
benefit as the performance measure of the RA scheme for
D2D communications underlay cellular networks, where the
benefit is defined as the sum of average effective throughput
of all cellular and D2D links in a cell accumulated over
multiple time steps. Transmit power and channel spectrum
are considered communication resources to be allocated.
The objective of RA is to determine resources of each
D2D link to maximize the benefit of the cell. To obtain
high QoS of overall network with a reduced complexity,
we construct a multi-agent DRL framework for RA operating
in a centralized manner. Multi agents conduct constituent
learning processes in a cyclic manner with a timing-offset
in a training phase. In a testing phase, the proposed RA
scheme promptly allocates resources to D2D links depending
on the observation for environment including positions
of UEs in the cell, which vary dynamically. This work

FIGURE 1. Graphical description of system model.

is an extension of a previous work of the authors [39],
where the scenario of D2D pairs is extended to D2D
clusters employing NOMA protocol for downlink D2D
communications underlay cellular networks.

It is observed from simulations that the proposed
DRL-based RA scheme performs well in various aspects. The
usefulness of the proposed RA scheme is clear in case that
UEs are distributed densely in a cell resulting in a high level
of mutual interferences among UEs. The performance gain
of the proposed RA scheme over other schemes is significant
when cellular links have a higher priority over D2D links. The
proposed RA scheme enables an energy efficient operation
of whole network including D2D as well as cellular links.
We can also obtain high levels of fairness and coordination of
D2D users by using the proposed RA scheme. Consequently,
the proposed RA scheme is considered practically efficient
in the next-generation wireless communications in which a
high number of UEs with high mobility exist in cellular
networks.

This paper is organized as follows. In Sec. II, we present the
system model of NOMA-enabled D2D cluster communica-
tions underlay cellular networks and formulate its operation.
In Sec. III, we provide the performance measure of RA and
define the optimal RA problem for NOMA-enabled D2D
communications underlay cellular networks. In Section IV,
we propose a multi-agent DRL-based RA scheme, in which
multiple agents conduct constituent learning in a cyclic
manner with a timing offset in a training phase. In Section V,
we analyze the performance of the proposed scheme in
various aspects and compare it with other RA schemes.
Finally, we conclude this paper in Section VI.

II. SYSTEM MODEL
We consider a single-cell cellular network shown in Fig. 1,
in which a base station (BS) is located at the center and M
cellular user equipments (CUE) and K NOMA-enabled D2D
clusters are distributed over the cell. We consider a cellular
uplink period, in which D2D clusters operate in a downlink
mode with a NOMA strategy underlay cellular network. Each
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D2D cluster is composed of multiple D2D user equipments
(DUEs) in proximity, where one of DUEs operates as a
transmitter (DTx), or a cluster head, and other N DUEs
operate as receivers (DRx).1 We use an index k , 1 ≤ k ≤ K ,
to specify a D2D cluster or DTx in that cluster. We also let
indicesm and n(k) represent a cellular link, or CUE, and DRx
in the k-th D2D cluster, respectively, where 1 ≤ m ≤ M
and 1 ≤ n ≤ N . We let hx,y denote a small-scale fading
gain of the channel between two nodes x and y, where nodes
include CUE, DTx, DRx and BS denoted by m, k , n(k) and
B, respectively. We let dx,y denote the distance between two
nodes x and y, and we use a log-distance model for large-
scale fading as d−α

x,y with a path loss exponent α. We model
the location of UEs in the cell and the location of DRxs
in each D2D cluster as a uniform binomial point process
(BPP) [12]. We suppose hx,y is independent and identically
distributed (i.i.d.) zero-mean circularly symmetric complex
Gaussian with a unit variance. We define a channel access
indicator δm,k as δm,k = 1 if a D2D cluster k and CUE
m share a channel, and δm,k = 0 otherwise. In the same
manner, δj,k = 1 if D2D clusters j and k share a channel,
and δj,k = 0 otherwise.

Each cellular link is allocated a dedicated channel so that
a cellular channel is not occupied by multiple cellular links.
D2D clusters are allowed to use channels already occupied
by cellular links, where multiple D2D clusters can share a
cellular channel. Within a D2D cluster, N distinct D2D user
signals are allocated different levels of transmit power and
superimposed into a single downlink NOMA signal at DTx.
Then, the NOMA signal is sent to all DRxs over the channel
assigned to the cluster. Let sDn(k) denote a D2D user n(k) signal
with a unit power and PDn(k) be the transmit power allocated to
the corresponding user signal. Then, the NOMA signal, xDk ,
transmitted from the DTx of a cluster k is expressed as

xDk =
N∑
n=1

√
PDn(k)s

D
n(k), 1 ≤ k ≤ K . (1)

The total transmit power of xDk is determined as PDk =∑N
n=1 P

D
n(k). According to NOMA protocol, transmit power

of user signals is determined in the reverse order of the
corresponding channel strength. Considering small-scale
fading and large-scale fading of the channel, the strength
of channel between two nodes x and y is determined by
|hx,y|2d−α

x,y . Then, the transmit power allocation for D2D user
signals in the cluster by NOMA principle is summarized as
the following: if |hk,1(k)|2d

−α
k,1(k) < |hk,2(k)|2d

−α
k,2(k) < · · · <

|hk,n(k)|2d
−α
k,n(k), then P

D
1(k) > PD2(k) > . . . > PDn(k), where

the user index n in the cluster k is labelled in an ascending

1We may allow a DRX to download data from multiple DTXs, which is
considered the scenario of overlapping D2D clusters. In this scenario, each
D2D cluster has one DTx and operates with NOMA protocol while DRx
may belong to multiple D2D clusters. The signal detection at DRx needs
to employ multi-user detection techniques, which will result in much more
complex signal detection processes. This scenario is out of scope of this paper
and the RA for overlapping D2D clusters needs to be studied further. Note
that there is no limit on the number of DRxs in clusters.

FIGURE 2. Detection and SIC for user signals in NOMA-enabled D2D
downlink communications.

order of channel strength or in a descending order of transmit
power.

Each DRx detects its own signal from the received NOMA
signal through SIC as depicted in Fig. 2. Before detecting its
own signal, each DRx performs detection and SIC for user
signals with higher transmit power than its own signal in a
descending order of transmit power. Thus, each DRx detects
its own signal in the presence of other user signals with lower
transmit power as interferences under the assumption that
all user signals with higher transmit power are completely
cancelled by SIC. If SIC for preceding user signals is not
perfectly done, residual error signals exist when detecting its
own signal. In case that channel gains vary within a cellular
uplink period or D2D downlink period, the transmit power
allocation needs to be based on the mean strength of channel,
i.e., E

{
|hk,n(k)|2d

−α
k,n(k)

}
. Since small-scale fading gains are

considered identical for all channels, the transmit power is
allocated to user signals in the order of distance from the
corresponding DRx to DTx. It follows that the order of SIC at
each DRx is also determined as the order of distance between
DRx and DTx.

The received signal used for detecting the user n′(k) signal
at DRx n(k) after SIC for preceding user signals is written by

yn′,n(k) =
M∑
m=1

δm,k

√
PCmx

C
mhm,n(k)

√
d−α
m,n(k)

+

√
PDn′(k)s

D
n′(k)hk,n(k)

√
d−α
k,n(k)

+

n′−1∑
i=1

√
PDi(k)e

D
i(k)hk,n(k)

√
d−α
k,n(k)

+

N∑
i=n′+1

√
PDi(k)s

D
i(k)hk,n(k)

√
d−α
k,n(k)

+

K∑
j=1:j̸=k

δj,kxDj hj,n(k)
√
d−α
j,n(k) + wn(k), (2)

where n′ ≤ n, eDi(k) is a residual SIC error defined by the
discrepancy between the symbol sDi(k) and its corresponding
detection, xCm is the m-th CUE’s signal with a unit power,
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TABLE 1. List of notations and symbols.

and wn(k) is a zero-mean Gaussian noise with a variance
of σ 2. Note that the first term in the right hand side
corresponds to the interference from cellular link. The third
term represents the residual interference existing due to an
unsuccessful SIC for preceding signals. The fourth and fifth
terms represent the intra-cluster interference and inter-cluster
interference, respectively. The second term is related with the
user n′(k) signal. The signal-to-interference-plus-noise-ratio
(SINR) measured at the n-th DRx in the k-th D2D cluster
when detecting user n′(k) signal is obtained as

γDn′,n(k) =
PDn′(k)|hk,n(k)|

2d−α
k,n(k)

ICUn(k) + I
RES
n′,n(k) + I

NOMA
n′,n(k) + I

D2D
n(k) + σ 2

, (3)

where

ICUn(k) =
M∑
m=1

δm,kPCm|hm,n(k)|
2d−α
m,n(k)

IRESn′,n(k) =

n′−1∑
i=1

PDi(k)P
e
i(k)|hk,n(k)|

2d−α
k,n(k)

INOMAn′,n(k) =

N∑
i=n′+1

PDi(k)|hk,n(k)|
2d−α
k,n(k)

ID2Dn(k) =

K∑
j=1:j̸=k

δj,kPDj |hj,n(k)|
2d−α
j,n(k)

and Pei(k) is the power of e
D
i(k). Note that I

CU
n(k), I

RES
n′,n(k), I

NOMA
n′,n(k)

and ID2Dn(k) represent interference power caused by cellular
link signal, SIC error, D2D user signals with lower transmit

power in the same cluster and D2D signal of other clusters,
respectively.

The received signal at BS for them-th CUE’s uplink signal
is written by

ym =
√
PCmx

C
mhm,B

√
d−α
m,B +

K∑
k=1

δm,kxDk hk,B
√
d−α
k,B + wB,

(4)

where PCm is the transmit power of xCm and wB is a noise at the
receiver in BS which is zero-mean Gaussian with a variance
of σ 2. The SINR of the m-th cellular link, measured at BS,
is defined by

γ Cm =
PCm|hm,B|

2d−α
m,B∑K

k=1 δm,kPDk |hk,B|
2d−α
k,B + σ 2

. (5)

We analyze the performance of RA scheme by using SINRs of
D2D links and cellular links obtained above in the following
section. Note that notations and symbols used in this paper
are listed in Table 1.

III. SYSTEM PERFORMANCE ANALYSIS
Since hk,n(k) are i.i.d. for all k and n, the average strength
of D2D downlink channel is determined by d−α

k,n(k). Suppose
dk,1(k) > dk,2(k) > · · · > dk,N (k), then the downlink channel
for the user l ′(k) is weaker than that for the user l(k) on the
average if l ′ < l. Thus, the transmit power is allocated as
PD1(k) > PD2(k) > · · · > PDN (k) when forming a NOMA signal.
At DRx 1(k), user 1(k) signal is detected in the presence of
all other user signals as an interference and SIC is not needed.
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At DRx n(k), n > 1, user n′(k) signals, n′ < n, are detected
and cancelled earlier in a successive manner so that user n(k)
signal is detected in the presence of user l(k) signals, l > n,
as interferences.

We define an outage of a user link as an event that the
achievable data rate of the corresponding user signal does not
exceed a target rate [46]. Since the achievable rate is defined
by log2(1 + SINR) for a given SINR, the outage probability
of user n′ signal at DRx n in the cluster k is written by

poutn′,n(k) = Pr
{
log2(1+ γDn′,n(k)) < RD

}
= Pr{γDn′,n(k) < γDth }, (6)

where RD is a target rate of D2D link and γDth is a threshold
SINR satisfying RD = log2(1+γDth ). We declare a successful
detection of a signal if a target rate is achieved [23]. Thus,
the detection probability of a user signal is equal to the
probability that the user signal is not in outage. It follows that
the probability that user n′(k) signal is correctly detected at
DRx n(k) is written as 1 − poutn′,n(k) and it is expanded by the
law of total probability as

1− poutn′,n(k) = Pr{γDn′,n(k) ≥ γDth }

= Pr{γDn′,n(k) ≥ γDth | γ
D
n′−1,n(k) ≥ γDth } · Pr{γ

D
n′−1,n(k) ≥ γDth }

+ Pr{γDn′,n(k)≥γDth | γ
D
n′−1,n(k)<γDth } · Pr{γ

D
n′−1,n(k)<γDth }.

(7)

According to the power allocation policy in NOMA, the
transmit power in the D2D cluster k is assigned to two
successive user signals n′ − 1 and n′ as PDn′−1(k) > PDn′(k).
If γDn′−1,n(k) < γDth , the user n′ − 1 signal is not correctly
detected and thus SIC for this signal is not successful. This
causes the existence of residual SIC error interference for user
n′ − 1 signal when detecting user n′ signal. Considering this
fact and the power allocation PDn′−1(k) > PDn′(k) introduced
above, it is inferred from the definition of SINR given in (3)
that we have γDn′−1,n(k) > γDn′,n(k) with high probability. Then,
we may approximate Pr{γDn′,n(k) ≥ γDth | γ

D
n′−1,n(k) < γDth } ≈

0 and rewrite (7) as

Pr{γDn′,n(k) ≥ γDth }

≈ Pr{γDn′,n(k) ≥ γDth | γ
D
n′−1,n(k) ≥ γDth } · Pr{γ

D
n′−1,n(k) ≥ γDth }.

(8)

Then, we have the following sequence of approximations:

Pr{γDn′−1,n(k) ≥ γDth } ≈ Pr{γDn′−1,n(k) ≥ γDth | γ
D
n′−2,n(k) ≥ γDth }

· Pr{γDn′−2,n(k) ≥ γDth },

Pr{γDn′−2,n(k) ≥ γDth } ≈ Pr{γDn′−2,n(k) ≥ γDth | γ
D
n′−3,n(k) ≥ γDth }

· Pr{γDn′−3,n(k) ≥ γDth },

...

Pr{γD2,n(k) ≥ γDth } ≈ Pr{γD2,n(k) ≥ γDth | γ
D
1,n(k) ≥ γDth }

· Pr{γD1,n(k) ≥ γDth }.

By plugging this sequence of approximations into (8) and
recalling 1− poutn′,n(k) = Pr{γDn′,n(k) ≥ γDth }, we obtain

1− poutn′,n(k)

≈ Pr{γD1,n(k) ≥ γDth } ·

n′∏
l=2

Pr{γDl,n(k) ≥ γDth | γ
D
l−1,n(k) ≥ γDth }.

(9)

By using 1 − poutl,n(k) = Pr{γDl,n(k) ≥ γDth }, we claim that
γDl,n(k) ≥ γDth implies the successful detection of user l signal.
It is inferred from Pr{γDl,n(k) ≥ γDth | γ

D
l−1,n(k) < γDth } ≈ 0 that

the successful detection of user l − 1 signal and the perfect
cancellation of corresponding signal are mandatory condition
for successful detection of user l signal. By considering
sequential relationship, we can claim that when detecting
user l signal, meeting the condition γDl−1,n(k) ≥ γDth can be
interpreted as perfect SIC for all preceding user signals, i.e.,
users l − 1, l − 2, · · · , 1. Thus, we express (9) in a more
intuitive form as

1− poutn′,n(k)

≈

n′∏
l=1

Pr{γDl,n(k)≥γDth |perfect SIC for preceding user signals}.

(10)

Note that user 1(k) signal is detected first. So, without loss of
generality, we can include the detection of user 1(k) signal in
a generalized form given in (10). Since Pr{γDl,n(k) ≥ γDth } =

1− poutl,n(k) as introduced earlier, we express (10) as

1− poutn′,n(k)

≈

n′∏
l=1

(
1− poutl,n(k) | perfect SIC for preceding user signals

)
.

(11)

Under the condition of perfect SIC for preceding user
signals, we obtain 1 − poutl,n(k) as (12), shown at the bottom
of the next page, where the detailed derivation is provided in
Appendix A.
Then, by plugging the result of (12) obtained for all l ≤

n′ into (11), we obtain a closed form expression for the
probability that user n′(k) signal is correctly detected at DRx
n(k), i.e., 1− poutn′,n(k), where n

′
≤ n.

The outage probability of a cellular link m is obtained by
using (5) as

poutm = Pr
{
log2

(
1+ γ Cm

)
< RC

}
= Pr

{
PCm|hm,B|

2d−α
m,B∑K

k=1 δm,kPDk |hk,B|
2d−α
k,B + σ 2

< γ Cth

}
, (13)

where γ Cth = 2R
C
− 1. It is known from [39] that

for exponential random variables a0, · · · , aN , we have
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Pr
{

a0∑N
i=1 ai+b

≤ γ

}
= 1−e−

b
µ0

γ ∏N
i=1

(
1+ µi

µ0
γ
)−1

, where

µi = E{ai}. Thus, (13) can be rewritten as [39]

poutm

= 1− exp
(
−

σ 2γ Cth

PCmd
−α
m,B

)
·

K∏
k=1

(
1+ γ Cth

δm,kPDk d
−α
k,B

PCmd
−α
m,B

)−1

= 1−exp
(
−

σ 2γ Cth

PCmd
−α
m,B

)
·

K∏
k=1

(
1+ γ Cth

PDk
PCm

( dk,B
dm,B

)−α
)−δm,k

.

(14)

We define an effective throughput as a target rate
multiplied by the probability that the user is not in outage.
Thus, the effective throughput of cellular link m and D2D
link n(k) is obtained by RC

(
1− poutm

)
and RD

(
1 − poutn,n(k)

)
,

respectively, where poutn,n(k) is the outage probability of the
downlink communication for user n in the k-th cluster. The
goal of RA is determining the channel spectrum and transmit
power of all D2D links at each time step to maximize the
cumulative sum of average effective throughputs of cellular
link and D2D link over multiple time steps T . This can be
mathematically expressed by

max
PDn(k)[t],δm,k [t]
∀m,k,n,t

T∑
t=1

{
1
M

M∑
m=1

RC
(
1− poutm [t]

)

+
1
KN

K∑
k=1

N∑
n=1

RD
(
1− poutn,n(k)[t]

)}

subject to
M∑
m=1

δm,k [t] ≤ 1 for each k, t

PDmin ≤ P
D
n(k)[t] ≤ P

D
max for each n, k, t

PDi(k)[t] ≤ P
D
j(k)[t] if i > j for each k, t,

(15)

where the time step is specified in variables as [t] with
a slight abuse of notation. The first constraint enforces
each D2D cluster to reuse one cellular channel at most.
The last constraint guides power allocation for downlink
NOMA signals depending on the order of channel strength
as introduced above.

Considering mobilities of CUEs and DUEs, distances
between pairs of UEsmay vary for every transmission period.

CUEsmay change their dedicated channels depending on net-
work conditions. Then, transmit power and channel allocation
for all D2D user signals need to be determined optimally
every transmission period. This may incur tremendously
heavy network load and require extremely high amount
of computational complexity, which makes optimal RA
infeasible in practical network environment. Thus, there
exists a strong need for designing practically feasible RA
scheme for D2D communications underlay cellular networks
showing reasonably high effective throughput with low
computational complexity.

As a solution to resolve this problem, we propose a
multi-agent DRL based RA scheme which is introduced in
detail in the following section.

IV. DRL-BASED RESOURCE ALLOCATION
RL is a mechanism of learning how to make suitable decision
for a given situation in order to maximize a return through
a trial-and-error search. Markov decision process (MDP)
is adopted to formalize sequential decision making in RL,
in which agents interact with environment, observe states and
take actions. MDP is represented by (S,A,P,R), where S
is a set of states, A is a set of actions taken for a given
state, P : S × A × S → [0, 1] is a probability that a
pair of state and action is mapped to a next state, and R is
a set of rewards. In RL, at a certain time step t , an agent
observes a state s[t] ∈ S from an environment and takes
an action a[t] ∈ A based on a policy π , by which the
state s[t] transits to a new state s′[t], where s′[t] is used
as a state s[t + 1] at the next time step. The agent obtains
a reward r[t] and evaluates an expected return obtained by
starting from a state s, taking an action a, and following a
policy π thereafter in the form of an action-value funciton
qπ (s, a) = E{G[t] | s[t] = s, a[t] = a, π}, where a return
is defined by G[t] =

∑
∞

k=0 βkr[t + k + 1] with a discount
factor 0 ≤ β ≤ 1.
Q-learning is an off-policy RL algorithm handling stochas-

tic transitions without environment model. At each time step,
the agent at a certain state selects an action based on an action
selection rule, e.g., greedy, ϵ-greedy, and soft-max method.
The quality of the state and action pair is evaluated by a state-
action value Q(s, a), which is recursively updated by

Q(s[t], a[t])← (1− µ)Q(s[t], a[t])

+ µ
(
r[t]+ β max

a
Q(s′[t], a)

)
,

1− poutl,n(k) =


exp

(
−

σ 2

PDl(k)d
−α
k,n(k)

D−1l(k)
)
·

M∏
m=1

(
1+

PCmd
−α
m,n(k)

PDl(k)d
−α
k,n(k)

D−1l(k)
)−δm,k

·

K∏
j=1:j̸=k

(
1+

PDj d
−α
j,n(k)

PDl(k)d
−α
k,n(k)

D−1l(k)
)−δk,j

, if Dl(k) > 0,

0, otherwise,
(12)

where Dl(k) = 1
γDth
−

∑N
i=l+1

PDi(k)
PDl(k)

.
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where µ is the learning rate and s′[t] = s[t + 1]. The
optimal action-value function, q∗(s, a) = maxπ qπ (s, a),
is approximated by the state-action value Q(s, a), indepen-
dent of the policy being followed. In MDP, the state-action
value converges with probability 1 to the optimal action-value
function if each action is executed at each state during
the infinite run times and the learning rate µ decays
appropriately.

With a large state space S, evaluating Q(s, a) for all s ∈ S
requires high computational complexity. As a solution, DQN,
or DRL, adopting an artificial neural network (ANN) as
a function approximator for state-action values has been
introduced [35]. In the training phase of DQN, two ANNs,
called a prediction network and a target network, are used.
Observations are defined as states and fed to input nodes of
ANNs. For a given state s, the prediction network computes
Q(s, a) for each realization of action a at each output node.
The agent takes an action based on an action selection rule,
by which a reward r and a new state s′ are obtained. Then,
the transition vector {s, a, r, s′} is stored in the experience
replay memory. Random samples of prior transition vectors
are picked from an experience replay memory and used
to evaluate a loss function in the prediction network and
target network. The prediction network is updated at every
time step while the target network is updated periodically
or updated softly at every time step. After a training phase
is completed, the testing phase begins, in which the agent
takes an action a resulting in the greatest Q(s, a) for a given
state s.
We propose a DRL-based centralized RA scheme for

NOMA-enabled D2D cluster communications underlay cel-
lular networks. To reduce the high computational complexity
inherent to centralized RA schemes, we adopt a multi-agent
structure [39] in DRL, where each agent corresponds to
each D2D cluster and operates its own DQN while agents
exist physically in a central coordinator at BS. The state
defined by observations of environment is shared by all agents
while the action is defined distinctly for each agent. Since
each agent has its own action, the size of action space is
exponentially reduced compared with that in a single-agent
DRL framework. Consequently, the ANN defined in a
single-agent DRL can be segmented into multiple smaller
ones, and the multi-agent DRL requires tremendously lower
amount of computational complexity in both training and
testing phases.

Let z[t], cC [t] and PC [t] denote a vector of locations of
all UEs in the cell, a vector of indices for channel spectrum
occupied by CUEs and a vector of transmit powers of CUEs,
respectively, at time step t . We also let cDk [t] ∈ {1, · · · ,M}
and Pk [t] = {PD1(k)[t], · · · ,P

D
N (k)[t]} denote an index of

channel spectrum assigned to the k-th D2D cluster and a
vector of transmit power assigned to user signals in the
k-th D2D cluster, respectively, at time step t . Then, we define
a state s[t] at time step t as

s[t] = {z[t], cC [t], cD[t],PC [t],P1[t], · · · ,PK [t]}, (16)

where cD[t] = {cD1 [t], · · · , c
D
K [t]}, and we define an action

of the k-th agent at time step t as

ak [t] =
{
cDk [t],Pk [t]

}
. (17)

Note that δm,k [t], ∀m, k , can be obtained from a given
{cC [t], cD[t]}. For a practical implementation, we choose the
value of PDn(k)[t] out of pre-defined L discrete values, i.e.,
PDn(k)[t] ∈ {p1, · · · , pL}. The instantaneous reward at time
step t , denoted by r[t], is defined as the sum of average
effective throughputs of D2D and cellular links in the cell,
i.e.,

r[t]

=
1
M

M∑
m=1

RC
(
1− poutm [t]

)
+

1
KN

K∑
k=1

N∑
n=1

RD
(
1− poutn,n(k)[t]

)
.

(18)

We define an episode as a time duration T for which
a sequence of data transmissions from DTx to DRxs is
complete. In practice, the length of T may be determined
according to data frame length, battery life, channel estima-
tion cycle, etc. The reward accumulated during an episode
will be called a benefit and expressed as

Benefit =
T∑
t=1

r[t]. (19)

The goal of RA is to maximize the benefit of communications
over cellular and D2D links under existing constraints
introduced in (15).

Let us define constituent learning in RL as a sequence
of operations by a single agent, i.e., observing a state s,
taking an action a, observing a reward r and a new state
s′, and updating weights of prediction and target networks.
To evaluate explicitly the influence of individual agent’s
action on the environment, we conduct constituent learning of
multiple agents in a cyclic manner with a timing-offset [39] as
described in Fig. 3.Without loss of generality, labeling agents
is based on the order of performing constituent learning. After
conducting constituent learning, each agent keeps idling until
its turn comes around again. We define a time step as a period
of learning by the agent 1 as depicted in Fig. 3. All UEs may
change their locations at the beginning of every time step.
Due to the existence of timing-offset, different agents may
have distinct state values even within the identical time step.
Thus, we specify the agent index in defining a state as sk [t].
After the agent k − 1 takes an action, a new state is observed
as a result of environmental change. This new state is used
as a state initiating constituent learning by the next agent k ,
i.e., sk [t] = s′k−1[t], if k ̸= 1. Note that agent 1 does not
use s′K [t − 1] observed by agent K at time step t − 1 as
s1[t] because UEs may change locations at the beginning of a
new time step and thus the state is reset partly. The collection
of constituent learning of all agents composes one learning
iteration.
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FIGURE 3. Learning of multiple agents in a cyclic manner.

Algorithm 1 Training Phase of Multi-Agent DRL
Initialization:
for k = 1, . . . ,K do

Randomly initialize weights of prediction network θk
Initialize weights of target network by θ ′k ← θk
Initialize experience replay memory �k

end for
for e = 1, . . . ,E do

Randomly initialize cD[1], P1[1], · · ·PK [1]
for t = 1, . . . ,T do

Randomly set z[t], cC [t], PC [t]
Define s′0[t] =

{z[t], cC [t], cD[t],PC [t],P1[t], · · · ,PK [t]}
for k = 1, . . . ,K do

Set state as sk [t]← s′k−1[t]
Determine action as ak [t] = {cDk [t],Pk [t]} based on

the chosen action selection rule
D2D cluster k takes an action accordingly
Observe reward rk [t] and next state s′k [t]
Store transition vector {sk [t], ak [t], rk [t], s′k [t]} in�k
Randomly sample transition vectors from �k
ObtainQ(sk [j], ak [j]; θk ) from the prediction network
Obtain yk [j] by (20) in the target network
Compute the loss function Lk by (21)
Update θk by a chosen optimization rule and θ ′k

by (22)
end for

end for
end for

The learning procedure of agent k over multiple time
steps is described as follows, which is also summarized
in Algorithm 1. First, we randomly initialize weights of
prediction network θk , and set weights of target network as
θ ′k = θk . We also initialize experience replay memory �k
by running a random policy. The agent k observes a state
sk [t] and takes an action ak [t], by which the environment
changes and the agent k obtains a reward rk [t] by (18) and
observes a new state s′k [t]. The transition vector Tk [t] ={
sk [t], ak [t], rk [t], s′k [t]

}
is stored in�k . A batch of transition

vectors, which have been stored in�k , are sampled randomly
and used to evaluate a loss function. Suppose Tk [j] is one
sample included in a batch B picked up from �k , where we

use j to represent an index at which the transition vector is
stored in �k with a slight abuse of notation. The predicted
state-action value Q(sk [j], ak [j]; θk ) is obtained at the output
node corresponding to the action ak [j] in the prediction
network. The target state-action value yk [j] is obtained by a
target network as

yk [j] = rk [j]+ β max
a
Q(s′k [j], a; θ

′
k ). (20)

A loss function Lk is computed as the mean squared error
(MSE) between target and predicted state-action values
by

Lk =
1
|B|

∑
j∈B

(
yk [j]− Q(sk [j], ak [j]; θk )

)2
, (21)

where |B| represents the batch size. We update weights
of the prediction network θk by an appropriately chosen
optimization algorithm and update weights of target network
θ ′k softly as

θ ′k ← (1− τ )θ ′k + τθk , (22)

where τ ≪ 1. We repeat the above process over time
steps in each episode and repeat the whole process over
E episodes.
After a training phase is completed, the RA system enters

a testing phase, which corresponds to the actual operation
of D2D communication system in the cellular network.
At every time step, observations of BS, which are defined as
a state, are input to the trained prediction network of each
agent. Then, each agent chooses the action resulting in the
maximum state-action value at the output of the prediction
network. The chosen actions are reported to D2D clusters
and used as resources for the downlink D2D communi-
cations. In the testing phase, RA for all agents may be
executed simultaneously without timing-offset at each time
step.

V. NUMERICAL RESULT
We consider a single circular-shaped cellular network with
a radius rc, in which BS is located at the center and M
CUEs as well as K DTxs are distributed randomly following
the uniform BPP model [12]. Around each DTx, a circular-
shaped D2D cluster with a radius rd is formed, in which
DTx is positioned at the center and N DRxs are also
distributed randomly following the uniform BPP model.
We consider an uplink period of cellular links during which
D2D links operate in a downlink mode with a NOMA
protocol underlay cellular network. In actual operations
of D2D communications underlay cellular networks, all
UEs are allowed to change their positions at the begin-
ning of every time step and thus D2D clusters need to
determine the channel spectrum and transmit power for
downlink D2D user signals at each time step by using the
RA scheme.

We compare performances of RA schemes in terms of
a benefit, where the proposed DRL-based RA scheme,
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TABLE 2. System parameters used in simulations.

TABLE 3. Hyperparameters used for DRL of the proposed RA scheme.

a randomRA scheme and a greedy RA scheme are compared.
A random RA allocates the channel spectrum and transmit
power of D2D links randomly at every time step. In a greedy
RA scheme, the channel spectrum and transmit power for
downlink D2D user signals are determined through a greedy
search to maximize the instantaneous reward defined in (18)
for each time step. We evaluate performances of RA schemes
by Monte Carlo simulations, where Python 3.9.16 and Py-
Torch 1.13.0 are used as simulation softwares.We test various
values for system parameters to analyze the behavior of RA
schemes in various aspects. We list parameters characterizing
the environment used for simulations in Table 2. Values
of hyper-parameters used for DRL of the proposed RA
scheme are also listed in Table 3. In order for D2D links to
be adapted to varying environment in a real time manner,
we let RA for D2D clusters be performed simultaneously
without timing-offset in actual operations or in a testing
phase. Note that the training of DRL for the proposed RA
scheme is conducted in a cyclic manner with a timing-offset
as explained in Sec. IV before the actual operation
starts.

We let the transmit power of each CUE be controlled
adaptively such that the corresponding SNR measured at
BS without considering interference results in the outage
probability of 0.001. Since transmit power of CUE is
determined by the distance from BS, the state defined in (16)
is reduced to s[t] = {z[t], cC [t], cD[t],P1[t], · · · ,PK [t]}
and consequently, the size of ANN in prediction and target
networks can be reduced thanks to the use of smaller
number of input nodes. Each ANN in the prediction and
target networks has five fully connected layers, which are
an input layer, three hidden layers and an output layer.
Each hidden layer has 512 neurons equipped with ReLU
activation function, and an Adam optimizer is used for

FIGURE 4. Evolution of normalized benefit in a training phase with
RC = 8 [bit/s/Hz], rc = 200 [m] and K = 4, where normalized benefits
averaged over every 50 episodes are plotted.

updating the weight of ANNs. Experience replay memories
are initially filled with transition vectors obtained by
running random policies. The training phase of DRL is
completed by 100000 iterations, and the ϵ-greedy policy
with linear annealing is applied as an action selection rule,
where ϵ decays linearly during half of total learning
iterations. It is observed that the performance in testing phase
improves as the number of learning iterations in training
phase grows. However, the performance improvement starts
to be saturated from 100000 learning iterations. Considering
the balance between the computational complexity in trainng
phase and the performance in testing phase, we choose the
number of learning iterations as 100000. It is observed from
Fig. 4 that DQN is updated well during the training phase
and it converges. In simulation results, we plot normalized
benefits which are defined by the benefit divided by an
episode time-duration T .
In Fig. 5 and Fig. 6, we plot the normalized benefits

obtained by RA schemes under comparison with respect to
the number of D2D clusters (K ) existing in the cell, where
various radii of cell (rc) and target rates of cellular link (RC )
are considered. It is observed that the proposed DRL-based
RA scheme results in higher benefit than other schemes in all
situations. As the number of D2D clusters in the cell grows,
all RA schemes show lower benefits due to a resulting severer
mutual interference among UEs. However, the performance
degradation of the proposed DRL-based RA scheme is
less sensitive to the growth of K than other RA schemes.
Thus, the performance gain of the proposed RA scheme
over others becomes significant as the number of D2D
clusters, or equivalently the number of DUEs, in the cell
increases. It is also observed that the performance gain of
the proposed DRL-based RA scheme over others increases
as the radius of cell decreases. From these observations,
it is obviously inferred that the proposed RA scheme is
quite useful especially when UEs are distributed densely in
a cell and suffer from a high level of mutual interference
from other UEs. It is clear that the proposed RA scheme
would be a good solution to resolve the spectrum shortage
problem in the next-generation communication systems in
which a high number of UEs are deployed densely over the
cell.
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FIGURE 5. Normalized benefit with respect to K obtained by applying RA
schemes under comparison, where N = 2 and rC = 50, 100, 200 [m] are
considered.

We can obtain higher benefit when the ratio of target rates
for cellular link and D2D link (RC/RD) gets higher. The
amount of improvement in benefit resulting from increasing
RC/RD is more noticeable with the proposed RA scheme than
with others. Note that high RC/RD implies a high priority
of cellular link over D2D link because, in case of high
RC/RD, improving quality of cellular link can improve the
overall throughput more easily. Thus, we can claim that the
performance gain of the proposed RA scheme over others is
significant when the priority of cellular link over D2D link is
high.

In case of high RC/RD, an efficient RA mechanism
had better keep cellular effective throughput high at the
cost of low D2D effective throughput. Fig. 7 shows the
fraction of sum effective throughput of all D2D links over
the total effective throughput of all UEs in the cell. The
lower fraction of D2D effective throughput is observed for
higher RC/RD with all RA schemes, which implies that D2D
links sacrifice themselves to achieve overall high effective

FIGURE 6. Normalized benefit with respect to K obtained by applying RA
schemes under comparison, where N = 2 and RC = 6, 8, 10 [bits/s/Hz]
are considered.

throughput of the cell. With the proposed RA scheme, the
fraction of D2D effective throughput does not grow much
as the number of D2D clusters increases, which differs from
other schemes. It is inferred from this observation that the
D2D links are controlled more efficiently by the proposed
RA scheme to improve the overall performance than by other
schemes. Fig. 8 shows the effect of the number of users or
DRxs (N ) participating in a NOMA-enabled D2D downlink
transmission underlay cellular networks on the benefit. The
benefit decreases as N grows no matter what RA scheme
is used. This is obvious because a higher number of users
sharing a given communication resource experiences a higher
level of mutual interference and thus a degraded QoS for
each user. It is notable that the proposed RA scheme results
in a higher benefit than others irrespective of the number of
users.

Fig. 9 shows the ratio of outage probabilities of individual
user signals over the mean outage probability of all user
signals. It is observed that outage probabilities of all
individual D2D user signals transmitted in each D2D cluster
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FIGURE 7. Fraction of effective throughput achieved by D2D links over
the total effective throughput achieved by all cellular and D2D links,
where rc = 100 [m], N = 2 and RC = 4, 6, 8 [bits/s/Hz] are considered.

FIGURE 8. Normalized benefit with respect to K obtained by applying RA
schemes under comparison, where rc = 100 [m], RC = 8 [bits/s/Hz] and
N = 2, 3 are considered.

based on the proposed RA scheme do not deviate much from
the mean value. Other RA schemes are observed to result in
high deviations of individual outage probabilities from the
mean value. This observation indicates that the proposed RA
scheme achieves higher level of fairness among participating
D2D users than other RA schemes. Users in each D2D
cluster gain fair QoS through the proposed RA scheme
and improve the overall benefit of the cell. Fairness is one
of the most important criteria for designing NOMA-based
communication system. Thus, the proposed DRL-based RA
scheme is a suitable solution for the NOMA-enable D2D
communication underlay cellular networks.

We compare the energy efficiency of RA schemes under
comparison in terms of a benefit achieved by average transmit
power of cellular and D2D links. It is observed from Fig. 10
that the proposed RA scheme results in the highest energy
efficiency, It implies that the lowest average transmit power

FIGURE 9. Fairness of NOMA-enabled D2D downlink communications
based on RA schemes under comparison in terms of the ratio of outage
probabilities of individual D2D user signals over the mean value, where
rc = 100 [m] and RC = 8 [bits/s/Hz].

is required to obtain the same level of benefit. Thus, the
proposed RA scheme is a reasonable solution for designing
an energy efficient communication system.

We observe how evenly channels are allocated to D2D
links. At every time step, we count the number of D2D
links occupying each channel spectrum and sort these count
numbers in a descending order. We repeat the same process
multiple times to obtain a statistically meaningful result.
Then, we add count numbers belonging to each order and
compute the proportion of summed count numbers for each
order over the total count number. We use bar graphs to show
proportions of D2D clusters occupying the most crowded
channel, the second most crowded channel, etc. as plotted in
Fig. 11. It is observed that the proposed RA scheme and a
random RA scheme result in even channel occupations by
D2D links, where a random RA is inherently results in a
uniform spectrum occupation. With a greedy RA scheme,
on the other hand, a dominant channel occupation by D2D
links is observed. It is inferred from this observation that
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FIGURE 10. Energy efficiency obtained by RA schemes under comparison
in terms of the normalized benefit per average transmit power of cellular
and D2D links, where rc = 100 [m], RC = 8 [bits/s/Hz] and N = 2, 3 are
considered.

FIGURE 11. Evenness of channel occupation by D2D links resulting from
applying RA schemes, where rc = 100 [m], RC = 8 [bits/s/Hz] and N = 2.

the proposed RA scheme utilizes the spectrum resources
efficiently.

We observe how well coordinated participating D2D
clusters are to obtain a high level of QoS for overall
network. At each time step, we compute the cluster-wise
outage probability of each D2D cluster, which is defined
as the average outage probability of D2D receivers in each
cluster. Then, we evaluate the MSE of cluster-wise outage
probabilities after obtaining their mean value. We repeat the
same procedure for multiple time steps and obtain the time-
averagedMSE, which is plotted in Fig. 12. The lower isMSE,
the better are D2D clusters are coordinated to achieve a good
performance of the overall cell cooperatively. It is observed
that the proposed RA scheme results in a well-coordinated
operation of UEs.

We provide performance improvements in percentage (%)
attained by using the proposed RA scheme over greedy and

FIGURE 12. MSE of outage probabilities of D2D clusters resulting from
applying RA schemes, where RC = 8 [bits/s/Hz] and N = 2.

random RA schemes, whose summary is given in Table 4
and Table 5. When evaluating the percentage improvement
in fairness presented in Fig. 9, we compute the gap between
the highest and the lowest points for each N and K obtained
by using the proposed, greedy and random RA schemes.
Since a smaller gap indicates higher fairness, we evaluate the
performance improvement by looking at the relative decrease
of the gap. To evaluate the improvement in the evenness of
channel occupation depicted in Fig. 11, we investigate the
variance of the numbers of D2D clusters occupying each
channel, where smaller variance indicates higher evenness.
The coordination of D2D users is measured by MSE of
cluster-wise outage probabilities of D2D clusters As observed
from Table 4, the average amount of percentage improvement
in benefit attained by the proposed RA scheme over a
greedy RA scheme and a random RA scheme is 17.68%
and 139.37%, respectively. The benefit improvement is
significant when the cell radius is small and the number
of D2D clusters in a cell is high. Thus, we can claim that
the proposed RA scheme has a higher gain when the cell
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TABLE 4. Average percentage improvement in the normalized benefit attained by the proposed RA scheme over greedy and random RA schemes with
N = 2.

TABLE 5. Average percentage improvement in various performance measures attained by the proposed RA scheme over greedy and random RA schemes
in case of rc = 100 [m] and RC = 8 [bits/s/Hz].

is more crowded with UEs. As observed in Table 5, the
proposed RA scheme improves all performance measures
over a greedy RA scheme. The proposed RA scheme results
in a degraded evenness of D2D channel occupation over a
random RA scheme. This is inevitable because a random
scheme inherently aims to allocate channel spectra to D2D
clusters uniformly.

In DRL-based RA scheme, ANNs are trained to find a
globally optimal solution of a RA problem for an arbitrarily
given input data. On the other hand, a greedy algorithm
is used for each agent to find a locally optimal solution
for an optimization problem with a given set of RA
results of preceding agents. Thus, the proposed DRL-based
RA scheme inherently outperforms a greedy RA scheme
contingent on the high level of accuracy in training of
ANNs. It is inferred from performance comparisons that
ANNs of agents are well trained and thus the proposed RA
scheme shows a better performance than greedy and random
RA schemes.

We analyze computational complexities required for each
agent to run the proposed RA scheme in terms of floating
point operations (FLOPs), which is dominantly determined
by the forward message propagation through ANN. Suppose
ANN has an input layer with nin nodes, NH hidden layers
each of which has nh nodes and an output layer having
nout nodes. Then, a forward message propagation requires
2 {ninnh + (NH − 1)nhnh + nhnout } + NHnh FLOPs. Each
input node of ANN corresponds to each entry of observation
vector, i.e., locations of K DTxs, KN DRxs and M CUEs,
transmit power for M CUEs and KN DRxs, and channel
spectra of M CUEs and K D2D clusters. Thus, ANN has
nin = 3M+2KN +2K . The number of output nodes of ANN
equals the number of possible sets of resource allocation
vectors. For each agent, channel spectrum is chosen out ofM
candidates and transmit power level for each DRx is chosen
out of L possible values. The number of power level selection
is formulated as a combination with repetition so that nout =
M (L+N−1)!
(L−1)!N ! . Consequently, the number of FLOPs required for

each agent to run the proposed RA scheme is determined as
2

{
nh(3M + 2KN + 2K )+ (NH − 1)n2h + nh

M (L+N−1)!
(L−1)!N !

}
+

NHnh.

FIGURE 13. The number of FLOPs required for each D2D cluster to
perform the proposed RA scheme and the greedy RA scheme, where
N = 3, L = 9 and M = 4.

The computational complexity required for each agent
to run a greedy RA scheme is dominantly determined by
computation of objective function defined in (15). In this
process, we compute 1 − poutn,n(k), ∀n, k as well as 1 − poutm ,
∀m, for all resource allocation vectors. Let Km denote the
set of D2D clusters sharing the channel with a cellular
link m, where |Km| represents the cardinality of Km and∑M

m=1 |Km| = K . By tedious manipulations, we can obtain
the total number of FLOPs required to compute 1 − poutn,n(k)

for all n ≤ N in a cluster k ∈ Km as N (N+1)
2

{ 4(N−1)
3 +

10|Km| + 8
}
. Thus, computing

∑K
k=1

∑N
n=1(1 − poutn,n(k))

requires N (N+1)
2

{ 4K (N−1)
3 +8K +10

∑M
m=1 |Km|2

}
+KN −1

FLOPs. In computing 1−poutm for each m by (14), we require
8|Km|+6 FLOPs, and thus we require 8K+7M−1 FLOPs to
obtain

∑M
m=1(1 − poutm ). Considering all resource allocation

vectors, the total number of FLOPs required for each agent
to perform a greedy RA scheme by evaluating objective
function is obtained as M (L+N−1)!

(L−1)!N !

{N (N+1)
2

( 4K (N−1)
3 + 8K +

10
∑M

m=1 |Km|2
)
+ KN + 8K + 7M + 4

}
FLOPs. By using

the property K2

M ≤
∑M

m=1 |Km|2 ≤ K 2, we can obtain
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the lower and upper bounds on the number of FLOPs as
well.

We plot the number of FLOPs required for the proposed
RA scheme and the upper and lower bounds on the number
of FLOPs required for greedy RA scheme in Fig. 13.
The computational complexity of greedy RA scheme grows
parabolically with respect to the number of D2D clusters.
On the other hand, increasing the number of D2D clusters
has a minor effect on FLOPs of the proposed RA scheme. The
dominant factor determining FLOPs for the proposed scheme
is the number of nodes in ANN. Consequently, the proposed
RA scheme has a significant gain over the greedy scheme
in terms of computational complexity as a higher number of
D2D users are involved in D2D communications underlay
cellular networks.

VI. CONCLUSION
We proposed a DRL-based RA scheme for D2D commu-
nications exploiting cluster-wise NOMA protocol underlay
cellular networks, where transmit power and channel spec-
trum are considered communication resources to be allocated
to D2D links. Multiple D2D links are allowed to utilize
a common channel and the performance accumulated over
multiple time steps are of concern, which results in a
high computational complexity required for performing RA
especially when a high number of D2D links are involved.
In order to achieve high benefit with reduced complexity,
we adopted a centralized RA scheme based on multi-agent
DRL, each of which agent operates its own ANNs. Thanks to
the segmented structure of ANNs, the proposed RA scheme
requires reduced amount of computations compared to the
RA scheme based on single-agent DRL. In actual operations,
the proposed scheme allocates communication resources to
D2D links adaptively in a real-time manner based on the
observation for the updated network environment by using
the pre-trained ANNs. We derived the outage probabilities
of D2D links and cellular links analytically and provided a
benefit as a performance measure of RA scheme. For this
purpose, we investigated analytically the impact of successful
and unsuccessful SIC for preceding D2D user signals on
the outage probability of D2D links. It was observed that
the proposed RA scheme outperforms others, especially
when UEs are distributed densely with a high level of
mutual interferences and the QoS of the cellular link has
a higher priority than the D2D link. We also found that
the proposed RA scheme is energy efficient and achieves a
high level of fairness among D2D users in the cluster. The
channel occupation of D2D users based on the proposed
RA is observed to be even, which shows a well-coordinated
operation of D2D users.

APPENDIX A
DERIVATION OF (10)
Consider i.i.d. exponential random variables α0, α1, · · · , αX ,
whose probability density function (PDF) is given by
fαi (ai) = λie−λiai with mean λ−1i and variance λ−2i . Let us

define γ as

γ =
α0

cα0 +
∑X

i=1 αi + b
, (A1)

where c and b are positive constants. Then,

Pr{γ < r} = Pr
{

α0

cα0 +
∑X

i=1 αi + b
< r

}

= Pr
{
(1− rc)α0 < r

( X∑
i=1

αi + b
)}

= Pr
{
α′0 <

X∑
i=1

αi + b
}
, (A2)

whereα′0 = (1/r−c)α0. If 1/r−c ≤ 0, thenα′0 <
∑X

i=1 αi+b
holds always so Pr{γ ≤ r} = 1. Otherwise,

Pr{γ < r}

=

∫
∞

0
· · ·

∫
∞

0
Pr

{
α0 <

(
1
r
− c

)−1 ( X∑
i=1

αi + b
)}

·

X∏
i=1

fαi (ai)dai

=

∫
∞

0
· · ·

∫
∞

0

(
1− e−λ′0(

∑X
i=1 ai+b)

) X∏
i=1

fαi (ai)dai

= 1−
∫
∞

0
· · ·

∫
∞

0
e−λ′0(

∑X
i=1 ai+b)

X∏
i=1

λie−λiaidai

= 1− e−λ′0b
∫
∞

0
· · ·

∫
∞

0

X∏
i=1

λie−(λi+λ′0)aidai

= 1− e−λ′0b
X∏
i=1

∫
∞

0
λie−(λi+λ′0)aidai, (A3)

where λ′0 = λ0(1/r − c)−1. Since
∫
∞

0 λie−(λi+λ′0)aidai =
λi

λi+λ′0
, we rewrite (A3) as

Pr{γ < r} = 1− e−λ′0b
X∏
i=1

λi

λ′0 + λi

= 1−e−
b

µ0
(1/r−c)−1

X∏
i=1

(
1+

µi

µ0
(1/r − c)−1

)−1
,

(A4)

where µi = E{αi} = λ−1i . Consequently,

Pr{γ < r}

=


1− e−

b
µ0

(1/r−c)−1
X∏
i=1

(
1+

µi

µ0
(1/r − c)−1

)−1
,

if 1/r − c > 0
1, otherwise.

(A5)
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It is clear that (3) has the same form as (A1), where

α0 = PDn′(k)|hk,n(k)|
2d−α
k,n(k), c =

∑N
i=n′+1

PDi(k)
PD
n′(k)

,
∑X

i=1 αi =∑M
m=1 δm,kPCm|hm,n(k)|

2d−α
m,n(k)+

∑K
j=1:j̸=k δk,jPDj |hj,n(k)|

2d−α
j,n(k)

and b = σ 2. Since E{|hx,y|2} = 1 for any node x and
y, we have µ0 = PDn′(k)d

−α
k,n(k) and µi = δm,kPCmd

−α
m,n(k) or

δk,jPDj d
−α
j,n(k). Then, p

out
n′,n(k) = Pr{γDn′,n(k) < γDth } is obtained in

a form of (A5). By using the property (1+δx)−1 = (1+x)−δ

with δ = 1 or 0, and by replacing n′ by l, we obtain
1− poutl,n(k) = Pr{γDl,n(k) ≥ γDth } as provided in (12).
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