NS Public Health Nutrition

Rate of inappropriate energy and micronutrient intake among the Korean working population

Wanhyung Lee¹, Jiyoun Jung², Joonho Ahn² and Hyoung-Ryoul Kim^{2,*}

¹Department of Occupational and Environmental Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea: ²Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Submitted 29 October 2018: Final revision received 28 August 2019: Accepted 19 September 2019: First published online 18 March 2020

Abstract

Objective: Adequate energy and nutrient intakes are important for workers who spend at least one-third of their day working. We investigated differences in these intakes among Korean workers because few studies have reported on energy or nutrient intakes, related to working conditions (long working hours, shift work and non-standard work).

Design: Dietary intake was assessed using 1-d 24-h recall. Energy and nutrient intakes were evaluated using age- and sex-specific dietary reference intakes for Korean citizens. Occupational characteristics were obtained from self-reported Korean National Health and Nutritional Examination Survey (KNHANES) data (occupational classification, working hours, shift work and non-standard workers). An age, education and household income-adjusted logistic regression model was applied to investigate differences in inappropriate energy and nutrient intakes, by sex and occupation.

Setting: Cross-sectional study.

Participants: From KNHANES (2007–2016), 11 145 participants (5401 males; 5744 females) were included, finally.

Results: Males with long working hours had higher inappropriate carbohydrate, protein, water, vitamin B2 and phosphate intakes than those who worked ≤ 60 h/week. Long working hours among females were significantly associated with total energy and nutrient 'under-intake'. Male shift and non-standard workers had higher inappropriate protein, water, mineral and vitamin intakes. Multivariate logistic regression revealed that white- and male pink-collar workers had significantly increased risks of water and vitamins A, C, B₁ and niacin 'under-intake'.

Conclusions: We found different rates of inappropriate energy and micronutrient intakes according to working conditions. Younger workers with long hours and shift work schedules were vulnerable to inappropriate energy and nutrient intakes.

Keywords Nutrition Energy Workers Korean National Health and Nutritional Examination Survey

A safe and balanced food intake, a basic human right, can contribute to a sustained physical and mental health. Adequate energy and nutrient intakes are essential for preventing hunger and malnutrition and are also important for the maintenance of good health⁽¹⁾. Dietary habituation is an important factor underlying energy and nutrient intakes (that can affect various health problems and nutritional deficiencies)⁽²⁾. Balanced eating by workers is fundamental to ensuring productivity, a healthy workforce, good working conditions and disease prevention^(3,4).

The health status, represented by energy and nutrient intakes among workers who spend at least one-third of

their day at work, is closely related to their working conditions. For example, working conditions with long working hours, workplace stress and shift work have been identified recently as risk factors for obesity^(5,6). A key aspect of obesity is an excessive energy intake. However, few studies have focused on energy or nutrient intakes among workers and their associated working conditions. The risk of obesity among workers is related to their working conditions, which ultimately influences their energy and nutrient intakes. Although previous research has reported that shift work schedules influence workers' eating habits⁽⁷⁾, few studies have examined energy and

Energy & micronutrient intake among workers

nutrient intake statuses among workers. Adequate energy and nutrient statuses are key components of occupational safety and workplace health for both employers and workers; but these have rarely been investigated, even by occupational professionals.

The current study investigated the association between nutrient intake status among a working population and their working conditions. Understanding the link between nutrient intake and occupational characteristics while also considering sex and age differences will help improve occupational health and safety issues. First, this paper provides an overview of the nutrient intake statuses among Korean workers with sex and age stratification. Then, we demonstrated the association between working conditions (occupational classification, long working hours, shift work and non-standard work) and nutrient intake status with sex stratification.

Methods

Study population

The current study used the Korean National Health and Nutritional Examination Survey (KNHANES), which is a nationally representative and population-based survey conducted by the Korea Centres for Disease Control and Prevention (KCDC). We merged KNHANES data from 2007 to 2016, including food intake information. Figure 1 provides a schematic diagram depicting the study population. Of the 81 503 KNHANES participants from 2007 to 2016, we excluded those with non-paid work (*n* 60 889), without energy and nutrient intake survey results (*n* 3222), aged <20 or >65 years (*n* 1732) and those with any missing data (*n* 4515). Finally, a total of 11 145 participants (5401 males; 5744 females) were included.

Energy and nutrient intake variables

Energy and nutrient intake data were collected from the 1-d 24-h recall KNHANES survey. The nutritional survey included a face-to-face interview conducted in the participants' homes by trained dietitians 1 week after a basic health interview. The recall data included all foods and beverages consumed within a 24-h period on all weekdays except for national holidays^(8–10).

Macronutrients were calculated as percentages of the total energy intake. The energy intake was calculated using standard conversion factors to convert grams to kilojoules (17 kJ/g for protein and carbohydrate and 37 kJ/g for fat). The age- and sex-specific estimated energy requirement (EER), estimated average requirement (EAR), acceptable macronutrient distribution ranges (AMDRs), recommended nutrient intake (RNI), adequate intake (AI) and tolerable upper intake level (UL) of the dietary reference intakes for Koreans (KDRIs) according to the Dietary Reference Intakes for Korean citizens^(11–13) were used to estimate the energy and nutrient intake statuses (Supplementary Table 1).

The energy and nutrient intake statuses were categorised into the following four classes: total energy from primary sources (carbohydrate, fat and protein); water; vitamins (Vits) (A, C, B₁, B₂ and niacin) and minerals (Ca, phosphate, Na, K and Fe). Some of the energy and nutrient over-intake values are controversial. Therefore, the current study could only demonstrate an inadequate nutrient intake status based on the nutritional academic consensus for each nutrient. Thus, under-nutrition could only be estimated for protein, water, Vit C, Vit B₁, Vit B₂, niacin and K.

Total energy and nutrient 'under-intake' were defined as consumption \leq 75 % of the EER (EAR for Ca, Fe, Vit A and Vit B₂). 'Over-intake' was defined as consumption \geq 125 % of the EER (AMDR for fat intake). Both the under- and overintake rates for total energy and nutrients were included in the KNHANES by the KCDC as indexes to monitor Korean citizens' nutritional-related health.

Carbohydrate and fat intakes were categorised into two classes (under and over) according to the percentage of total AMDR energy intake. Protein under-intake was defined as an amount below the EAR. Water under-intake was defined as fluid (ml) per day below the AI. Vit or mineral under-intake was defined as an intake below the EAR, whereas over-intake was defined as an intake greater than the UL.

Socioeconomic variables

For educational status and household income, we examined socioeconomic variables. The educational level was classified as less than high school, college or higher.

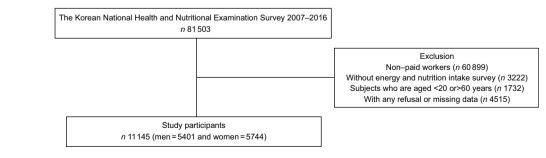


Fig. 1 Schematic diagram depicting study population

3358

Household income was categorised according to the total monthly household income (US dollars (): <1400, <1900, <2500 and \geq 2500).

Occupational characteristics

The occupational characteristics examined were occupational classification, long working hours, shift work and non-standard workers. As reported in a previous study $^{(14)}$, occupational classification was categorised into four groups based on the International Standard Classifications of Occupations by skill and duty levels as follows: white-collar workers (legislators, senior officials, managers, professionals, technicians and associated professionals); pink-collar workers (clerk, sales and customer service); green-collar workers (agriculture, fishery and forestry) and bluecollar workers (craft, plant and machine operators, assemblers and elementary workers). Long working hours were defined as >60 h/week. Shift work included night duty, evening duty, regular day and night shifts, 24-h shifts, separated shifts and irregular shift work schedules. Non-standard workers were employed temporarily or daily.

Statistical analysis

Energy and nutrient intakes according to sex, age and occupational characteristics were analysed using the χ^2 test. We also estimated the *P* values for trends to demonstrate the association between inappropriate energy and nutrient intakes and age. The risk of inappropriate energy and nutrient intakes was calculated using logistic regression analysis with both crude and fully adjusted models according to the occupational classification after sex stratification. The fully adjusted model was adjusted for age, education and household income. We calculated each of the inappropriate energy and nutrient status item as a count variable, and differences in the mean total number of inappropriate energy and nutrient statuses were analysed using Student's t-test according to sex and occupational characteristics.

Results

Participants

Table 1 shows the characteristics of the study participants. Overall, 48.5 % of the workers were male. The largest age group was 30–49 years (n 5970; 53.6 %). The largest proportion of the participants had a monthly household income greater than \$2500 (35.8 %), followed by an income between \$1900 and \$2500 (33.8 %). Green-collar workers made up the least of the occupational classifications (n 48; 0.4 %). Among participants, 92.5 %, 82.1 % and 67.3 % had long working hours, shift work and non-standard working conditions, respectively.

Energy and nutrient intake statuses according to sex and age

The energy and nutrient intake statuses of the participants classified by sex and age are shown in Table 2. Table 3

W Lee et al.

Table 1 Baseline characteristics of study participants

	Ν	%
Gender		
Male	5401	48.5
Female	5744	51.5
Age (years)		
19–29	1931	17.3
30–49	5970	53.6
50–64	3244	29.1
Education		
High school	5022	45.1
College	1960	17.6
University and above	4163	37.3
Household monthly income (\$)		
less than 1400	728	6.4
1400–1900	2672	23.9
1900–2500	3766	33.8
More than 2500	3979	35.8
Occupational classification		
White-collared	5487	49.2
Pink-collared	2003	18.0
Green-collared	48	0.4
Blue-collared	3604	32.4
Long working hours		
Yes	832	7.5
No	10 313	92.5
Shift work		
Yes	1990	17.9
No	9155	82.1
Non-standard workers		
Yes	3641	32.7
No	7504	67.3

shows the inappropriate energy and nutrient intake statuses for each nutrient according to sex and age. For both sexes, a significant difference was found in the prevalence of imbalanced daily energy, carbohydrate, fat, protein, water, Vit A, Vit C, Vit B₁, Vit B₂, phosphate, K and Fe intakes among the age groups. In males, a significant difference was also found in the prevalence of an inappropriate Ca intake.

Energy and nutrient intake statuses according to occupational characteristics

Tables 4 (males) and 5 (females) show inappropriate energy and nutrient intake statuses according to occupational characteristics. A significant difference was noted in inappropriate carbohydrate, protein, water, Vit C, Vit B₁, Vit B₂, niacin, phosphate and K intakes according to the male workers' occupational classifications. In females, a significant difference was found in the percentages of inappropriate total energy and nutrient, carbohydrate, protein, water, Vit B₁, Vit B₂, niacin, Ca and Fe intakes by occupational classification.

Males who worked >60 h/week showed higher inappropriate carbohydrate (74·9 % *v*. 72·7 %, P = 0.0032); protein (18·0 % *v*. 12·6 %, P = 0.0002); water (53·3 % *v*. 45·4 %, P = 0.0003); Vit B₂ (44·7 % *v*. 38·4 %, P = 0.003) and phosphate (6·9 % *v*. 4·4 %, P = 0.0238) intakes than those who worked ≤60 h/week. Also females who worked >60 h/week showed higher inappropriate carbohydrate

Table 2 Energy and micronutrient intake status according to gender and age group

	Tot	al	19–	29	30–	49	50–	64
Age (years)	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Male workers								
Number of participants	5401		772		3080		1549	
Daily energy intake								
Total energy (kJ)	10 771.3	4391.1	11 211	4996.5	11 032.8	4359.3	10 078.4	4029.2
Carbohydrate (%)	59.2	13.7	55.3	13.6	58.2	13.4	63.0	13.8
Fat (%)	20.2	8.4	24	8.9	20.9	8	16.7	7.7
Protein (g)	94.1	56.5	102.7	64.3	96.4	47.7	85.9	66.7
Water (ml)	1382.7	836.8	1384.6	828.5	1436.7	872.7	1282.1	757.5
Vitamins								
Vitamin A (µgRE)	942.1	1075.1	912.9	1056.9	956.5	1074.2	934.8	1080.3
Vitamin C (mg)	109.2	93.4	84.1	80.5	110.0	98.2	120.4	104.1
Vitamin B1 (mg)	2.2	1.2	2.2	1.4	2.2	1.1	2.1	1.1
Vitamin B2 (mg)	1.6	0.9	1.7	1.0	1.7	0.9	1.5	1.0
Niacin (mg)	21.7	13.6	22.7	14.1	22.2	11.5	20.5	16.9
Minerals								
Ca (mg)	597.7	356.8	564.8	353.3	605.4	353.3	600.6	364.0
P (mg)	1412.4	673.8	1405.2	682.9	1440.8	623.2	1365.3	756.9
Na (mg)	5796.5	4315.4	5687.7	4224.0	5956.5	3413.8	5563.8	5711.7
K (mg)	3637.5	1683.7	3346.2	1773.4	3685.6	1609.6	3699.6	1762.7
Fe (mg)	19.7	12.3	19.0	14.1	19.6	11.3	20.4	13.1
Female workers								
Number of participants	5744		1159		2890		1695	
Daily energy intake								
Total energy (kJ)	7580.2	3063.1	7806.9	3625.0	7623.7	2984.0	7354.6	2747.6
Carbohydrate (%)	64.2	12.3	58.6	12.7	63.4	11.5	69.4	11.2
Fat (%)	20.1	8.8	24.3	9.5	20.7	8.3	16.4	8.0
Protein (g)	64.9	33.4	68.7	41.4	65.9	32.7	60.8	27.8
Water (ml)	1031.4	528.9	1036.9	631.2	1043.9	571·2	1006.6	567.2
Vitamins	1001 1	020 0	1000 0	0012	10100	0712	1000 0	007 2
Vitamin A (µgRE)	769.3	1054.3	674	1030.6	788.1	1105.7	802.6	973.7
Vitamin C (mg)	106.7	108-4	84·1	97.1	103.7	101.4	127.3	122.8
Vitamin B1 (mg)	1.6	0.9	1.5	1.0	1.6	0.9	1.6	0.8
Vitamin B2 (mg)	1.2	0.7	1.3	0.7	1.3	0.7	1.2	0.6
Niacin (mg)	15.3	7.9	15.6	9.1	15.7	7.9	14.7	7.1
Minerals	10.0	7.5	10.0	5.1	10.7	7.5	14.7	1.1
Ca (mg)	470.2	281.3	428.8	258.5	477.9	289	485.5	280.6
P (mg)	1031.3	447.3	993.8	480·6	1044.3	434.4	1035.5	444.3
Na (mg)	3919.5	2716.4	3700.1	2627.1	4093.5	2801.7	3776.9	2610.4
K (mg)	2889.7	1520.1	2508.7	1276.8	2900.9	1491.8	3132.9	1662.9
Fe (mg)	2009·7 14·9	8.8	2508·7 12·9	8.3	2900-9 15-0	8.7	16.0	9.1
re (mg)	14.9	0.0	12.9	0.3	15-0	0.7	10.0	9.1

Public Health Nutrition

(78.5 % v. 71.8 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %, P = 0.0017); protein (28.7 % v. 21.1 %); protein P = 0.0049; water (62.0 % v. 53.4 %, P = 0.0093); Vit B₁ (27.9 % v. 19.9 %, P = 0.0029); Vit B₂ (48.5 % v. 41.5 %, P = 0.0364) and niacin (39.2 % v. 31.2 %, P = 0.0089) intakes.

Considering the work schedule, male shift workers were more likely to show inappropriate carbohydrate (74.5 % v. 72.7 %, P = 0.0065); protein (16.4 % v. 12.5 %), P = 0.001; water (55.4 % v. 45.2 %, P < 0.0001); Vit C (50.2 % v. 45.1 %, P = 0.0036); Vit B₁ (13.3 % v. 9.8 %,P = 0.0011; Vit B₂ (42.6 % v. 38.3 %, P = 0.0131); niacin (20.4 % v. 15.8 %, P = 0.0005); Ca (67.3 % v. 62.2 %,P = 0.0048; phosphate (6.8 % v. 4.1 %, P = 0.0023) and K (58.9 % v. 52.5 %, P = 0.0002) intakes than regular workers. For the female shift workers, inappropriate protein (24.3 % v. 20.8 %, P = 0.0165); water (56.8 % v.53.1 %, P = 0.0278); Vit C (53.3 % v. 49.8 %, P = 0.0405) and phosphate (15.7 % v. 11.8 %, P = 0.0012) intakes were significantly higher than those of the regular workers.

Male non-standard workers showed higher inappropriate carbohydrate (74.7 % v. 72.1 %, P = 0.0349); protein (15.6 % v. 12.2 %, P = 0.0009); water (50.4 % v. 44.5 %,P < 0.0001; Vit B₁ (13.0 % v. 9.4 %, P < 0.0001); Vit B₂ (42.1 % v. 37.9 %, P = 0.0036); niacin (18.7 % v. 15.8 %), P = 0.0108) and K (56.5 % v. 52.5 %, P = 0.0076) intakes than standard workers. Female non-standard workers showed significantly higher inappropriate carbohydrate (74.9 % v. 70.6 %, P < 0.0001); protein (23.9 % v. 20.0 %), P = 0.0006; water (56.3 % v. 52.3 %, P = 0.0039); Vit A (63.1 % v. 60.4 %, P = 0.0115); Vit B₁ (23.7 % v. 18.3 %, P < 0.0001); Vit B₂ (44.5 % v. 40.2 %, P = 0.0015); niacin (33.9 % v. 30.2 %, P = 0.004) and phosphate (13.5 % v.11.7 %, P = 0.0190) intakes.

3360

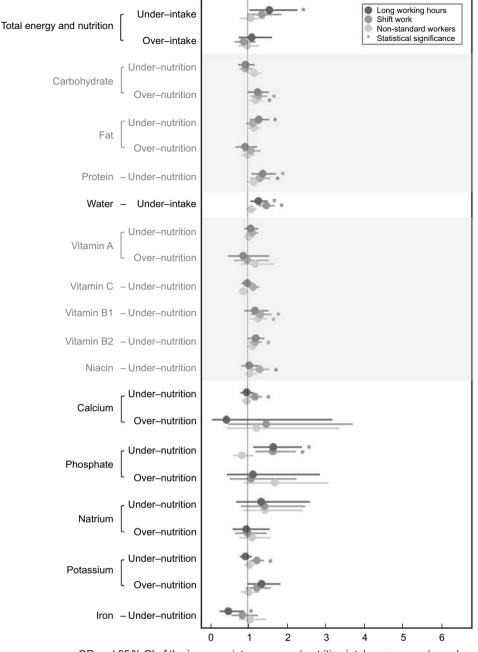
Table 3 The inappropriate energy and micronutrient intake of each energy and nutrient according to gender and age group

		То	tal	19-	-29	30-	-49	50-	-64		
Age (years)		N	%	N	%	N	%	N	%	P value	P for trend
Male workers											
Number of participants		5401		772		3080		1549			
Total energy and nutritic	on intake										
	Under	206	3.8	61	7.8	117	3.8	28	1.8	<0.0001	<0.0001
	Over	295	5.5	74	10.0	178	5.8	43	2.8	<0.0001	<0.0001
Energy intake by macro		200									
Carbohydrate	Under	1862	34.5	348	45.3	1117	36.4	397	25.7	0.0009	0.0021
Carbonyulate	Over	2081	38.5	202	26.3	1094	35.4	785	50.7	<0.0001	<0.0001
Fat	Under	1554	28·8	122	20.3 15.6	733	23·4	699	45·2	<0.0001	<0.0001
T at											
Dratain	Over	677	12.5	190	24.9	394	12.8	93	5.9	<0.0001	<0.0001
Protein	Under	712	13.2	112	14.4	352	11.4	248	16.0	0.0270	0.4020
Water intake											
	Under	2497	46.2	388	49.9	1467	47.5	642	41.5	<0.0001	0.0014
Vitamins											
Vitamin A	Under	2859	52.9	452	58.3	1616	52.3	791	51.1	0.0020	0.0035
	Over	150	2.8	20	2.6	87	2.8	43	2.8	0.7029	0.8746
Vitamin C	Under	2487	46.1	457	58.9	1385	44.9	645	41.6	<0.0001	<0.0001
Vitamin B1	Under	562	10.4	111	14.2	306	9.9	145	9.4	0.0011	0.0004
Vitamin B2	Under	2112	39.1	276	35.5	1120	36.3	716	46·2	<0.0001	<0.0001
Niacin	Under	900	16.7	147	18.9	469	15.1	284	18.3	0.6675	0.7952
	Under	900	10.7	147	10.9	409	10.1	204	10.0	0.0075	0.7952
Minerals	L La stan	0.40.4	00.0	500	<u> </u>	1004	007	000	<u> </u>	0.0004	0 0000
Ca	Under	3404	63.0	538	69.6	1934	62.7	932	60.2	<0.0001	0.0006
	Over	19	0.4	1	0.1	5	0.2	13	0.8	0.0020	0.0053
Р	Under	202	3.7	50	6∙4	105	3.4	47	3.0	0.0003	0.0002
	Over	46	0.9	10	1.3	25	0.8	11	0.7	0.1698	0.0241
Na	Under	140	2.6	28	3.6	63	2.1	49	3.2	0.5325	0.8910
	Over	5102	94.5	719	93.2	2940	95.5	1443	93.2	0.2474	0.2833
К	Under	2898	53.7	488	62.9	1572	50.9	838	54.1	0.0043	0.0045
Fe	Under	353	6.5	106	13.6	202	6.5	45	2.9	<0.0001	<0.0001
10	Over	188	3.5	35	4.6	103	3.3	50	3.2	0.0575	0.0742
Female workers	Over	5744	0.0	1159	4.0	2890	0.0	1695	0.2	0.0373	0.0142
		5744		1159		2090		1095			
Number of participants											
Total energy and nutritic			40.0	~~~	40.0	0.07				0.0004	
	Under	629	10.9	227	19.6	327	11.3	75	4.4	<0.0001	<0.0001
	Over	250	4.4	79	6.8	134	4.6	37	2.2	<0.0001	<0.0001
Energy intake by macro	nutrients										
Carbohydrate	Under	1248	21.7	427	36.8	626	24.7	195	11.5	<0.0001	<0.0001
	Over	2896	50.4	369	31.8	1358	47.0	1169	68.9	<0.0001	<0.0001
Fat	Under	1807	31.5	196	17.0	772	26.7	839	49.5	<0.0001	<0.0001
	Over	811	14.1	304	26.2	394	13.6	113	6.7	<0.0001	<0.0001
Protein	Under	1227	21.4	333	28.7	508	17.6	386	22.8	0.0048	0.0045
Water intake	0.1.401					000		000	•	0.0010	0 00 10
Water Intake	Under	3089	53.8	652	56.2	1602	55.4	835	49.3	<0.0001	0.0069
Vitomino	Under	5003	55.0	052	50.2	1002	55.4	000	43.0	<0.0001	0.0003
Vitamins	L La stan	0004	F0 4	770	<u> </u>	1001	50.0	007	FF 0	0.0004	0.0001
Vitamin A	Under	3394	59.1	776	66.9	1681	58·2	937	55.3	<0.0001	<0.0001
	Over	135	2.4	19	1.6	63	2.2	53	3.1	0.1036	0.1363
Vitamin C	Under	2893	50.4	729	62.8	1451	50·2	713	42.1	<0.0001	<0.0001
Vitamin B1	Under	1162	20.2	288	24.8	532	18.4	342	20.2	0.0109	0.0033
Vitamin B2	Under	2398	41.8	471	40.6	1135	39.3	792	46.7	0.0002	<0.0001
Niacin	Under	1810	31.5	391	33.7	852	29.5	567	33.5	0.7613	0.6626
Minerals											
Ca	Under	3922	68·2	862	74.3	1851	64.0	1210	71.4	0.4782	0.6764
04	Over	6	00.2	002	0.0	5	04.0	1210	0.1	0.4702	0.9031
Р											
F	Under	708	12.3	190	16.4	328	11.4	190	11.2	0.0001	0.0002
	Over	9	0.2	4	0.3	2	0.1	3	0.2	0.3458	0.6219
Na	Under	569	9.9	146	12.6	244	8.4	179	10.6	0.0578	0.0445
	Over	4647	80.9	900	77.7	2420	83.7	1327	78.3	0.1016	0.0618
К	Under	4317	75.2	967	83.4	2172	75.1	1178	69.5	<0.0001	<0.0001
Fe	Under	1686	29.4	576	49.7	1012	35.0	98	5.8	<0.0001	<0.0001
	Over	74	1.3	11	1.0	38	1.3	25	1.5	0.4445	0.4698

NS Public Health Nutrition

Table 4 The inappropriate energy and micronutrient intake of each nutrient according to occupational characteristics in male workers (n 5401)

		Occupational classification								Long working hours							Shift	work			Non				
		White	N (%)	Pink	N (%)	Green	N (%)	Blue	N (%)	P value	No	N (%)	Yes	N (%)	<i>P</i> value	No	N (%)	Yes	N (%)	P value	No	N (%)	Yes	N (%)	P value
Number of participa		2648		594		38		2121			4806		595			4405		996			3827		1574		
Total energy and n																									
	Under	84	3.2	33	5.6	2	5.3	87	4 ⋅1	0.1579	173	3.6	33	5∙6	0.0201	151	3.4	55	5.5	0.0020	132	3.5	74	4.7	0.0288
	Over	125	5.7	44	7.4	1	2.6	98	4.6	0.0705	264	5∙5	31	5∙2	0.8601	244	5.5	51	5.1	0.7047	209	5.5	86	5.5	0.9134
Energy intake by m																									
Carbohydrate	Under	986	37.2	235	39.6	8	21.1	633	29.8	0.0901	1688	35.1	174	29.2	0.3987	1551	35.2	311	31.2	0.5845	1320	34.5	542	34.4	0.2328
	Over	909	34.3	207	34.9	22	57.9	943	44·5	<0.0001	1809	37.6	272	45.7	0.0099	1650	37.5	431	43.3	0.0148	1446	37.8	635	40.3	0.0343
Fat	Under	618	23.3	135	22.7	19	50.0	782	36.9	<0.0001	1339	27.9	215	36.1	0.0002	1252	28.4	302	30.3	0.1394	1054	27.5	500	31.8	0.0019
	Over	383	14.5	105	17.7	1	2.6	188	8.9	0.0001	619	12.9	58	9∙8	0.2081	543	12.3	134	13.5	0.1913	484	12.7	193	12.3	0.7061
Protein	Under	268	10.1	83	13.9	10	26.3	351	16.6	<0.0001	605	12.6	107	18.0	0.0002	549	12.5	163	16.4	0.001	467	12.2	245	15.6	0.0009
Water intake	Under	1093	41.3	310	52·2	21	55.3	1073	50.6	<0.0001	2180	45.4	317	53.3	0.0003	1945	45∙2	552	55.4	<0.0001	1703	44.5	794	50.4	<0.0001
Vitamins																									
Vitamin A	Under	1357	51.3	340	57·2	25	65·8	1137	53.6	0.2423	2532	52.7	327	55.0	0.3718	2305	52.3	554	55.6	0.0771	2008	52.5	851	54.1	0.2733
	Over	80	3.0	24	4.0	1	2.6	45	2.1	0.0761	137	2.9	13	2.2	0.4406	126	2.9	24	2.4	0.6439	106	2.8	44	2.8	0.8031
Vitamin C	Under	1126	42.5	327	55.1	15	39.5	1019	48·0	0.0007	2211	46.0	276	46.4	0.8602	1987	45.1	500	50.2	0.0036	1763	46.1	724	46.0	0.9626
Vitamin B1	Under	236	8.9	82	13.8	6	15.8	238	11.2	0.0158	489	10.2	73	12.3	0.1146	430	9.8	132	13.3	0.0011	358	9.4	204	13.0	<0.0001
Vitamin B2	Under	961	36.3	220	37	20	52.6	911	42.9	<0.0001	1846	38.4	266	44.7	0.0030	1688	38.3	424	42.6	0.0131	1449	37.9	663	42.1	0.0036
Niacin	Under	346	13.1	113	19.0	9	23.7	432	20.4	<0.0001	792	16.5	108	18.2	0.3020	697	15.8	203	20.4	0.0005	606	15.8	294	18.7	0.0108
Minerals																									
Ca	Under	1642	62.0	389	65.5	26	68·4	1347	63.5	0.2717	3029	63.0	375	63.0	0.9502	2738	62.2	666	66.9	0.0049	2398	62.7	1006	63.9	0.3745
	Over	8	0.3	0	0.0	0	0.0	11	0.5	0.1531	18	0.4	1	0.2	0.4210	15	0.3	4	0.4	0.5935	13	0.3	6	0.4	0.7608
Р	Under	70	2.6	36	6.1	1	2.6	95	4.5	0.0023	166	3.5	36	6.1	0.0016	143	3.3	59	5.9	<0.0001	140	3.7	62	3.9	0.6016
	Over	25	0.9	3	0.5	0	0.0	18	0.9	0.8030	41	0.9	5	0.8	0.9794	37	0.8	9	0.9	0.7846	28	0.7	18	1.1	0.1318
Na	Under	53	2.0	21	3.5	0	0.0	66	3.1	0.1154	117	2.4	23	3.9	0.2669	105	2.9	35	3.5	0.2003	83	2.2	57	3.6	0.0241
	Over	2518	95·1	566	93.6	34	89.5	1994	94.0	0.9058	4549	94.7	553	92.9	0.6577	4171	94.7	931	93.5	0.8420	3630	94.9	1472	93.5	0.8803
K	Under	1356	51.2	345	58·1	22	57.9	1175	55.4	0.0065	2580	53.7	318	53.5	0.9127	2311	52.5	587	58·9	0.0002	2009	52.5	889	56.5	0.0076
Fe	Under	145	5.5	58	9.8	3	7.9	147	6.9	0.0848	302	6.3	51	8.6	0.0468	265	6.0	88	8.8	0.0014	228	5.9	125	7.9	0.0072
	Over	97	3.7	23	3.8	2	5.3	66	3.1	0.3387	178	3.7	10	1.7	0.0139	159	3.6	29	2.9	0.3514	133	3∙5	55	3.5	0.8649


Table 5 The inappropriate energy and micronutrient intake of each nutrient according to occupational characteristics in female workers (*n* 5744)

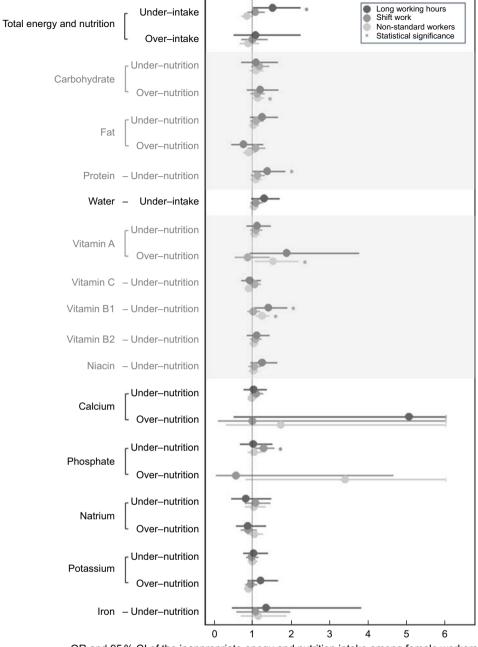
		Occupational classification									Lor	ng worl	king ho	urs			Shift	work		Non-standard workers						
		White (<i>N</i>)	%	Pink (<i>N</i>)	%	Green (<i>N</i>)	%	Blue (<i>N</i>)	%	P value	No (<i>N</i>)	%	Yes (<i>N</i>)		P value	No (<i>N</i>)	%	Yes (<i>N</i>)	%	<i>P</i> value	No (<i>N</i>)	%	Yes (<i>N</i>)	%	P value	
Number of particip	ants	2839		1409		10		1486			5507		237			4750		994			3677		2067			
Total energy and	nutrition ir																									
	Under	344	12.1	145	10.3	0	0.0	140	9.4	0.0028	596	10.8	33	13.9	0.1505	500	10.5	129		0.0226	408	11.1	221	10.7	0.5740	
	Over	152	5.4	53	3.8	0	0.0	45	3.0	0.0002	242	4.4	8	3.4	0.5137	205	4.3	45	4.5	0.6377	169	4.6	81	3.9	0.2129	
Energy intake by			05.4			•					4007			47.0		4000						~~~~	100	~~~~		
Carbohydrate	Under	713	25.1	302	21.4	0	0.0	233	15.7	0.5976	1207	21.9	41	17.3	0.8836	1008	21.2	240	24.1	0.0241	816	22.2	432	20.9	0.2215	
F et	Over	1201	42.3	755	53·6	9	90.0	931	62.7	<0.0001	2751	49.9	145	61.2	0.0042	2398	50.5	498	50.1	0.3041	1780	48.4	1116	54.0	<0.0001	
Fat	Under	642	22.6	515	36.6	8	80.0	642	43.2	<0.0001	1699	30.9	108	45.6	<0.0001	1487	31.3	320	32.2	0.3335	1079	29.3	728 35.2	107	<0.0001	
Duatain	Over	509	17.9	176	12.5	0	0.0	126	8.5	<0.0001		14.4	18	7.6	0.0578	657	13.8	154			549	14.9	262	12.7	0.2502	
Protein	Under	545 1464	19.2	323 761	22∙9 54	4	40.0	355 857	23.9	0.0003 0.0001	1159 2942	21.1	68 147	28·7 62·0	0.0049 0.0093	986 2523	20∙8 53∙1	241 566		0.0165 0.0278	734	20.0	493	23.9	0.0006 0.0039	
Water intake Vitamins	Under	1404	51.6	701	54	1	70.0	657	57.7	0.0001	2942	53.4	147	62.0	0.0093	2523	23.1	200	20.90	0.0278	1925	52.3	1164	56.3	0.0035	
Vitamin A	Under	1674	58.9	857	60.8	7	70.0	856	57.6	0.7618	3251	59.0	143	60.3	0.4342	2778	58.5	616	62.0	0.0548	2149	58.4	1245	60.2	0.0757	
Vitamin A	Over	53	1.9	32	2.3	1	10.0	656 49	3.3	0.0043	125	2.3	143	4.2	0.4342	115	2.4	20		0.0348	2149	2.0	61	2.9	0.0757	
Vitamin C	Under	1440	50.7	723	2·3 51·3	4	40.0	49 726	48.9	0.0043	2779	2·3 50·5	114	4•2 48•1	0.0375	2363	2·4 49·8	20 530			1864	2·0 50·7	1029	2·9 49·8	0.5074	
Vitamin B1	Under	530	18.7	306	21.7	4 5	40.0 50.0	321	21.6	0.2321	1096	19.9	66	27.9	0.4703	2303	49.0 19.9	213		0.0403	672	18.3	490	23.7	<0.0001	
Vitamin B2	Under	1062	37.4	625	44.4	8	80.0	703	47.3	<0.0001	2283	41.5	115	48.5	0.0023	1961	41.3	437		0.0003	1478	40.2	920	44.5	0.00015	
Niacin	Under	810	28.5	472	33.5	6	60·0	522	35.1	<0.0001	1717	31.2	93	39.2	0.0089	1478	31.1	332	33.4	0.1586	1110	30.2	700	33.9	0.0010	
Minerals	onder	010	200	776	000	0	00 0	022	001		.,.,	012	00	00 2	0 0000	1470	011	002	00 4	0 1000	1110	002	700	000	0 0040	
Ca	Under	1884	66.4	965	68·5	8	80.0	1065	71.7	0.0003	3754	68·2	168	70.9	0.3390	3218	67.8	704	70.8	0.0580	2484	67.6	1438	69.6	0.1073	
04	Over	3	0.1	1	0.1	õ	0.0	2	0.1	0.6425	5	0.1	1	0.4	0.0979	5	0.1	1	0.1	0.9599	3	0.1	3	0.2	0.4246	
Р	Under	326	11.5	184	13.1	2	20.0	196	13.2	0.1024	677	12.3	31	13.1	0.7254	553	11.6	155	15.6	0.0006	430	11.7	278	13.5	0.0487	
Na	Over	4	0.1	3	0.2	0	0.0	2	0.1	0.9711	9	0.2	0	0.0	0.5352	8	0.2	1	0.1	0.6548	3	0.1	6	0.3	0.0507	
	Under	261	9.2	152	10.8	0	0.0	156	10.5	0.4561	546	9.9	23	9.7	0.5754	452	9.5	117	11.8	0.4042	354	9.6	215	10.4	0.5809	
К	Over	2328	82.0	1113	79.0	10	100.0	1196	80.5	0.7490	4458	80.9	189	79.8	0.4653	3868	81.4	779	78.4	0.2970	2986	81·2	1661	80.4	0.8449	
	Under	2142	75.5	1071	76.0	9	90.0	1095	73.7	0.2128	4138	75.1	179	75.5	0.8927	3560	74.9	757	76.2	0.4223	2750	74.8	1567	75.8	0.3900	
Fe	Under	958	33.7	416	29.5	3	30.0	309	20.8	<0.0001	1621	29.4	65	27.4	0.5307	1368	28.8	318	32.0	0.0434	1099	29.9	587	28.4	0.2425	
	Over	31	1.1	18	1.3	1	10.0	24	1.6	0.3928	70	1.3	4	1.7	0.6151	61	1.3	13	1.3	0.8323	46	1.3	28	1.4	0.8053	

https://doi.or

Public Health Nutrition

Energy & micronutrient intake among workers

OR and 95 % CI of the inappropriate enegy and nutrition intake among male workers


Fig. 2 Risk for inappropriate energy and nutrition intake according to occupational characteristics in male workers (OR and 95 % CIs) Results are from 'Yes' to long working hours, shift work and non-standard work compared with 'No', respectively

Risk of inappropriate energy and micronutrients intakes according to occupational characteristics

Supplementary Tables 2 and 3 and Figs. 2 and 3 show the risk analysis for inappropriate energy and nutrient intakes according to the occupational classification or characteristics based on the multivariate logistic regression model for each sex. When each occupational group was compared with those of the white-collar workers, male pink-collar workers had a significantly higher risk of water, Vit A, Vit C, Vit B_1 and niacin under-intake. Green-collar workers

had a higher risk of protein under-intake, whereas male blue-collar workers had a higher risk of niacin underintake. In contrast, the risk of inappropriate intake by female pink- and green-collar workers was not significantly different from that of the white-collar workers. Only female blue-collar workers had a higher risk of carbohydrate and Vit A over-intake.

As shown in Fig. 2, males with long working hours had a higher risk of total energy and nutrient, fat, protein, water and phosphate under-intake than those who did not work

OR and 95 % CI of the inappropriate enegy and nutrition intake among female workers

Fig. 3 Risk for inappropriate energy and nutrition intake according to occupational characteristics in female workers (OR and 95 % CIs) Results are from 'Yes' to long working hours, shift work and non-standard work compared with 'No', respectively

long hours. In contrast, long working hours were associated with a lower risk of Fe under-intake. Long working hours were significantly associated with under-intake of total energy and nutrients, protein and Vit B₁ in females (Fig. 3). Male shift workers had a higher risk of carbohydrate over-intake and protein, water, Vit B₁, Vit B₂, niacin, Ca, phosphate and K under-intake than day workers. Female shift workers only had a significantly higher risk of phosphate under-intake compared with that of day workers. Non-standard male workers were at a higher risk of carbohydrate over-intake and Vit B_1 under-intake than standard workers. On the other hand, female non-standard workers had a higher risk of carbohydrate and Vit A overintake than standard workers.

Discussion

The current study demonstrated differences in energy and nutrient intakes among Korean workers according to age, sex and occupational characteristics. Public Health Nutrition

Energy & micronutrient intake among workers

We found that younger workers of both sexes had an increased prevalence of inappropriate energy and nutrient intake statuses (total energy and nutrient intakes and the intakes of each macronutrient, Vit A, Vit C, Vit B₁, Ca, phosphate, K and Fe). This finding is contrary to those of previous studies, which suggested that elderly populations may have a greater risk of inappropriate energy and nutritional statuses due to medical, lifestyle, psychological and social factors⁽¹⁵⁾. This result may be explained by the fact that younger workers may experience greater workloads and stress than older workers⁽¹⁶⁾. As a result, younger workers may skip meals or have insufficient time to eat at work. Therefore, in the working population, younger workers may be at risk of inappropriate energy and nutrient intakes.

We found sex differences between workers with inappropriate energy and nutrient intakes. This result can be explained in part by not only behavioural and sociocultural factors but also by chromosomal factors. Energy intake habituation in women is linked to menstrual cycle-related hormones⁽¹⁷⁾. Hypothalamic regulators, which impact both energy homeostasis and the reproductive axis, are closely related to sex-specific energy and nutrient intakes⁽¹⁸⁾. Therefore, the findings of the current study further support sex differences in energy and nutrient intakes.

The current study also demonstrated that occupational characteristics were related to inappropriate energy and nutrient intakes. First, we can infer that long working hours may result in inappropriate energy and nutrient intakes. Males and females working long hours had inadequate daily energy intakes, with a tendency to consume less fat and protein than recommended. This finding is contrary to those of a previous study, which found that these workers had a tendency to overeat and had high BMIs⁽¹⁹⁾. In that study, stress was suggested as the main contributing factor for the high BMI in Japanese male workers with long hours, with the additional contribution from later dinner time and irregular intake. Another study also found that long working hours influenced negative emotions and led to binge eating behaviour⁽²⁰⁾. One explanation for our finding may be that long working hours might have contributed to irregular food intake and meal skipping, resulting in poor daily energy intake. Inadequate energy intake is known to increase the risk of psychiatric symptoms, such as dizziness, dyspepsia and depression⁽²¹⁻²³⁾. Thus, interventions should be designed to improve energy intake for workers with long hours.

Second, shift work schedules could be a risk factor for inappropriate energy and nutrient intakes. Shift workers may have altered dietary patterns and food choices^(7,24), and increased consumption of unhealthy foods related to chronic diseases has been reported⁽²⁵⁾. Our study demonstrated that male shift workers had excessive carbohydrate intake. This finding was consistent with those of previous studies, which showed that shift workers' eating habits included less regular meal patterns with multiple snacks

and higher energy intake at night⁽⁷⁾. Moreover, our study further supported the expended scope of the risk of unhealthy food intake among shift workers, especially for Vits and minerals. Male shift workers reported underintake of Vit B₁, Vit B₂, niacin, phosphate and K. These findings have important implications for developing nutritional interventions. This is because niacin is the most widely used medication for raising HDL-cholesterol levels. Indeed, niacin has been shown to increase HDLcholesterol by 16–25 %^(26,27), which leads to a decreased CVD risk. Shift work is a well-known risk factor of CVD^(28,29). Phosphate deficiency was also noted in males

of ATP, DNA and RNA⁽³⁰⁾. One unanticipated finding was that non-standard workers were a vulnerable population for inappropriate energy and nutrient intakes. Non-standard work cannot be an occupational hazard, because this work is a type of contract employment. Surprisingly, vulnerable points of the food intake status was found in non-standard workers; significantly increased risks for carbohydrate over-intake and Vit B₁ under-intake were found for both male and female workers. Further research should focus on determining the process underlying the inappropriate energy and nutrient intakes among non-standard workers.

working long hours and female shift workers. Phosphate

plays a key role in energy production and is a component

Another important finding of the current study was the risk of inadequate water intake among the working population. An increased risk of inadequate water intake was observed among male pink-collar workers and those with long hours or shift work. Providing employees with safe drinking water is the responsibility of every employer, as specified by the Occupational Safety and Health Administration regulations. However, previous studies have focused on the importance of hydration for outdoor workers but have neglected its impact on service or sales businesses. Inadequate water supply reduces the plasma volume and influences the circulatory system, which controls blood flow to the skin and working muscles. This phenomenon leads to muscle fatigue and an increased body temperature. Thus, subclinical dehydration affects physical performance and cognitive function and may precede workplace injuries⁽³¹⁾. In addition, since long working hours and shift work are known cardiovascular^(26,29) and musculoskeletal risk factors⁽³⁰⁾, water intake interventions should be considered.

The current study has several strengths and limitations. First, the study revealed associations between inappropriate energy and nutrient intakes and occupational characteristics. This topic has received relatively little attention, and very few studies have focused on the working population. In addition, the current study also investigated Vit and mineral intakes. Second, statistical significance was achieved mainly due to the large sample size of nationally representative data. Limitations include the use of 24-h recall for investigating food intake. This method has several

Ŷ

3366

weaknesses because it relies on memory, and food intake may be underestimated due to recall bias, the interviewee's capacity could have affected the precision of the report. Individual variation can occur according to the day when the survey was administered, and excessive or deficient nutrients might have been under-/over-estimated using the 1-d 24-h recall survey⁽³²⁾. However, the 24-h recall design has several benefits because the burden on the interviewee is relatively small, and the survey is easy to complete with low research expenses. Moreover, the KNHANES data contain information on micronutrients (Vits, minerals, fatty acids, etc.) and are suitable for estimating the average intakes of the group. Another limitation of the study is the ecological model design on which the current study was based. Therefore, these findings must be interpreted with caution before application to individuals. Lastly, although the cross-sectional nature of the current study makes establishing the direction of influence difficult, the energy and nutrient intakes are unlikely to lead to different occupational characteristics.

Conclusion

The current study assessed inappropriate energy and nutrient intake statuses according to age, sex and occupational characteristics and revealed some important findings. Younger workers with long hours and shift work schedule were at risk of having inappropriate energy and nutrient intakes. In addition, non-standard workers were a vulnerable population for dietary intake, and water intake was inappropriate among pink-collar workers and workers with long hours or shift work. Workers spend at least onethird of their day in the workplace; thus, further research into eating habits in the workplace is an essential step in investigating inappropriate energy and nutrient intakes among the working population.

Acknowledgements

Acknowledgements: The authors thank the KNHANES respondents for their contribution to the current research. Financial support: Not applicable. Conflict of interest: The authors declare no conflict of interest. Authorship: W.L. and H.-R.K. conceptualised the study, analysed the data and drafted and revised the manuscript. J.J. conducted the analysis and drafted the manuscript. J.A. contributed to developing the study design and revised the manuscript. H.-R.K. is the corresponding author of this work and, as such, takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors read and approved the final version of the manuscript. Ethics of human subject participation and consent to participate: The current study was conducted according to the guidelines laid down in the Declaration of Helsinki, and all procedures involving research study participants were approved by the Institutional Review Board (IRB) of the KCDC (IRB No. 2007–02-CON-04-P 2008–04EXP-01-C, 2009–01CON-03–2C, 2010–02CON-21-C, 2011–02CON-06-C, 2012–01EXP-01–2C, 2013–07CON-03–4C, 2013–12EXP-03–5C and 2015–01–02–6C). Written informed consent was obtained from all subjects/patients.

Supplementary material

For supplementary material accompanying this paper visit https://doi.org/10.1017/S1368980019004075.

References

- 1. Webb P, Stordalen GA, Singh S *et al.* (2018) Hunger and malnutrition in the 21st century. *BMJ (Clinical Research Ed)* **361**, k2238.
- 2. Kabir A, Miah S & Islam A (2018) Factors influencing eating behavior and dietary intake among resident students in a public university in Bangladesh: a qualitative study. *PloS One* **13**, e0198801.
- 3. LeCheminant JD, Merrill RM & Masterson T (2015) Health behaviors and work-related outcomes among school employees. *Am J Health Behav* **39**, 345–351.
- Jensen JD (2011) Can worksite nutritional interventions improve productivity and firm profitability? A literature review. *Perspect Public Health* **131**, 184–192.
- 5. Cook MA & Gazmaraian J (2018) The association between long work hours and leisure-time physical activity and obesity. *Prev Med Rep* **10**, 271–277.
- Sun M, Feng W, Wang F *et al.* (2018) Meta-analysis on shift work and risks of specific obesity types. *Obes Rev* 19, 28–40.
- Lowden A, Moreno C, Holmback U *et al.* (2010) Eating and shift work – effects on habits, metabolism and performance. *Scand J Work Environ Health* **36**, 150–162.
- 8. Kweon S, Kim Y, Jang MJ *et al.* (2014) Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). *Int J Epidemiol* **43**, 69–77.
- Lee HJ, Cho JI, Lee HS *et al.* (2014) Intakes of dairy products and calcium and obesity in Korean adults: Korean National Health and Nutrition Examination Surveys (KNHANES) 2007–2009. *PLoS One* **9**, e99085.
- 10. Yu SH, Song YJ, Park M *et al.* (2014) Relationship between adhering to dietary guidelines and the risk of obesity in Korean children. *Nutr Res Pract* **8**, 705–712.
- Yun S, Kim HJ & Oh K (2017) Trends in energy intake among Korean adults, 1998–2015: results from the Korea National Health and Nutrition Examination Survey. *Nutr Res Pract* 11, 147–154.
- Ha K, Kim K, Chun OK *et al.* (2018) Differential association of dietary carbohydrate intake with metabolic syndrome in the US and Korean adults: data from the 2007–2012 NHANES and KNHANES. *Eur J Clin Nutr* **72**, 848–860.
- 13. Kweon S (2014) Status of under-& over-nutrition in Korean National Health and Nutrition Examination Survey (KNHANES). *Public Health Wkly Rep* **7**, 1077–1080.
- 14. Lee W, Yeom H, Yoon JH *et al.* (2016) Metabolic outcomes of workers according to the international standard classification of occupations in Korea. *Am J Ind Med* **59**, 685–694.
- Hickson M (2006) Malnutrition and ageing. *Postgrad Med J* 82, 2–8.
- 16. Lundberg U, Mårdberg B & Frankenhaeuser M (1994) The total workload of male and female white collar workers as related to age, occupational level, and number of children. *Scand J Psychol* **35**, 315–327.

Energy & micronutrient intake among workers

- 17. Davidsen L, Vistisen B & Astrup A (2007) Impact of the menstrual cycle on determinants of energy balance: a putative role in weight loss attempts. *Int J Obes* **31**, 1777.
- Lovejoy J, Sainsbury A & Group SCW (2009) Sex differences in obesity and the regulation of energy homeostasis. *Obes Rev* 10, 154–167.
- 19. Suzuki A, Sakurazawa H, Fujita T *et al.* (2016) Overeating at dinner time among Japanese workers: is overeating related to stress response and late dinner times? *Appetite* **101**, 8–14.
- Wardle J, Steptoe A, Oliver G et al. (2000) Stress, dietary restraint and food intake. J Psychosom Res 48, 195–202.
- Klein DA & Walsh BT (2004) Eating disorders: clinical features and pathophysiology. *Physiol Behav* 81, 359–374.
- 22. Adjibade M, Lemogne C, Julia C *et al.* (2018) Prospective association between adherence to dietary recommendations and incident depressive symptoms in the French NutriNet-Sante cohort. *Br J Nutr* **120**, 290–300.
- Ulrich-Lai YM, Fulton S, Wilson M et al. (2015) Stress exposure, food intake and emotional state. Stress 18, 381–399.
- Lennernäs M, Hambraeus L & Åkerstedt T (1995) Shift related dietary intake in day and shift workers. *Appetite* 25, 253–266.

- 25. Esquirol Y, Bongard V, Mabile L *et al.* (2009) Shift work and metabolic syndrome: respective impacts of job strain, physical activity, and dietary rhythms. *Chronobiol Int* **26**, 544–559.
- Birjmohun RS, Hutten BA, Kastelein JJ *et al.* (2005) Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. *J Am Coll Cardiol* **45**, 185–197.
- 27. Kelley GA, Kelley KS & Tran ZV (2004) Walking, lipids, and lipoproteins: a meta-analysis of randomized controlled trials. *Prevent Med* **38**, 651–661.
- Boggild H & Knutsson A (1999) Shift work, risk factors and cardiovascular disease. *Scand J Work Environ Health* 25, 85–99.
- Jeong I, Rhie J, Kim I *et al.* (2014) Working hours and cardiovascular disease in Korean workers: a case-control study. *J Occup Health* 55, 385–391.
- Aisbett B, Condo D, Zacharewicz E et al. (2017) The impact of shiftwork on skeletal muscle health. Nutrients 9, E248.
- 31. Miller VS & Bates GP (2010) Hydration, hydration, hydration. Ann Occup Hyg **54**, 134–136.
- Beaton GH, Milner J, Corey P *et al.* (1979) Sources of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. *Am J Clin Nutr* **32**, 2546–2559.

