Original

Does pain deteriorate working life expectancy in aging workers?

Wanhyung Lee^{1,2,3}, Kwanyoung Hong⁴, Sung-Shil Lim⁵ and Jin-Ha Yoon^{1,2,3,6}

¹The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Korea, ²Graduate School of Public Health, Yonsei University College of Medicine, Seoul, Korea, ³Incheon Worker's Health Center, Korea, ⁴Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Seoul, Korea, ⁵Severance Hospital, Yonsei University Health System, Korea and ⁶Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea

Abstract: Objectives: Many aging workers wish to continue working as long as they can for a better life in the future. However, symptoms of pain are a key obstacle in the continuation of work among older workers. The impact of pain on work is understudied. Thus, we investigated the relationship between pain characteristics (total site and severity) and aging workers' working life expectancy scale (WoLES) in Korea. Methods: We included 1,979 participants (1,175 men and 804 women) from a well-established survey of a nationally representative population: the Korean Longitudinal Study of Ageing. A self-questionnaire was used to assess pain characteristics and WoLES. Odds ratios (ORs) and 95% confidence intervals (CIs) for the lower-WoLES group were calculated using multiple logistic regression models. Results: Compared with the absence of pain, ORs and 95% CIs of the lower-WoLES group were increased, as follows: 1 pain site, 1.75 (1.20-2.55); 2 pain sites, 1.99 (1.32-3.03); 3 or more pain sites, 2.28 (1.51-3.42); mild pain, 1.74 (1.32-2.61); moderate pain, 2.02 (1.28-3.22); and severe pain, 2.12 (1.46-3.08). The statistical trend was significant in both total sites and severity of pain (p<0.001). Conclusions: There was a significant association between WoLES and both total pain sites and severity of pain, even after adjusting for potential confounding factors.

(J Occup Health 2016; 58: 582-592) doi: 10.1539/joh.16-0024-OA

Key words: Aging worker, Pain, Working life expectancy

Received February 3, 2016; Accepted July 25, 2016

Introduction

The number of aging workers among the working population is increasing, leading to significant economic and public health challenges worldwide. The main reasons are increasing life expectancy, decreasing birth rates, and the large "baby boomer" generation born after World War II getting old¹⁾. The International Labour Organization has estimated that by the year 2025, the proportion of the working population aged more than 55 years will be 21% in Asia, 32% in Europe, 30% in North America, and 17% in Latin America²⁾. The impact of these changes is currently being felt most strongly in developed countries, making it important for these countries to extend workers' working life expectancy (WoLE) in order to maintain labor force participation³⁾. Furthermore, among older people, losing or leaving one's occupation is associated with a negative impact on both socioeconomic and health status⁴⁾. Thus, over 75% of aging workers choose to continue working, even if they develop a significant work disability⁵⁾. An investigation to assess WoLE among aging workers is thus warranted.

Unfortunately, the aging process places burdens on health that may cut working life short^{6,7}). Workers' selfperceived health status deteriorates with age, and chronic diseases (including hypertension, diabetes, and liver disease) are more common in older people than in the middle-aged population⁸⁾. Pain is especially common in older workers worldwide⁹⁾; for instance, a longitudinal study in the US (1992-2008) found that the prevalence of persistent back pain among construction workers aged more than 50 years to be about $40\%^{10}$. Poor health may lead to poor work performance, and both are important factors in early exits from working life^{11,12}. Indeed, many older workers with pain experience significantly decreased work performance or find themselves unable to participate in the labor force^{13,14)}, and pain is associated with poor health status on both self-reported¹⁵ and

Published online in J-STAGE September 30, 2016

Correspondence to: JH. Yoon, M.D., Ph.D., The Institute for Occupational Health, Department of Preventive Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Korea (e-mail: flyinyou@gmail.com)

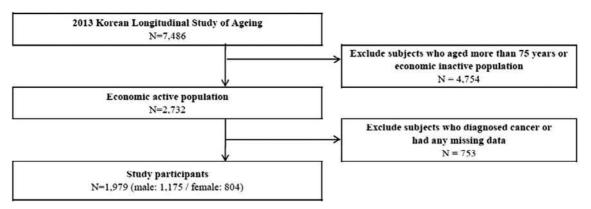


Fig. 1. Schematic diagram depicting study participants.

external-observer assessments, as well as with work disability $^{16,17)}$.

Pain thus poses a key obstacle to maintaining WoLE in older workers; however, its impact on work has not been studied in detail, particularly given that aging workers will soon be among our main human resources. No study has yet comprehensively addressed the relationship between pain and the risk of early discontinuation of working life. Therefore, we explored the relationship between pain and WoLE scale (WoLES) among Korean workers aged 55 or older, using data from the Korean Longitudinal Study of Ageing (KLoSA), by undertaking a multivariate analysis of participants' demographic characteristics and chronic disease status. Different degrees and types of pain can have different effects on human health¹⁸⁾. Hence, we also assessed pain severity and number of pain sites.

Methods

Data collection and participants

We used data from the 2012 phase of KLoSA, conducted by the Korea Labour Institute and the Korea Employment Institute Information Service. KLoSA began in 2006 with surveys and interviews of 10,254 randomly selected adults aged 45 or older who were residing in one of 15 city-size administrative areas based on the Population and Housing Census as a sampling frame to represent citizens in the Republic of Korea. Other countries' elderly panel surveys are conducted in those older than 50 years old. By the late 1990s currency crisis in Korea, workers in their mid-40 s had fluctuations in job status. Thus, KLoSA expanded the survey target population to over 45 years old to give consideration to social circumstances in Korea.

Of the original respondents, 7,486 were able to participate in the fourth phase of the survey, conducted from July to December 2012. Participants were interviewed using computer-assisted personal interviewing, where the professional interviewers instructed respondents to read the questions on a computer and input their answers directly. For analysis purposes, we treated the 2012 phase as a cross-sectional study.

Previous studies have divided the older population into three categories: (1) young-old (65 to 74), (2) middle-old $(75 \text{ to } 84) \text{ and } (3) \text{ oldest-old (older than } 85)^{19}$. However, those older than 75 years of age are prone to frailty and rapid deterioration in physical and mental health status²⁰. To reduce the possibility of our WoLES data being confounded by such factors, we excluded participants aged more than 75 years from our study, along with those who were economically inactive (combined n=4,754). We wished to limit our sample to patients experiencing agingassociated pain. Hence, we also excluded those diagnosed with cancer within 6 years after beginning the KLoSA; this condition is closely associated with pain, with significant pain occurring in approximately 33%-66% of cancer patients²¹⁾. Finally, we excluded subjects who had any missing data. The final sample included 1,979 participants (1,175 men and 804 women) (Fig. 1).

Each KLoSA participant is identified by a randomly selected number to protect anonymity. Interviewers provided information about research objectives and potential risks and benefits to all survey respondents before they answered any questions. All respondents also agreed to participate in further scientific research.

Working life expectancy scale

To define the WoLE status, the participants' expectation of maintaining the current job was assessed by selfreported questionnaires. The statement was "I can keep working in this job for 5 more years" for economically active participants. Participants were asked to answer this question using a visual analogue scale (0 to 100 with intervals of 10, where 0 signified "never" or "it will never happen to me" and 100 signified "always" or "it will happen to me sure as fate"). Therefore, higher scores indicated a greater expectation of maintaining a current job. Workers who had scores of 50 or higher were defined as the higher-WoLES group, while others were defined as

the lower-WoLES group.

Pain characteristics

Participants were provided with a list of body parts (head, shoulder, arm, wrist, finger, chest, abdomen, waist, hip, leg, knee, ankle, and toe) and asked whether they suffered pain at any of these sites. We re-grouped thirteen pain sites into five according to the human anatomical system: head, upper extremes (shoulder, arm, wrist, and finger), chest & abdomen, back & lumbar (waist and hip), and lower extremes (leg, knee, ankle, and toe). If participants answered yes for any site, they were asked to indicate the severity of their pain (mild, moderate, or severe). We divided respondents into four groups according to the number of sites at which they had pain $(0, 1, 2, \ge 3)$, as the effects of pain worsen with increasing number of pain sites²²⁾. Respondents were also grouped by total pain severity, which was answered by pain severity for each site (mild, moderate, and severe); total pain severity categories included "none," "mild," "moderate," and "severe."

Other covariates

We used KLoSA data on age, gender, monthly household income, education level, marriage status, physical activity level, smoking status, drinking status, population of region of residence, history of chronic disease, and history of traffic accidents. Monthly household income was self-reported and measured in US dollars, with categories including <\$1,000, \$1,000~2,000, \$2,000~\$3,000, and ≥\$3,000. Marriage status was also self-reported, but we reorganized the data into two categories, "living with spouse" and "living alone," with the latter including respondents who were divorced, widowed, separated, or never married. Occupational classifications were regrouped into four of the ten major categories of the International Standard Classifications of Occupations, according to skills and duties²³: white collar workers (managers, professionals, technicians, and associate professionals), pink collar workers (clerical support, service, and sales workers), green collar workers (skilled agricultural, forestry, and fishery workers), and blue collar workers (crafts and related trades, plant and machine operators and assemblers, and elementary occupations). Types of employment were categorized as paid, self-employed, and unpaid family worker. Paid workers were grouped according to working status into three categories: permanent, temporary, and daily employee. Job satisfaction level was self-reported, including satisfaction and dissatisfaction. Regarding physical activity level, regular exercise was defined as exercise more than once per week with each session lasting at least half an hour. Smoking status and drinking status were categorized as "current," "past," or "never." Regions of residence were divided into three categories according to population size: rural areas (less than 50,000), cities (more than 50,000), and metropolitan cities (more than 1 million). Questions about history of traffic accidents within 6 years of the beginning of KLoSA were asked because such accidents are a common risk factor for pain in older workers²⁴⁾. Chronic diseases can also lead to work disability in the older population^{8,25)}; among our respondents, chronic diseases clinically diagnosed within 6 years of the beginning of KLoSA included hypertension, diabetes, bronchiolitis, emphysema, liver diseases (excluding fatty liver), myocardial infarction, angina, heart failure, depression, anxiety, insomnia, excessive stress, senile psychosis, and others.

Statistical analysis

According to the status of WoLES, the frequency and mean with standard deviation were calculated for each data category, and the chi-squared test was used to evaluate the association between categories. Multiple logistic regression models were then used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs) for the lower-WoLES group in relation to the number of sites where participants experienced pain and total pain severity. The multiple logistic models were adjusted for age, sex, household income, marriage status, residence, occupational classification, type of employment, working status, job satisfaction level, health behavioral factors such as smoking, drinking, and physical activity, chronic diseases (hypertension, diabetes, chronic lung disease, liver disease, and cardiovascular disease), and history of traffic accidents. Statistical analyses were performed with SAS (version 9.4, SAS Institute, Cary, NC, USA). A p value <0.05 was considered to indicate statistical significance in both tails.

Results

Table 1 presents the basic characteristics of the study participants with mean WoLES. There were 1,979 respondents in our sample, of which 1,175 (59.4%) were male and 804 (40.6%) were female. Participants who were younger, had higher household income levels, had higher education levels, and were living with a spouse were somewhat more likely to have high WoLES. In terms of occupational characteristics, most of the participants were categorized as blue collar workers (n=812, n=812)41.0%) or self-employed workers (n=954, 48.2%), and 66.4% of people were satisfied with their jobs. According to pain sites, 32.3% of participants were suffering from lower extremes pain, and had a low mean WoLES (61.7). The mean WoLES decreased according to an increased number of pain sites (from 70.7 in none to 59.8 in more than three) and severity (from 70.7 in none to 62.2 in severe).

Table 2 shows the characteristics of subjects according to WoLES status. Most participants (n=1,719, 86.9%) were categorized into the higher-WoLES group, whereas

_

pectancy scale	Tota	Total subjects (N=1,979)		
		J	WoLES*	
	N (%)	Mean	Standard deviation	
Gender				
Male	1,175 (59.4)	68.6	23.1	
Female	804 (40.6)	65.2	23.9	
Age (years)				
55~64	1,442 (72.9)	70.1	22.4	
65~75	537 (27.1)	59.5	24.6	
Monthly household Income (\$)				
<1000	169 (8.5)	58.8	27.8	
<2000	408 (20.6)	64.7	22.9	
<3000	371 (18.7)	65.7	23.4	
≥3000	1,031 (52.1)	70.2	22.5	
Education level	, , , ,			
elementary school	580 (29.3)	61.8	24.6	
middle school	395 (20.0)	66.3	24.1	
high school	735 (37.1)	70.5	21.7	
more than university	269 (13.6)	71.6	22.6	
Marriage status				
living with spouse	1,737 (87.8)	67.9	22.8	
living alone	242 (12.2)	62.3	27.3	
Residence	(1)	0210		
rural	795 (40.2)	65.6	23.4	
other cities	606 (30.6)	69.6	23.3	
metropolitan cities	578 (29.2)	66.9	23.7	
Occupational classification ^a	576 (25.2)	00.7	23.1	
White collar	365 (18.4)	67.8	23.4	
Pink collar	437 (22.1)	70.3	22.0	
Green collar	365 (18.4)	66.8	23.6	
Blue collar	812 (41.0)	65.5	24.1	
Type of employment	612 (41.0)	05.5	24.1	
Paid worker	811 (41 0)	63.7	24.6	
Self-employed	811 (41.0) 954 (48.2)	69.9	22.2	
Unpaid family worker	214 (10.8)	68.7	23.2	
Working status (paid worker)	400 ((1.4)	(10	22.9	
Permanent	498 (61.4)	64.9	23.8	
Temporary	141 (17.4)	61.8	25.2	
Daily employee	172 (21.2)	61.6	26.0	
Job satisfaction level	1015 (66 4)	(0 A	22.0	
satisfaction	1315 (66.4)	68.4	22.9	
dissatisfaction	664 (33.6)	64.9	24.4	
Smoking				
Never	1,154 (58.3)	66.3	23.2	
Past	344 (17.4)	69.4	24.2	
Current	481 (24.3)	67.9	23.7	

 Table 1. Demographic characteristics of the study participants and working life expectancy scale

	Total subjects (N=1,979)		
		WoLES*	
	N (%)	Mean	Standard deviation
Alcohol consumption			
Never	768 (38.8)	66.1	23.3
Past	217 (11.0)	65.4	25.1
Current	994 (50.2)	68.5	23.2
Physical activity			
non-regular	1,347 (68.1)	66.2	23.1
regular	632 (31.9)	69.5	24.2
Pain sites ^b			
Head	32 (1.6)	70.0	23.8
Upper extremes	455 (23.0)	63.6	24.8
Chest & abdomen	8 (0.4)	61.3	20.3
Back & lumbar	605 (30.6)	62.9	24.5
Lower extremes	639 (32.3)	61.7	23.9
Total number of pain site			
None	991 (50.1)	70.7	22.0
1	383 (19.4)	65.7	24.1
2	288 (14.6)	65.3	24.9
≥ 3	317 (16.0)	59.8	23.9
Pain severity			
None	991 (50.1)	70.7	22.0
Mild	309 (15.6)	65.5	23.8
Moderate	205 (10.4)	64.6	23.8
Severe	474 (24.0)	62.2	24.9
Diagnosed chronic disorders			
Hypertension	556 (28.1)	65.9	24.2
Diabetes	230 (11.6)	67.2	22.3
Lung diseases ^c	35 (1.8)	58.3	30.7
Liver diseases ^d	51 (2.6)	67.3	20.9
Cardiovascular diseases ^e	82 (4.1)	62.3	26.3
Psychiatric diseases ^f	38 (1.9)	64.2	27.3
History of traffic accidents	257 (13.0)	70.1	24.1

 Table 1. Demographic characteristics of the study participants and working life expectancy scale (continued)

*WoLES: working life expectancy scale

^a Occupational classifications were regrouped into four of the ten major categories of the International Standard Classifications of Occupations, according to skills and duties: white collar workers (managers, professionals, technicians, and associate professionals), pink collar workers (clerical support, service, and sales workers), green collar workers (skilled agricultural, forestry, and fishery workers), and blue collar workers (crafts and related trades, plant and machine operators and assemblers, and elementary occupations).

^b We regrouped thirteen pain sites into five parts according to human anatomical system: head, upper extremes (shoulder, arm, wrist, and finger), chest & abdomen, back & lumbar (waist and hip), and lower extremes (leg, knee, ankle, and toe) with multiple responses

^d Liver diseases: all liver disorders excluding fatty liver.

^e Cardiovascular diseases: myocardial infarction, angina, and heart failure.

^f Psychiatric diseases: depression, anxiety, insomnia, excess of stress, and senile psychosis.

^c Lung diseases: bronchiolitis and emphysema.

	Total s	Total subjects (N=1,979)			
	Lower-WoLES* (n=260, %=13.1)	Higher-WoLES (n=1,719, %=86.9)	P value		
Gender			0.0266		
Male	138 (53.1)	1,037 (60.3)			
Female	122 (46.9)	682 (39.7)			
Age (years)			<.0001		
55~64	142 (54.6)	1,300 (75.6)			
65~75	118 (45.4)	419 (24.4)			
Monthly household Income (\$)			<.0001		
<1000	40 (15.4)	129 (7.5)			
<2000	60 (23.1)	348 (20.2)			
<3000	56 (21.5)	315 (18.3)			
≥3000	104 (40.0)	927 (54.0)			
Education level			<.0001		
elementary school	116 (44.6)	464 (27.0)			
middle school	58 (22.3)	337 (19.6)			
high school	61 (23.5)	674 (39.2)			
more than university	25 (9.6)	244 (14.2)			
Marriage status	25 (9.0)	211 (11.2)	<.0001		
living with spouse	207 (79.6)	1,530 (89.0)	<.0001		
living alone	53 (20.4)	189 (11.0)			
Residence	55 (20.7)	107 (11.0)	0.2771		
rural	72 (27.7)	506 (29.5)	0.2771		
other cities					
	76 (28.5)	532 (30.9)			
metropolitan cities	114 (43.8)	681 (39.6)	0 1 4 0 1		
Occupational classification ^a	49 (19.5)	217 (19.4)	0.1401		
White collar	48 (18.5)	317 (18.4)			
Pink collar	46 (17.7)	391 (22.8)			
Green collar	45 (17.3)	320 (18.6)			
Blue collar	121 (46.5)	691 (40.2)			
Type of employment	120 (52.1)		0.0006		
Paid worker	138 (53.1)	673 (39.2)			
Self-employed	96 (36.9)	858 (49.9)			
Unpaid family worker	26 (10.0)	188 (10.9)			
Working status (paid worker)			0.1227		
Permanent	76 (55.1)	422 (62.7)			
Temporary	28 (20.3)	113 (16.8)			
Daily employee	34 (24.6)	138 (20.5)			
Job satisfaction level			0.0022		
satisfaction	151 (58.1)	1,164 (67.7)			
dissatisfaction	109 (41.9)	555 (32.3)			
Smoking			0.4982		
Never	157 (60.4)	997 (58.0)			
Past	43 (16.5)	301 (17.5)			
Current	60 (23.1)	421 (24.5)			
Alcohol consumption			0.0293		
Never	112 (43.1)	656 (38.2)			
Past	37 (14.2)	180 (10.5)			
Current	111 (42.7)	883 (51.3)			

 Table 2.
 Characteristics of study participants according to working life expectancy status

	Total s	Total subjects (N=1,979)			
	Lower-WoLES* (n=260, %=13.1)	Higher-WoLES (n=1,719, %=86.9)	P value		
Physical activity			0.6653		
non-regular	180 (69.2)	1,167 (67.9)			
regular	80 (30.8)	552 (32.1)			
Pain sites ^b					
Head	5 (1.9)	27 (1.6)	0.6747		
Upper extremes	79 (30.4)	376 (21.9)	0.0024		
Chest & abdomen	2 (0.8)	6 (0.4)	0.3198		
Back & lumbar	110 (42.3)	495 (28.8)	<.0001		
Lower extremes	124 (47.7)	515 (30.0)	<.0001		
Total number of pain site			<.0001		
None	87 (33.4)	904 (52.6)			
1	57 (21.9)	326 (19.0)			
2	48 (18.5)	240 (14.0)			
≥ 3	68 (26.2)	249 (14.4)			
Pain severity			<.0001		
None	87 (33.5)	904 (52.6)			
Mild	45 (17.3)	264 (15.4)			
Moderate	34 (13.1)	171 (9.9)			
Severe	94 (36.2)	380 (22.1)			
Diagnosed chronic disorders					
Hypertension	86 (33.1)	470 (27.3)	0.0552		
Diabetes	28 (10.8)	202 (11.8)	0.6453		
Lung diseases ^c	9 (3.5)	26 (1.5)	0.0263		
Liver diseases ^d	4 (1.5)	47 (2.7)	0.2569		
Cardiovascular diseases ^e	13 (5.0)	69 (4.0)	0.4573		
Psychiatric diseases ^f	7 (2.7)	31 (1.8)	0.3305		
History of traffic accidents	33 (12.7)	224 (13.0)	0.8797		

Table 2. Characteristics of study participants according to working life expectancy status (continued)

*WoLES: working life expectancy scale

^a Occupational classifications were regrouped into four of the ten major categories of the International Standard Classifications of Occupations, according to skills and duties: white collar workers (managers, professionals, technicians, and associate professionals), pink collar workers (clerical support, service, and sales workers), green collar workers (skilled agricultural, forestry, and fishery workers), and blue collar workers (crafts and related trades, plant and machine operators and assemblers, and elementary occupations).

^b We regrouped thirteen pain sites into five parts according to human anatomical system: head, upper extremes (shoulder, arm, wrist, and finger), chest & abdomen, back & lumbar (waist and hip), and lower extremes (leg, knee, ankle, and toe) with multiple responses

^c Lung diseases: bronchiolitis and emphysema.

^d Liver diseases: all liver disorders excluding fatty liver.

^e Cardiovascular diseases: myocardial infarction, angina, and heart failure.

^f Psychiatric diseases: depression, anxiety, insomnia, excess of stress, and senile psychosis.

260 were categorized into the lower-WoLES group. The proportion of women in the lower-WoLES group was observed to be higher (46.9%) than that in the higher-WoLES group (39.7%), and this was statistically significant. In terms of age, most of the participants were aged 55-64 (54.6% of lower- and 75.6% of higher-WoLES group). There were differences in the household income level, educational status, and marital status of the people

according to the WoLES groups. The highest proportion of employment type in the lower-WoLES group were paid workers (53.1%), and in the higher-WoLES group, self-employed (49.9%) (p=0.0006). Both the total number of pain sites and severity were found to have statistically significant differences according to the WoLES groups. Regarding the number of pain sites, among subjects by the WoLES group (lower/higher), 33.4/52.6% had no

	Odds ratio (95% confidence interval) for Lower-WoLES*			
	Crude model	P for trend	Full adjusted model	P for trend
Total pain site		<.0001		<.0001
None	1.00 (reference)		1.00 (reference)	
1	1.82 (1.27-2.60)		1.75 (1.20-2.55)	
2	2.08 (1.42-3.04)		1.99 (1.32-3.03)	
≥3	2.84 (2.01-4.01)		2.28 (1.51-3.42)	
Pain severity		<.0001		<.0001
None	1.00 (reference)		1.00 (reference)	
Mild	1.77 (1.21-2.60)		1.74 (1.16-2.61)	
Moderate	2.07 (1.35-3.17)		2.02 (1.28-3.22)	
Severe	2.57 (1.88-3.52)		2.12 (1.46-3.08)	

 Table 3. Results of the odds ratio and 95% confidence intervals compare with expectation for working life expectancy according to pain characteristics using multiple logistic regression models.

*WoLES: working life expectancy scale

Full adjusted logistic models were adjusted for age, sex, household income, marriage status, residence, occupational classification, type of employment, working status, job satisfaction level, health behavioral factors such as smoking, drinking, and physical activity, chronic diseases (hypertension, diabetes, chronic lung disease, liver disease, and cardiovascular disease), and history of traffic accidents.

pain, 21.9/19.0% had pain at one site, 18.5/14.0% had pain at two sites, and 26.2/14.4% had pain at three or more sites (p<0.001). Regarding total pain severity, among subjects by the WoLES group (lower/higher) 33.5/52.6% had no pain, 17.3/15.4% had mild pain, 13.1/9.9% had moderate pain, and 36.2/22.1% had severe pain (p <.0001).

The multiple logistic regression models were used to calculate OR and 95% CI for the lower-WoLES group according to the nature of pain (Table 3). As the number of sites with pain and severity of pain increased, the possibility of being included in the lower-WoLES group increased (p for trend <0.001 in both). After adjustment for all covariates, ORs and 95% CIs of the lower-WoLES group in relation to the number of pain sites were as follows: no site, reference; 1 site, 1.75 (1.20-2.55); 2 sites, 1.99 (1.32-3.02); and \geq 3 sites, 2.28 (1.51-3.41). With respect to the total pain severity, ORs and 95% CIs of the lower-WoLES group versus the reference group with no pain were as follows: mild pain, 1.74 (1.16-2.61); moderate pain, 2.02 (1.28-3.22); and severe pain, 2.12 (1.46-3.08).

Discussion

To the best of our knowledge, this is the first research to investigate the relationship between pain and WoLES in older workers. In this study, respondents reporting pain were more likely to be pessimistic regarding WoLES, a trend that increased with the number of pain sites and pain severity. Furthermore, potential confounding factors such as the presence of chronic diseases did not attenuate this result, showing that pain affects WoLES independently of chronic diseases and other risk factors. Most workers hope to continue working even after developing a work disability⁵). However, our study shows that workers who suffer from pain might give up hope of continuing to work. Hence, we consider worker pain an important social issue with regard to sustainable working life in aging workers.

There are various possible explanations for these findings. Work ability and performance generally decrease with age, but workers with pain are less likely to participate in the labor force and have reduced work ability and performance compared with those without pain^{26,27)}. Older workers, even those with pain, may not consider leaving the workplace until their performance falls below their own standards²⁸⁾; indeed, they are often eager to continue work until they can no longer meet job demands²⁹⁾. However, pain may cause a decline in task ability to a point at which the worker can no longer perform effectively.

Furthermore, pain may be related to psychological problems. Various studies have reported pain to be associated with psychological disorders such as cognitive impairment, anxiety, and depression, often as a cause or effect^{30,31}. Some studies have suggested possible mechanisms for this relationship^{32,33}, highlighting the important role of neurobiological interactions³⁴. Pain shares a pathway in the central nervous system with both cognition and mood³⁵; that is, peripheral nociception and noxious stimuli activate the same pathway involved in depression and cognitive impairment. Indeed, both serotonin and no-

repinephrine act as key mediators for pain as well as cognition, anxiety, and depression³⁵). The hypothalamicpituitary-adrenal axis, which regulates the stress response, has also been suggested as a possible link between mental illness and physical stressors such as pain³⁴). It is well known that cognitive function declines with age, and this cognitive impairment is significantly associated with reduced workplace performance and safety^{36,37)}. Anxiety and depression are also related to reduced work ability³⁸⁾. Indeed, the contribution of mental health status to prolong the working life among older workers should be substantial³⁹⁾. The determinants of work ability could be impacted by self-rated job performance and workplace safety⁴⁰. Thus, pain may aggravate mental as well as physical problems in older workers, further impairing their work performance and placing them at greater risk of an accident. These impacts were shown in our results as worked with decreased WoLES had higher pain natures.

It is somewhat surprising that no attenuation of the association between pain and reduced expectation for sustainable working life was found after adjusting for chronic disease. As previously mentioned, chronic diseases can shorten working life²⁵⁾, and numerous studies have emphasized the importance of chronic disease management in older workers with regard not only to individual health but also to reducing socio-economic burdens^{8,41,42)}. We absolutely agree that chronic disease management is important, but the present study suggests that pain may shorten working life independently of chronic disease, making understanding and management of pain a potential major target in efforts to extend working life.

This was the first attempt to investigate the relationship between pain and WoLE in aging workers. The work sustainability is a multidimensional condition and thus hard to assess among workers. Nevertheless, an individual's specific work demands, health conditions, and mental status linked to the perception of workers are important factors for work sustainability⁴³⁾. A previous study indicated self-rated work ability is useful for investigation as well as in clinical practice to assess work sustainability⁴⁴. For example, even a single and simple one question survey about self-rated work ability could be used as a strong predictor for workers' sick leave⁴⁵⁾. We hoped to demonstrate the concept role of elders' perception of WoLES like self-rated work ability. Our study showed decreased WoLES with increased total pain sites or severity. It can therefore be assumed that the self-rated WoLES were linked to workers' health status or working conditions among the aging working population. A further study with more focus on self-rated WoLES is therefore suggested.

The strength of this study is that it controlled for numerous possible covariates using data from a wellestablished survey of a nationally representative population. However, the study has several limitations. First, its cross-sectional design prevents the establishment of causal relationships between pain and reduced WoLE in older workers. Second, our study relied on self-report questionnaires rather than medical examination for its data on pain and chances of WoLE. The lack of objective clinical measurements of pain might have resulted in inaccurate assessment of the relationship between pain and WoLE. Also, pain tolerance differed by age, gender, race, or social circumstance⁴⁶⁾. However, WoLE might be affected differently when pain is of unknown origin or nature. Furthermore, self-reporting of the sites and severity of pain is considered an effective method in the field of pain medicine²²⁾. As for WoLE, we did not investigate it in an occupational medicine setting, but merely through answers to a simple question. However, there is no consensus on the appropriate method for measuring WoLE, and previous studies indicate that self-perceived working ability and willingness to work, as measured by us, are important in extending working life⁴⁷⁾. Third, a note of caution is due here since the number of study participants might be too small for an overall survey sample size. Our study only targeted the working population at panel survey time. Thus, a high proportion of economic inactive subjects was excluded from the analysis. These results therefore need to be interpreted and applied to general aging working population with caution.

Conclusion

Our large cross-sectional study including an older working population showed the relationship between pain (both total pain sites and severity) and WoLE. This association was not attenuated even after adjustment for age, sex, population of area of residence, household income, education, marriage status, alcohol consumption, smoking behavior, physical activity level, chronic disease (hypertension, diabetes, lung disease, cardiovascular disease, and psychological disorders), and history of traffic accidents. Our results suggest that pain management should be considered a key factor in extending sustainable working life in aging workers, particularly for those with pain at multiple sites or severe pain.

Conflicts of interest: The authors declare no conflicts of interest.

Acknowledgements: The authors would like to thank the participants of KLoSA for the opportunity for performing this research.

References

- 1) Shultz KS, Adams GA. Aging and work in the 21st century. Psychology Press; 2012.
- Ilmarinen JE. Aging workers. Occup Environ Med 2001; 58: 546.

- Berecki-Gisolf J, Clay FJ, Collie A, McClure RJ. The impact of aging on work disability and return to work: insights from workers' compensation claim records. J Occup Env Med 2012; 54: 318-327.
- Dwyer DS, Mitchell OS. Health problems as determinants of retirement: Are self-rated measures endogenous? J Health Econ 1999; 18: 173-193.
- Stoddard S, Jans L, Ripple JM, Kraus L. Chartbook on work and disability in the United States, 1998. 1998.
- 6) Von Bonsdorff ME, Huuhtanen P, Tuomi K, Seitsamo J. Predictors of employees' early retirement intentions: an 11-year longitudinal study. Occup Med 2009; kqp126.
- 7) Koolhaas W, van der Klink JJ, Vervoort JP, de Boer MR, Brouwer S, Groothoff JW. In-depth study of the workers' perspectives to enhance sustainable working life: comparison between workers with and without a chronic health condition. J Occup Rehabil 2013; 23: 170-179.
- Kessler RC, Greenberg PE, Mickelson KD, Meneades LM, Wang PS. The effects of chronic medical conditions on work loss and work cutback. J Occup Env Med 2001; 43: 218-225.
- Elliott AM, Smith BH, Penny KI, Smith WC, Chambers WA. The epidemiology of chronic pain in the community. Lancet 1999; 354: 1248-1252.
- Dong XS, Wang X, Fujimoto A, Dobbin R. Chronic back pain among older construction workers in the United States: a longitudinal study. Int J Occup Med Environ Health 2012; 18: 99-109.
- 11) Siegrist J, Wahrendorf M, Von dem Knesebeck O, Jürges H, Börsch-Supan A. Quality of work, well-being, and intended early retirement of older employees-baseline results from the SHARE Study. Eur J Pub Health 2007; 17: 62-68.
- 12) Karpansalo M, Manninen P, Kauhanen J, Lakka TA, Salonen JT. Perceived health as a predictor of early retirement. Scand J Work Environ Health 2004; 287-292.
- 13) Langley P, Müller-Schwefe G, Nicolaou A, Liedgens H, Pergolizzi J, Varrassi G. The impact of pain on labor force participation, absenteeism and presenteeism in the European Union. J Med Econ 2010; 13: 662-672.
- 14) De Souza L, Oliver Frank A. Patients' experiences of the impact of chronic back pain on family life and work. Disabil Rehabil 2011; 33: 310-318.
- 15) Foppa I, Noack RH. The relation of self-reported back pain to psychosocial, behavioral, and health-related factors in a working population in Switzerland. Soc Sci Med 1996; 43: 1119-1126.
- 16) de Vries HJ, Reneman MF, Groothoff JW, Geertzen JH, Brouwer S. Self-reported work ability and work performance in workers with chronic nonspecific musculoskeletal pain. JJ Occup Rehabil 2013; 23: 1-10.
- 17) Beaton DE, Hogg-Johnson S, Bombardier C. Evaluating changes in health status: reliability and responsiveness of five generic health status measures in workers with musculoskeletal disorders. J Clin Epidemiol 1997; 50: 79-93.
- Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a literature review. Arch Intern Med 2003;

163: 2433-2445.

- Zizza CA, Ellison KJ, Wernette CM. Total water intakes of community-living middle-old and oldest-old adults. Gerontol A Biol Sci Med Sci 2009; 64: 481-486.
- Torpy JM, Lynm C, Glass RM. Frailty in older adults. Jama 2006; 296: 2280.
- Luong PN, Portenoy RK. Cancer-related Pain. Adjuvant Analgesics 2015; 95.
- 22) Dunn K. Clustering and counting of musculoskeletal pain. Eur J Pain 2013; 17: 297-298.
- 23) Lee W, Yeom H, Yoon JH, et al. Metabolic outcomes of workers according to the International Standard Classification of Occupations in Korea. Am J Ind Med 2016.
- 24) Lagarde E, Chastang J-F, Lafont S, Coeuret-Pellicer M, Chiron M. Pain and pain treatment were associated with traffic accident involvement in a cohort of middle-aged workers. J Clin Epidemiol 2005; 58: 524-531.
- 25) van den Berg T, Schuring M, Avendano M, Mackenbach J, Burdorf A. The impact of ill health on exit from paid employment in Europe among older workers. Occup Environ Med 2010; 67: 845-852.
- 26) Leeuwen MT, Blyth FM, March LM, Nicholas MK, Cousins MJ. Chronic pain and reduced work effectiveness: the hidden cost to Australian employers. Eur J Pain 2006; 10: 161.
- 27) Briggs AM, Bragge P, Smith AJ, Govil D, Straker LM. Prevalence and associated factors for thoracic spine pain in the adult working population: a literature review. J Occup Health 2009; 51: 177-192.
- 28) de Vries HJ, Reneman MF, Groothoff JW, Geertzen JH, Brouwer S. Factors promoting staying at work in people with chronic nonspecific musculoskeletal pain: a systematic review. Disabil Rehabil 2012; 34: 443-458.
- 29) Burtless GT, Quinn JF. Is Working Longer the Answer for an Aging Workforce? Boston: Center for Retirement Research at Boston College; 2002.
- 30) Elliott TE, Renier CM, Palcher JA. Chronic Pain, depression, and quality of life: Correlations and predictive value of the SF-36. Pain Med 2003; 4: 331-339.
- 31) Kewman DG, Vaishampayan N, Zald D, Han B. Cognitive impairment in musculoskeletal pain patients. Int J Psychiatry Med 1991; 21: 253-262.
- Rudy TE, Kerns RD, Turk DC. Chronic pain and depression: toward a cognitive-behavioral mediation model. Pain 1988; 35: 129-140.
- 33) Banks SM, Kerns RD. Explaining high rates of depression in chronic pain: A diathesis-stress framework. Psychol Bull 1996; 119: 95.
- 34) Boakye PA, Olechowski C, Rashiq S, et al. A critical review of neurobiological factors involved in the interactions between chronic pain, depression, and sleep disruption. Clin J Pain 2015.
- 35) Surah A, Baranidharan G, Morley S. Chronic pain and depression. Continuing Education in Anaesthesia. Critical Care & Pain 2013; mkt046.
- 36) Mair JA, Starr JM. Cognitive impairment in older workers-a

guide to assessment. Occup Med 2011; 61: 452-453.

- 37) Farrow A, Reynolds F. Health and safety of the older worker. Occup Med 2012; 62: 4-11.
- 38) Haslam C, Atkinson S, Brown S, Haslam R. Anxiety and depression in the workplace: effects on the individual and organisation (a focus group investigation). J Affect Disord 2005; 88: 209-215.
- 39) van den Berg T, Elders L, de Zwart B, Burdorf A. The effects of work-related and individual factors on the Work Ability Index: a systematic review. Occup Environ Med 2008.
- 40) Griffin MA, Neal A. Perceptions of safety at work: a framework for linking safety climate to safety performance, knowledge, and motivation. J Occup Health Psychol 2000; 5: 347.
- 41) Sorensen G, Landsbergis P, Hammer L, et al. Preventing chronic disease in the workplace: a workshop report and recommendations. Am J Public Health 2011; 101: S196-S207.
- 42) Leijten FR, van den Heuvel SG, Ybema JF, van der Beek AJ, Robroek SJ, Burdorf A. The influence of chronic health problems on work ability and productivity at work: a longitudinal study among older employees. Scand J Work Environ Health

2014; 40: 473-482.

- 43) Tuomi K, Ilmarinen J, Seitsamo J, et al. Summary of the Finnish research project (1981-1992) to promote the health and work ability of aging workers. Scand J Work Environ Health 1997; 66-71.
- 44) Ilmarinen J. Work ability—a comprehensive concept for occupational health research and prevention. Scand J Work Environ Health 2009; 1-5.
- 45) Ahlstrom L, Grimby-Ekman A, Hagberg M, Dellve L. The work ability index and single-item question: associations with sick leave, symptoms, and health-a prospective study of women on long-term sick leave. Scand J Work Environ Health 2010; 404-412.
- 46) Woodrow KM, Friedman GD, Siegelaub A, Collen MF. Pain tolerance: differences according to age, sex and race. Psychosom Med 1972; 34: 548-556.
- 47) Hengel KMO, Blatter BM, Geuskens GA, Koppes LL, Bongers PM. Factors associated with the ability and willingness to continue working until the age of 65 in construction workers. Int Arch Occup Environ Health 2012; 85: 783-790.