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Abstract 

Background:  Alpha-synuclein (α-syn) is considered the main pathophysiological protein component of Lewy bodies 
in synucleinopathies. α-Syn is an intrinsically disordered protein (IDP), and several types of structural conformations 
have been reported, depending on environmental factors. Since IDPs may have distinctive functions depending on 
their structures, α-syn can play different roles and interact with several proteins, including amyloid-beta (Aβ) and tau, 
in Alzheimer’s disease (AD) and other neurodegenerative disorders.

Main body:  In previous studies, α-syn aggregates in AD brains suggested a close relationship between AD and α-syn. 
In addition, α-syn directly interacts with Aβ and tau, promoting mutual aggregation and exacerbating the cognitive 
decline. The interaction of α-syn with Aβ and tau presented different consequences depending on the structural 
forms of the proteins. In AD, α-syn and tau levels in CSF were both elevated and revealed a high positive correlation. 
Especially, the CSF α-syn concentration was significantly elevated in the early stages of AD. Therefore, it could be a 
diagnostic marker of AD and help distinguish AD from other neurodegenerative disorders by incorporating other 
biomarkers.

Conclusion:  The overall physiological and pathophysiological functions, structures, and genetics of α-syn in AD are 
reviewed and summarized. The numerous associations of α-syn with Aβ and tau suggested the significance of α-syn, 
as a partner of the pathophysiological roles in AD. Understanding the involvements of α-syn in the pathology of Aβ 
and tau could help address the unresolved issues of AD. In particular, the current status of the CSF α-syn in AD recom-
mends it as an additional biomarker in the panel for AD diagnosis.
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Introduction
Alzheimer’s disease (AD) is characterized by extracellu-
lar amyloid-beta (Aβ) plaques and intracellular neurofi-
brillary or extraneuronal ghost tau tangles in the brain. 
Recently, the pathophysiology of other proteins, includ-
ing the triggering receptor expressed on myeloid cells 
2, transactive response DNA-binding protein 43, and 
α-synuclein (α-syn), has drawn attention for their direct 
and indirect associations in AD. α-Syn is the major con-
stituent protein of Lewy bodies, the hallmark of Par-
kinson’s disease (PD) [1]. Accumulation of α-syn has 
been found in the brain of patients with AD, as well as 
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in patients with synucleinopathies, such as PD, dementia 
with Lewy bodies (DLB), and multiple system atrophy [2]. 
However, the physiological and pathophysiological struc-
tures or functions of α-syn in AD are not fully under-
stood. Furthermore, whether altered α-syn levels are a 
causal factor or consequential result of AD is unknown.

In 1993, Uéda et  al. proposed an amyloidosis mecha-
nism of α-syn and its involvement in the pathogenesis 
of AD by identifying non-Aβ components (NACs), now 
known as fragments of α-syn, in Aβ plaques [3]. Immuno-
labeling using an α-syn antibody verified abundant α-syn 
at the center of Aβ plaques, confirming the contribution 
of α-syn in the formation of Aβ plaques [4]. In addition, 
α-syn-positive inclusions were co-localized with neurofi-
brillary tangles, suggesting the influence of tau aggrega-
tion in Lewy body formation [5]. Previous studies showd 
that  over half of the patients with autopsy-confirmed 
familial or sporadic AD had comorbid α-syn pathology in 
addition to Aβ and tau [5–7]. AD patients with autopsy-
diagnosed Lewy body variants presented with more rapid 
cognitive deterioration and a higher mortality rate than 
patients with pure AD [8]. In contrast, a study showed 
no correlation of concurrent Lewy body abnormalities in 
AD with variability in clinical features, including cogni-
tive decline, disease duration, or the presence of halluci-
nations or extrapyramidal signs [9]. This was supported 
by a recent autopsy study in which age-associated clini-
cal and cognitive heterogeneities were mediated by the 
mid-frontal/hippocampal neurofibrillary tangle ratio, not 
by non-AD pathologies, such as the α-syn co-pathology 
[10]. On the other hand, patients with autopsy-confirmed 
quadruple pathologies (Aβ, tau, α-syn, and transactive 
response DNA-binding protein 43) were associated with 
a probability of aggressive progression in disease [11].

Although Lewy bodies were most often found in the 
amygdala and hippocampus of patients with AD, α-syn-
positive inclusions, which differ from typical Lewy bod-
ies, were also found [5, 7]. Regional distributions of α-syn 
and spreads of its pathological patterns differed between 
typical Lewy body diseases and AD. While the identified 
pathology of α-syn in DLB and PD spread from the brain-
stem to the limbic area and the neocortex [12, 13], α-syn 
in AD with amygdala-predominant Lewy bodies (AD/
ALB) may show a spread to lower regions from the upper 
neuraxis [14]. In addition, immunohistochemical and 
biochemical analyses of DLB have revealed unique strain-
like variations in α-syn pathologies in the amygdala, 
which are less in AD/ALB [15]. These close associations 
of α-syn in AD pathology and distinctions from synucle-
inopathies suggested its possible differential classifica-
tion of the disease groups depending on the presence of 
α-syn aggregations [5]. In contrast, despite the absence 
of Lewy body-related pathology, levels of monomers and 

oligomers of intracellular soluble α-syn were elevated in 
the inferior temporal lobe of the AD brain, indicating the 
importance of the soluble form of α-syn in AD [16, 17]. 
Furthermore, α-syn levels were elevated in the cerebro-
spinal fluid (CSF) of patients with AD and are strongly 
correlated with tau levels [18]. Neuropathologically 
diagnosed AD patients with α-syn pathology had lower 
CSF total tau, phosphorylated tau 181, and neurogranin 
levels, which correlated with elevated α-syn levels [19]. 
Although the pathophysiological roles of α-syn in AD are 
unclear, growing evidence suggests that α-syn is directly 
involved in the pathophysiology of AD.

Variability in the α‑syn structure
α-syn is a small protein composed of 140 amino acids 
(aa) and classified into three major domains (Fig.  1) 
[20]. The hydrophilic N-terminal domain (1–60 aa) is an 
amphipathic domain with an alpha-helical structure that 
includes the repeated consensus sequence KTKEGV. A 
characteristic property of this region is its involvement 
in binding to the lipid membrane [21]. Several missense 
mutations in this domain, such as A53T, A30P, and E46K, 
are involved in neurodegenerative disorders, particularly 
PD [22]. The central domain (61–95 aa) is referred to as 
the NAC, which can aggregate by forming a beta-sheet 
structure through its hydrophobic amino acids [3, 23]. 
The C-terminal domain (96–140 aa) contains abundant 
proline and strongly negatively charged amino acids, 
termed acidic tail, without a specific structure [12]. Alter-
native splicing of the SNCA gene transcript results in 
four protein isoforms; however, their roles under physi-
ological and pathological conditions have not been well 
elucidated [24].

α-Syn, considered to be an intrinsically disordered pro-
tein, can remain in a natively unfolded protein. Purified 
recombinant α-syn exists as a non-compact mixture of 
conformers with little secondary structure [25]. Interest-
ingly, α-syn is stabilized by forming an alpha-helix sec-
ondary structure when the N-terminal domain is bound 
to the lipid membrane [23, 26]. The α-helical secondary 
structure of α-syn reverted to its unfolded conforma-
tion upon dissociation from the membrane [27]. How-
ever, purified native α-syn from human erythrocytes 
exists in the form of a tetramer with an α-helical struc-
ture, which could resist self-aggregation into protofibril/
fibril conformations [28]. In addition, a stable multi-
meric state of α-syn is formed in the absence of a lipid 
membrane under non-denaturing conditions on elec-
tron micrograph reconstruction or nuclear magnetic 
resonance (NMR) studies [29]. However, a study showed 
that identified α-syn in the mouse brain had an unfolded 
monomeric structure that was prone to aggregation 
[30]. A review suggested that α-syn could exist in the 
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monomeric structure of the transient state in the cyto-
plasm and be multimerized through interactions with 
the membrane until it resumed its physiological func-
tions in the cell [31]. Evidence remains limited for the 
helical tetramer of α-syn, and further biochemical stud-
ies should be conducted to fully understand the physi-
ological and pathophysiological conformations of α-syn 
in cells. Cryo-electron microscopy (cryo-EM) presented 
a high-resolution image of α-syn in the fibril state. With 
full-length recombinant human α-syn, cryo-EM on nega-
tive staining showed helical reconstructions, contain-
ing two polymorphic fibrils, i.e., rod and twister [32], 
supporting α-syn fibrils with different lengths extracted 
from the brain tissue of patients with PD or multiple sys-
tem atrophy (MSA) [33, 34]. Compared to α-syn fibrils 
derived from the final product of the protein misfolding 
cyclic amplification reaction, a technique for amplifying 
α-syn aggregates, patients with MSA revealed an average 
shorter twisting distance of α-syn fibrils than those with 
PD [35]. Brain-derived α-syn fibrils from patients with 
DLB showed less twisted and thinner structures than 
those from patients with MSA [36]. Additionally, Peng 
et  al. demonstrated different seeding activities of α-syn 
fibril strains in the brains with different synucleinopa-
thies [37]. Additional advanced technologies would allow 
us to demonstrate that the structure of α-syn fibrils could 
be disease-specific, which could help understand the 
importance of structural heterogeneity of α-syn in under-
standing the pathogenicity of the disease.

Comprehensively, α-syn could be transformed into 
various conformations depending on the surrounding 
environment owing to the unstable nature of the struc-
ture (Fig.  2). Imbalanced physiological conditions, such 
as overexpression or mutation, may induce abnormal 
accumulation and aggregation of α-syn, leading to dis-
ease. These conformational diversities of α-syn imply 
that each α-syn structure may play different roles and/
or be involved differently in various neurodegenerative 
disorders.

Interactions with AD‑related proteins
Aβ
Aβ, a crucial peptide in the pathophysiology of AD, is 
derived from the proteolytic process of the amyloid pre-
cursor protein by β- and γ-secretase complexes [38, 39]. 
Interactions of Aβ with other proteins have been sug-
gested to play a pivotal role in the Aβ pathomechanisms 
of AD [40]. α-Syn has been investigated as a protein that 
can directly interact with Aβ [41, 42] (Table  1). Direct 
interactions between Aβ and α-syn have been shown to 
promote heterotrophic aggregation and intraneuronal 
accumulation of α-syn, which may exacerbate neuronal 
pathologies [43]. Based on co-immunoprecipitation in 
postmortem samples from the AD and DLB brains, α-syn 
monomers, dimers, trimers, and pentamers formed com-
plexes with Aβ through interactions between the N-ter-
minus of Aβ and the N- and C-terminus of α-syn [44]. A 
recent in vitro study confirmed that the interaction of Aβ 

Fig. 1  Characteristics of the three regions in α-synuclein. α-syn, alpha-synuclein; NAC, non-amyloid-beta component
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with α-syn could increase the aggregation rate of α-syn, 
leading to accelerated fibril formation [45]. In several ani-
mal studies, transgenic mice with both hSYN and hAPP 
exhibited accelerated cognitive decline, motor deficits, 
and formation of α-syn inclusions in the brain, in which 
the structures of inclusions were partially fibrillar in a 
double transgenic mouse model and amorphous in sin-
gle α-syn transgenic mice [43, 46]. Analogously, α-syn 
can promote Aβ aggregation, but the exact effects of each 
conformer are still obscure. For instance, α-syn oligomers 
could induce the formation of Aβ oligomers and stabilize 

their cross-β structures, resulting in Aβ fibril-like con-
formations [47]. Fibril forms of α-syn could accelerate 
the heterogeneous nucleation pathway of Aβ aggregates, 
whereas α-syn monomers suppressed Aβ aggregation 
in the secondary step by binding to Aβ fibrils, indicat-
ing that different structural forms of α-syn had distinct 
effects on Aβ aggregation [48]. Recently, α-syn mono-
mers and oligomers were shown to hamper Aβ fibrilli-
zation, enhance oligomerization of Aβ monomers, and 
stabilize Aβ oligomers [49]. Direct interactions between 
α-syn and Aβ appear to have different consequences, 

Fig. 2  Conformational diversity of α-syn. Modeling of α-synuclein monomer (PDB: 1XQ8), tetramer, and fibril from cryo-electron microscopy for 
both the twister (PDB: 6CU8) and rod polymorph (PDB: 6CU7). α-syn, alpha-synuclein; cryo-EM, cryo-electron microscopy

Table 1  Interaction between α-synuclein and amyloid-beta

α-syn alpha-synuclein, Aβ amyloid-beta

Types of ligands Types of α-syn Consequences

Aβ α-syn Aβ aggregation↑ [41, 42]
α-syn aggregation↑ [43, 45]

Aβ monomer α-syn monomer Stabilization of α-syn oligomer [44]
Aβ fibrilization↓ and Aβ oligomerization↑ [49]

α-syn oligomer Stabilization of α-syn oligomer [44]

α-syn fibril Aβ fibrilization↑ [49]

Aβ oligomer α-syn monomer Aβ fibrilization↓ and Aβ oligomerization↑ [49]

α-syn oligomer Stabilization of Aβ cross-β structure [47]
Aβ fibrilization↓ and Aβ oligomerization↑ [49]

α-syn fibril Aβ fibrilization↑ [49]

Aβ fibril α-syn monomer Second nucleation of Aβ↓ [48]

α-syn fibril Second nucleation of Aβ↑ [48, 49]
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depending on the structural species/stain. Therefore, 
subsequent studies should clarify the role of α-syn by 
investigating the defined components in interactions 
with AD pathophysiology.

Tau
Tau is a protein constituting neurofibrillary tangles, a 
hallmark of AD, and closely related to α-syn and Aβ 
(Table 2). Tau and α-syn were co-localized in the axons 
of cells, and their direct interaction in the nerve cell was 

demonstrated by affinity chromatography of the human 
brain cytosol [50]. The binding sites were the C-terminus 
of α-syn (55–140 aa) and the microtubule-binding region 
of tau (192–383 aa) [50]. This binding led to increased 
insoluble high-molecular-weight α-syn species and colo-
calization of tau and α-syn aggregates [51]. Colocalization 
of tau and α-syn aggregates could be described by prion-
like properties of the two proteins that facilitated mutual 
homogenous/heterogeneous aggregations (Fig.  3). For 
instance, α-syn could induce tau aggregation; in turn, tau 

Table 2  Interaction between α-synuclein and tau

α-syn alpha-synuclein

Types of ligands Types of α-syn Consequences

Tau α-syn α-syn aggregation↑ [51–53]
Tau phosphorylation↑ [50, 59–62]
Tau aggregation↑ [52]

α-syn fibril Tau-mediated microtubule assembly↓ [54]
Tau phosphorylation↑ [58]
Tau aggregation↑ [54, 58]

A30P α-syn α-syn and tau interaction↓ [55] or ↑ [56] or no effect [50]
Tau-mediated microtubule assembly↓[56]

E46K α-syn α-syn and tau interaction↑ [56] or no effect [55]
Tau-mediated microtubule assembly↓ [56]

A53T α-syn α-syn and tau interaction↑ [56] or no effect [50, 55]
Tau-mediated microtubule assembly↓ [56]

P301L Tau α-syn α-syn and tau interaction↓ [57]
α-syn aggregation↑ [57]
Tau aggregation↑ [57]

α-syn fibril Tau aggregation↑ [58]

Fig. 3  Schematic diagram of the possible relationship of α-synuclein with amyloid-beta, tau, and tubulin α-syn, alpha-synuclein; Aβ, amyloid-beta
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could synergistically accelerate the fibrillization of α-syn 
[52]. NMR imaging revealed that the monomeric form 
of tau selectively interacted with the C-terminal region 
of the α-syn monomer and accelerates α-syn oligomeri-
zation and subsequent fibril formation [53]. In addition, 
α-syn monomers and fibrils promoted tau aggregations 
[53]. Oikawa et  al. suggested different conformational 
effects of α-syn; only α-syn fibrils, not monomer α-syn, 
interacted with tau and hampered microtubule assem-
bly by inhibiting the binding of tau to microtubules [54]. 
α-Syn mutation hampered or enhanced interactions with 
tau, but the results remain controversial. In in vitro bind-
ing assays, α-syn mutations (A30P and A53T) appeared 
to have no effect on the tau-binding activity [50]. In 
Förster resonance energy transfer-based analysis, the 
A30P mutant exhibited a reduced interaction with tau 
but no effect of A53T or E46K mutants [55]. In cells co-
transfected with tau and each mutant α-syn, all muta-
tions (A30P, A53T, and E46K) increased the binding of 
α-syn with tau and exacerbated the stability of microtu-
bules [56]. In tau mutation (P301L) related to frontotem-
poral dementia, the reduced binding affinity between the 
tau mutant and α-syn may promote tau aggregation and 
higher α-syn fibrils [57]. Treatment with increasing α-syn 
fibrils also increased tau aggregation by over 50% in 
P301L-mutant tau cells in comparison with wild-type tau 
cells, supporting that tau aggregation could result from 
the interaction with α-syn fibrils, which were accelerated 
in the P301L-mutant model [58]. Although the direct 
interaction between α-syn and tau promoted mutual 
aggregation, additional evidence is required to determine 
changes in each conformer and mutation determinant.

The interaction between these two proteins also pro-
motes tau phosphorylation. The regulation of tau phos-
phorylation could be accelerated by α-syn, along with 
several kinases (Fig. 3). Jensen et al. revealed that α-syn 
increased tau phosphorylation on S262 and S356 resi-
dues by protein kinase A up to 66%, depending on the 
protein concentration ratio [50]. In α-syn-overexpressing 
mouse models, the existence of phosphorylated tau 
was associated with the activation of the extracellular 
signal-regulated and c-Jun N-terminal kinases, which 
phosphorylated S396 and S404 residues of tau [59]. 
Hyperphosphorylations of tau at T181, S396, and S404 
residues were also induced by activating the tau kinase 
glycogen synthase kinase-3β (GSK-3β) [60–62]. In the 
MPP + neurotoxin-induced PD model, α-syn increased 
the phosphorylation of tau at Ser262, 396, and 404 of 
tau by forming a heterotrimeric complex with tau and 
GSK-3β [60, 61]. Moreover, α-syn-deficient cells and 
α-syn knockout mice showed no change in tau phospho-
rylation due to the absence of phosphorylated GSK-3β, 
indicating that tau phosphorylation depended on the 

presence of α-syn [60, 61]. Under in  vitro conditions, 
α-syn-mediated tau phosphorylation occurred via triple 
complex formation by the binding of tau to the acidic 
C-terminus of α-syn and by the interaction between 
GSK-3β and the NAC and KTEGV domains of α-syn 
[62]. Tau phosphorylation by this complex was gradually 
promoted as the α-syn/tau ratio increased, and the molar 
ratio of tau to α-syn at the maximum point was 1:20 [62]. 
Consistently, the percentages of phosphorylated tau 
were increased in the CSF of patients with AD, follow-
ing increased α-syn/total tau ratio [63]. This accumulated 
evidence of α-syn-mediated tau phosphorylation sug-
gests that elevated α-syn in AD may promote tau phos-
phorylation with other kinases under pathophysiological 
conditions, leading to tau pathology through significantly 
elevated phosphorylated tau.

Tubulin
Tubulin is an essential cytoskeleton component responsi-
ble for fundamental processes, including structural sup-
port, organelle transport, and cell division. Its assembly 
into microtubules is facilitated and stabilized by interac-
tions with the neuronal tau protein. α-Syn is also known 
to bind tubulin, and the colocalization of these two pro-
teins has been identified in the human and rat brains 
[64] (Table  3). Although a study reported the effects of 
α-syn on induction of tubulin polymerization [65], a con-
tradictory result indicated that α-syn could destabilize 
microtubule assembly by blocking physiological inter-
actions between tau and tubulin [66]. Residues 60–100 
of α-syn were identified as the binding site for tubulin, 
which could contribute to inhibiting microtubule forma-
tion [67]. Even α-syn interactions with tubulin exerted 
different conformational effects on microtubule polym-
erization. Monomeric α-syn had no effect on micro-
tubule polymerization, but tau-promoted microtubule 
assembly was inhibited by both protofibrils and α-syn 
fibrils [54]. In addition, treatment of oligomeric α-syn 
in dopaminergic neurons hampered tubulin polymeriza-
tion and decreased mitochondrial function [68]. Taken 

Table 3  Interaction between α-synuclein and tubulin

α-syn alpha-synuclein

Types of ligands Types of α-syn Consequences

Tubulin α-syn α-syn aggregation↑ [64]
Tubulin polymerization↑ [65] or 
↓ [66, 67]

α-syn monomer No effect on tubulin polymeriza-
tion [54]

α-syn oligomer Tubulin polymerization↓ [68]

α-syn fibril Tubulin polymerization↓ [54]
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together, interactions of α-syn with tubulin mainly affect 
the inhibition of microtubule assembly, and α-syn may be 
involved in pathogenic mechanisms rather than in nor-
mal physiological functions.

The overall functions of α-syn, as a partner of Aβ, tau, 
and tubulin, were depicted in Fig. 3. This schematic fig-
ure focused on the AD pathogenesis induced by involve-
ments with α-syn. On the other hand, the interactions 
between α-syn and these proteins could be expanded 
to concomitant pathology. Converse to the accelerated 
pathology of Aβ and tau by α-syn, synucleinopathies in 
patients with AD could be initiated by α-syn aggregation 
due to interaction with proteins. For instance, patients 
with DLB and PD with dementia would be involved with 
aberrant aggregations of Aβ and α-syn, leading to the co-
existence of senile plaques and Lewy bodies in the brain 
[69]. Various mixed types of neurodegenerative disor-
ders could be interpreted as causing result in the specific 
pathology by promoting mutual aggregations of Aβ, tau, 
and α-syn.

Genetic association of α‑synuclein in AD
SNCA, which encodes α-syn, was the first gene discov-
ered in a patient with PD [70]. Most SNCA mutations 
are associated with PD pathology, and the involvement 
of AD-related genes as a genetic risk factor is limited. 
Interestingly, SNCA polymorphism of the GG frequency 
(rs10516846) was significantly increased in patients with 
AD compared to healthy control (HC) [71]. In addi-
tion, α-syn levels in CSF of patients with early-onset AD 
(EOAD) were higher in GG (rs10516846) carriers than 
in AA carriers [71], suggesting an association between 
SNCA gene polymorphisms and elevated α-syn levels in 
AD pathophysiology. Peripheral leukocytes in patients 
with AD showed elevated mRNA expression of SNCA 
with a reduced methylation rate in the intron 1 part of 
SNCA, one of the methylation regulatory regions of 
SNCA [72].

Previous studies have suggested associations between 
α-syn and representative genes in AD, such as amyloid 
precursor protein (APP), presenilin 1 (PSEN1), and 
apolipoprotein E (APOE). α-Syn and phosphorylated 
α-syn-positive dystrophic neurites have been observed 
in the brains of APP transgenic mice [73]. Additional 
overexpression of mutated PSEN1 in APP transgenic 
mice accelerated Aβ-induced synucleinopathies and 
further promoted phosphorylation of α-syn [73]. 
Human studies also showed a high frequency (50–60%) 
of Lewy body pathology in familial AD groups, support-
ing an association between AD-related genes and α-syn 
[6, 74]. Intriguingly, α-syn pathology has been observed 
in the amygdala in over 90% of patients with autosomal 

dominant AD in PSEN1 [75]. Direct interactions of 
α-syn with the presenilin 1 protein were identified 
in the brain tissues of cognitively normal individu-
als. They were significantly increased in the tissues of 
patients with AD and DLB with PSEN1 mutations [76]. 
Increased interactions of the presenilin 1 protein with 
α-syn in PSEN1-mutated cell lines were associated 
with increased membrane binding and α-syn accu-
mulation [76]. Additionally, a study revealed that cells 
with PSEN1 mutations associated with AD and DLB 
had exacerbated phosphorylation and accumulation of 
α-syn [77]. In a recent CSF biomarker study, the tau/α-
syn ratio was altered in patients with AD, and in par-
ticular, changes in EOAD were statistically higher than 
those in late-onset AD [63]. Furthermore, CSF α-syn 
levels were higher in symptomatic autosomal domi-
nant AD mutation carriers than in non-mutation car-
riers [78]. Considering the high contribution of genetic 
factors in EOAD, changes in CSF α-syn levels could be 
influenced by AD-related genes, resulting in greater 
changes in autosomal dominant AD. APOE encodes 
the apolipoprotein E protein, an important lipid-bind-
ing protein for intercellular lipid redistribution in the 
CNS, which is a major risk factor for late-onset AD 
(after the age of 65  years). The possible pathophysi-
ological roles of APOE and α-syn have been investi-
gated, mainly in relation to PD. The apolipoprotein E 
protein level was elevated by over fourfold in transgenic 
mice with the α-syn A30P mutation, and APOE knock-
out in α-syn A30P transgenic mice increased the sur-
vival rate, delayed behavioral symptoms, and decreased 
neuronal degeneration and Aβ aggregates [79]. In par-
ticular, the APOEε4-expressing PD mouse model, but 
not ε2 and ε3, showed increased α-syn pathology and 
astrogliosis and impaired behavioral ability with wors-
ened neuronal and synaptic loss [80]. In patients with 
PD, apolipoprotein E was elevated in the CSF with an 
abundance in dopaminergic neurons of the substantia 
nigra from postmortem brain tissues [81]. Although 
the association between the apolipoprotein E protein 
and α-syn has been focused on in patients with PD, it 
may be involved in AD pathophysiological conditions. 
For instance, laboratory studies have shown elevated 
CSF α-syn levels in APOEε4-carrier patients with AD 
[63, 78]. Additionally, elevated CSF α-syn levels were 
significantly associated with Aβ plaque burdens in 
APOEε4-positive individuals with autosomal dominant 
AD [78]. Thus, these studies described the associations 
of the APOEε4 risk allele with CSF α-syn levels and Aβ 
deposition in AD. Although the exact mechanism has 
not been clearly elucidated, accumulating evidence sug-
gests that α-syn is strongly associated with AD-related 
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genes and contributes to disease progression at the 
genetic level.

CSF α‑syn in AD
Meta‑analysis of CSF α‑syn in AD
α-Syn is considered to be a biomarker of synucleinopa-
thies, including PD and DLB, as it is the main component 
of Lewy bodies. However, several studies have investi-
gated the diagnostic performance of the CSF α-syn level 
in AD. In the meta-analysis, only the total α-syn level 
was considered, and the phosphorylated or oligomeric 
forms were excluded. We searched the PubMed and 
Web of Science databases to extract 38 articles related to 
the total α-syn level in the CSF of patients of AD. Con-
trary to the total α-syn level, CSF oligomeric and phos-
phorylated α-syn levels at serin 129 were consistently 
elevated in patients with PD [82, 83] but unchanged in 
those with AD [84]. Since two α-syn species may domi-
nantly affect synucleinopathies rather than AD-related 
pathology, we speculated that total α-syn mostly of the 
monomeric form would be suitable for the AD diagnosis. 
Sixteen studies revealed statistically significant increases 
α-syn levels in the CSF of patients with AD [78, 84–98], 
whereas a few reports showed reduced levels [99–101]. 
In particular, α-syn levels in the CSF were significantly 
elevated in patients with AD with all positive CSF tri-
ple markers (Aβ42, total tau, and phosphorylated tau) 

[63, 84]. However, no difference in CSF α-syn concen-
trations between AD and HC were found in a few stud-
ies [63, 102–119]. Inconsistencies across studies may 
have resulted from misdiagnosis, co-existence of other 
neurodegenerative disorders, hemolysis, anticoagulant 
upon collection in plasma, pre-analytic sample handling, 
technical errors, and particularly platform differences of 
measurements [119]. To verify changes in CSF α-syn lev-
els in AD, a meta-analysis was conducted with 25 studies 
in which a normal distribution could be obtained (Fig. 4). 
In addition, we excluded articles, which were sub-classi-
fied groups through additional parameters, such as CSF 
analysis, positron emission tomography (PET), or longi-
tudinal observation. A total of 25 studies reported that 
CSF α-syn levels were statistically higher in patients with 
AD than in HC (Z = 2.94, p = 0.003).

Most studies revealed strong positive correlations 
of CSF α-syn with tau and phosphorylated tau [63, 84, 
92–95, 115–117], whereas one study revealed a negative 
correlation [100]. Whether elevated α-syn levels in the 
CSF are associated with a causal or protective mecha-
nism in AD is unknown. Considering the high correlation 
between tau and α-syn levels, synaptic destruction might 
increase the release of α-syn into the CSF, similar to tau 
released by neuronal death [18]. In contrast, studies 
showing reduced CSF α-syn levels in AD suggested lower 
α-syn secretion from synaptic loss [101]. The correlation 

Fig. 4  Meta-analysis of the cerebrospinal fluid α-synuclein level in Alzheimer’s disease and healthy controls CSF, cerebrospinal fluid; α-syn, 
alpha-synuclein; AD, Alzheimer’s disease; HC, healthy controls
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between tau and α-syn levels may be associated with the 
causative mechanisms of AD pathology rather than the 
consequence of synaptic disruptions or neuronal death. 
NFL is a representative biomarker released into bioflu-
ids as a result of neuron destructions. It is significantly 
elevated in most neurodegenerative disorders, even in 
tauopathies and synucleinopathies [120]. In contrast, 
CSF α-syn levels in patients with tauopathies and synu-
cleinopathies revealed no difference or reduced concen-
trations in comparison with the HC group [121–125]. A 
longitudinal study showed that α-syn levels in CSF were 
reduced in manifested and prodromal patients with PD 
and slightly declined after 36 months, reflecting no asso-
ciation of reduced CSF α-syn levels with dopaminer-
gic neurodegeneration [126]. These studies supported 
that elevated α-syn levels in AD were not simply a con-
sequence of synaptic degeneration or neuronal deaths. 
According to the aforementioned in vitro study, tau phos-
phorylation increased as the α-syn/tau ratio increased in 
CSF, which was proven in a previous clinical CSF study 
[63]. Tau and α-syn levels showed strong positive corre-
lations in the CSF of all groups, including AD, PD, and 
HC. Furthermore, as the tau/α-syn ratio in the CSF had 
a strong correlation with the phosphorylated tau rate, tau 
phosphorylation was modulated according to the ratio of 
the two proteins. Further studies on different equilibrium 
states in tau and α-syn in the CSF according to the status 
of AD pathophysiology could provide important implica-
tions for understanding the role of α-syn in AD.

CSF α‑syn in the early stage of AD
In previous studies, the highest α-syn levels in CSF 
were measured in patients with mild cognitive impair-
ment (MCI), showing its involvement in the early 
stages of AD [91, 96, 117, 127]. The α-syn levels in CSF 
gradually increased from normal to MCI stages and 
then decreased in the proceeding stage in AD [78]. 
In addition, the α-syn levels in CSF were elevated in 
patients who converted from MCI to AD and with a 
shorter duration of AD progression [78, 95, 115]. CSF 
α-syn levels in patients with MCI with stable symptoms 
not progressing to AD were similar to those of the HC 
group [78]. These results suggested that α-syn perform 
pathological functions in AD by rapidly increasing in 
the period of progression from MCI to symptomatic 
stages. Similar to tau, CSF α-syn levels were positively 
associated with brain Aβ plaque deposition in the early 
stages of AD [78, 118]. Among individuals with sub-
jective complaints of memory dysfunction, CSF α-syn 
levels in the amyloid PET-positive group tended to be 
higher than those in the PET-negative group [118]. 
In addition, the total tau/α-syn ratio in the CSF was 
highly concordant with CSF Aβ42 and amyloid PET in 

our study [63]. These clinical study results are consist-
ent with the aforementioned evidence that α-syn could 
synergistically and directly induce Aβ aggregation in 
animal models. Taken together, it could assume that 
α-syn is associated with Aβ-related pathophysiological 
mechanisms in the early stages of AD.

Incorporation of CSF α‑syn with other biomarkers
Incorporation of α-syn in CSF with other biomark-
ers would have better diagnostic performances. Toledo 
et  al. proposed that patients with elevated phosphoryl-
ated tau181 and reduced α-syn levels in CSF could be 
classified as AD with concomitant Lewy body pathology 
[92]. Another study reported a differential diagnosis for 
patients with DLB and AD using combined α-syn and 
phosphorylated tau181, since the levels of both pro-
teins were reduced in patients with DLB but elevated in 
patients with AD [93]. The total tau/α-syn ratio was the 
highest in the CSF of patients with AD [63, 100, 101] 
and the lowest in the CSF of patients with PD [100]. The 
incorporation of α-syn with triple CSF markers (Aβ, total 
tau, and phosphorylated tau181) revealed the best dis-
crimination value between AD and HC and improved dif-
ferential diagnosis with other neurodegenerative diseases 
[63, 117]. Although the utility of α-syn as a biomarker for 
the diagnosis of neurodegenerative diseases remains con-
troversial, the incorporation of CSF α-syn may improve 
the diagnostic performance in AD and aid in the discrim-
ination of AD from other neurodegenerative diseases. 
α-Syn may offer an opportunity to overcome the limita-
tions of triple CSF biomarkers.

α‑Syn seed amplification assay (SAA) in AD
SAA has been used to detect minimal amounts of mis-
folded prion in Creutzfeldt-Jakob disease. SAA has 
recently been expanded to the field of synucleinopa-
thies by detecting misfolded α-syn in the CSF, olfactory 
mucosa, submandibular gland, skin, and brain [35, 128–
134]. α-Syn SAA distinguished synucleinopathies (PD 
and MSA) remarkably from other pathological diseases, 
such as AD, amyotrophic lateral sclerosis, Pick’s disease, 
corticobasal degeneration, and progressive supranuclear 
palsy [130, 132, 135]. In particular, among patients with 
Lewy body-related pathology, limbic/neocortical pathol-
ogy cases had high positivity in CSF and frontal cor-
tex brain homogenate but lower positivity in AD/ALB, 
indicating the possibility of the discriminating ability of 
mixed pathologies with α-syn SAA [136]. Similar to the 
total α-syn level in CSF, α-syn SAA could be applied to 
the differential diagnosis of patients with AD with Lewy 
body-related pathology (particularly AD/ALB cases).
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Blood α‑syn in AD
Several studies have reported attempts to diagnose AD by 
measuring total α-syn levels in the blood of patients with 
AD. Serum levels of α-syn in patients with AD showed 
no significant difference from those in HC [137]. In addi-
tion, there was no discernible intergroup variation in the 
plasma α-syn levels between AD and HC [96]. In patients 
with amnestic MCI, plasma α-syn levels increased 
throughout disease progression and had a discriminatory 
capacity to indicate the risk of cognitive deterioration 
[138]. In a recent study, AD and HC had significantly dif-
ferent plasma α-syn levels [139]. Elevated plasma α-syn 
levels in AD were positively correlated with urinary AD-
associated neuronal thread protein but not with serum 
lipids [139]. Inconsistent results might be owing to vari-
ous factors, including technical protocols, pre-analytic 
processes, medications, and particularly hemolysis. Since 
erythrocytes were the major source of α-syn, the ana-
lyzed α-syn levels could be influenced from the released 
of α-syn from cytosol upon hemolysis [91, 140]. Oligomer 
or phosphorylated α-syn levels in serum, plasma, and red 
blood cells were elevated and could be used to diagnose 
PD or MSA. However, no study has reported the two 
α-syn species in AD [141–144]. Although the possible 
changes of α-syn levels would be present in patients with 
AD, blood α-syn as a biomarker may not be sufficient in 
the current stage and should be studied further.

Conclusions
Numerous reports have shown that α-syn is deeply 
involved in the pathophysiology of AD. Nevertheless, it 
has not been recognized in the fields of its involvement in 
AD mechanisms, inter-related biomarkers, or drug devel-
opment. Similar to other intrinsically disordered proteins, 
such as Aβ, tau, and prion, α-syn can easily adapt to its 
diverse structures depending on the environment, wherein 
each conformation may influence different mechanisms. 
Elevated α-syn levels in AD could facilitate Aβ oligomeri-
zation, tau phosphorylation, activation of kinases, dissocia-
tions of tau and tubulin, and tau aggregation. Furthermore, 
the association of α-syn with genetic factors, such as APP, 
PSEN1, and APOE, could accelerate AD pathology. As a 
biomarker, the CSF α-syn levels were the highest in MCI, 
particularly in rapidly progressing patients to AD. Elevated 
CSF α-syn levels were also correlated with Aβ depositions 
in the asymptomatic stage, indicating potential applications 
in the early diagnosis, as a sensitive indicator of disease 
progression along with changes in Aβ species, including 
oligomeric forms. Remarkably, the incorporation of CSF 
α-syn with other biomarkers had strong potential for the 
accurate diagnosis of AD and its discrimination from other 
similar neurodegenerative disorders. Combined CSF α-syn 

with triple biomarkers could improve diagnostic and prog-
nostic performances. Accurate early identification of AD 
progression using α-syn and Aβ species may help develop 
novel therapeutics or better treatments for patients, con-
sidering the α-syn mechanism in AD. To date, α-syn has 
mainly been investigated in synucleinopathies. Further 
studies on α-syn in AD pathophysiology would contribute 
to the understanding of its mechanism in AD and other 
neurodegenerative diseases.
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