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Skin aging is a multifaceted process that involves intrinsic and extrinsic
mechanisms that lead to various structural and physiological changes in the
skin. Intrinsic aging is associated with programmed aging and cellular
senescence, which are caused by endogenous oxidative stress and cellular
damage. Extrinsic aging is the result of environmental factors, such as
ultraviolet (UV) radiation and pollution, and leads to the production of reactive
oxygen species, ultimately causing DNA damage and cellular dysfunction. In aged
skin, senescent cells accumulate and contribute to the degradation of the
extracellular matrix, which further contributes to the aging process. To combat
the symptoms of aging, various topical agents and clinical procedures such as
chemical peels, injectables, and energy-based devices have been developed.
These procedures address different symptoms of aging, but to devise an
effective anti-aging treatment protocol, it is essential to thoroughly understand
the mechanisms of skin aging. This review provides an overview of the
mechanisms of skin aging and their significance in the development of anti-
aging treatments.
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1 Introduction

Skin aging is a complex process that involves numerous biological and biochemical
changes as well as secondary structural changes of the skin, underlying muscles,
subcutaneous fat tissue, and bony structures. Common aesthetic procedures performed
in clinical practice, such as chemical peels, energy-based treatments, injectable treatments,
and threads, may share similar mechanisms; however, they often address the symptoms and
signs of skin aging in distinct ways. Furthermore, as research on the mechanism of skin aging
continues to expand, existing theories are replaced with new concepts, such as cellular
senescence of dermal fibroblasts (Fang et al., 2022; Shvedova et al., 2022). Thus, clinicians
must possess a thorough comprehension of skin aging physiology to devise a treatment plan
that entails selecting anti-aging procedures that target specific mechanisms of skin aging
while simultaneously reducing side effects. It is hoped that this narrative review will provide
new avenues to comprehensively describe the complex skin aging process and help clinicians
to establish anti-aging treatment protocols.
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2 Mechanisms of skin aging

2.1 Molecular mechanisms of skin aging

The skin is the body’s largest organ and is continuously exposed
to various environmental factors, including ultraviolet (UV) rays,
smoking, heat, and air pollution. Therefore, the skin undergoes
extrinsic aging as well as intrinsic aging, which is also referred to as
chronological aging. The process of intrinsic aging can be considered
alongside programmed aging, and it results from continuous
chromatic damage by various factors, of which the most
representative is oxidative stress caused by reactive oxygen
species (ROS). The cells have an endogenous defense system
against oxidative stress including superoxide dismutase (SOD),
tripeptide glutathione, and catalase (Steenvoorden and van
Henegouwen, 1997). Age-related impairment in its redox
capacity results in the accumulation of ROS, thereby causing a
detrimental effect on cellular components including proteins, lipids,
and DNA, consequently leading to cellular dysfunction (Gniadecka
et al., 1998; Gu et al., 2020). ROS generated by exogenous factors
such as UV rays and air pollution also play a significant role in
extrinsic aging.

In response to stress factors including DNA damage, cells enter a
state of irreversible growth arrest, which is called cellular senescence
(Hayflick, 1965). Recent research has uncovered that cellular
senescence plays a major role in the skin aging process (Fitsiou
et al., 2021;Wlaschek et al., 2021; Kim et al., 2022a; Kim et al., 2022b;
Gerasymchuk et al., 2022; Papaccio et al., 2022). Senescent cells
exhibit several biomarkers: 1) increased activity of the cell cycle
arrest proteins p21WAF1 and p16INK4A, 2) lysosomal enzyme
senescence-associated β galactosidase (SA-β-gal), and 3) decreased
expression of nuclear high mobility group box-1 (HMGB1) and
lamin B1, a structural component of the nuclear lamina (Ho and
Dreesen, 2021). They also release humoral factors known as
senescence-associated secretory phenotype (SASP), which
includes various inflammatory cytokines, chemokines, matrix
proteases, and microRNAs (Coppe et al., 2010; Kim et al., 2016).
The temporary cellular senescence signals that physiologically occur
during wound healing promote the formation of granulation tissue
and skin regeneration while inhibiting excessive cell growth that can
progress to precancerous or cancerous lesions (Demaria et al., 2014;
Wang and Dreesen, 2018). As age increases, the accumulation of
senescent keratinocytes, melanocytes, and, most importantly,
fibroblasts can cause various age-related diseases and disrupt the
homeostasis of the skin (Wlaschek et al., 2021).

Moreover, the degradation of the extracellular matrix (ECM) is
observed as a result of altered senescent cells and excessive ROS
production. Excessive ROS activate the mitogen-activated protein
kinase (MAPK)/activator protein 1 (AP-1) pathway, which
consequently induces the expression of matrix metalloproteinase
(MMP), resulting in collagen breakdown (Chung et al., 2000). It also
downregulates the collagen production via the TGF-β/Smad
signaling pathway (Quan et al., 2004; Quan et al., 2010; He et al.,
2014). In addition, tissue inhibitors of metalloproteinases (TIMPs)
are downregulated during the aging process. Furthermore, the
presence of senescent cells contributes to ECM degradation by
promoting chronic inflammatory responses and collagen
breakdown. In particular, the senescent fibroblasts express SASP

containing MMP-2, MMP-9, and proinflammatory cytokines such
as interleukin (IL)-6 and IL-8 (Kuilman et al., 2008; Wang and
Dreesen, 2018; Wlaschek et al., 2021). The migration of neutrophils
after inflammation or UV exposure further accelerates the collagen
and elastin fragmentation via production of neutrophil-derived
proteolytic enzymes (Li et al., 2013; Sharma et al., 2020).

2.2 Dermal aging

These two types of skin aging have several overlapping
molecular mechanisms including ROS generation, DNA damage,
and structural deterioration of ECM components. Therefore, the
clinical phenotypes of skin aging are similar in some respects;
however, some facets differ based on the aging process (Park,
2022). Intrinsic aging results in overall thinning of the skin, dry
and pale skin, fine wrinkles, and skin sagging with decreased
elasticity (Walker, 2022). The functions of the sweat and
sebaceous glands also decrease, with less sebum secretion caused
by decreased peroxisome proliferator-activated receptor gamma
(PPAR-γ) expression ultimately leading to dry skin, while
sebaceous gland hyperplasia can occur due to increased gland
size (Zouboulis and Boschnakow, 2001; Kim et al., 2014).
Furthermore, extrinsic aging manifests as relatively coarse
wrinkles, severe loss of elasticity, and dyspigmentation (Walker,
2022).

Despite these differences, biochemical and biophysical changes
in the dermis are common to both aging processes and are major
contributing factors to the aging phenotypes such as wrinkles and
loss of skin elasticity. The dermis of the skin consists of connective
tissue that is rich in collagen, which provides mechanical support
and structure. Recently, the changes in the dermal components in
skin aging and treatments to reverse or combat them to reduce the
signs of aging have become the focus of many dermatologists.
Therefore, in this part, we will discuss these dermal aging
processes in more detail.

The fibroblasts within the dermis are responsible for the
synthesis, organization, and remodeling of collagen and thus play
a major role in maintaining the integrity of the ECM. As
aforementioned, aging causes the accumulation of senescent
fibroblasts in the dermis, which causes gradual degradation and
dysfunction of the ECM via release of proteolytic, matrix-degrading
SASPs (Ressler et al., 2006).

In particular, the matricellular protein CCN1, also known as
cysteine-rich protein 61, has been suggested to be a contributor to
the age-associated dermal microenvironment. CCN1 is markedly
elevated in the human dermal fibroblasts in aged skin, and Quan
et al. demonstrated that elevated expression of CCN1 accelerates
dermal aging by dysregulating the production and homeostasis of
collagen using a transgenic mouse model (Quan et al., 2011; Quan
et al., 2021). Their results showed that the fibroblasts of COL1A2-
CCN1 mice had increased MMP expression and impaired TGF-β/
Smad signaling, resulting in reduced COL-1 expression and
fragmentation of ECM. Furthermore, CCN1 induces increased
expression of proinflammatory cytokines, thus further promoting
dermal aging (Quan et al., 2011). In addition, Ezure et al. found that
complement factor D secreted from senescent dermal fibroblasts
induces increased MMP-1 expression and negatively impacts matrix
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production in surrounding young dermal fibroblasts in vitro (Ezure
et al., 2019). Collectively, these changes disrupt the complex
interaction of dermal fibroblasts with the ECM, including by
reducing the mechanical forces exerted on the fibroblasts, which
negatively affects their morphology and function (Qin et al., 2014;
Fisher et al., 2016).

In addition, Solé-Boldo et al. (2020) found that there is
decrease in the number and heterogeneity of dermal
fibroblasts with age. These skin aging-associated changes were
mainly observed in the papillary dermis rather than in the
reticular dermis with decreased papillary dermal fibroblasts
(Mine et al., 2008). Collectively, these changes impair the
structure and function of the skin and create a
microenvironment that is conducive to age-related skin
pathologies, including delayed wound healing and skin cancer
(Woodley, 2017; Blair et al., 2020; Fane and Weeraratna, 2020;
Xue et al., 2022).

Furthermore, senescent fibroblasts contribute to skin aging by
interacting with other neighboring cells, including keratinocytes and
melanocytes, through paracrine signaling. Insulin-like growth factor
(IGF)-1, which is mainly released by dermal fibroblasts, is known to
be necessary for mesenchymal stem cell niches and the modulation
of epidermal cell proliferation and differentiation (Hodak et al.,
1996; Youssef et al., 2017; Muraguchi et al., 2019). In addition, IGF-1
signaling is essential for the appropriate protective responses (DNA
damage response, DDR) of keratinocytes to UV-induced DNA
damage by inducing favorable cellular senescence or DNA
damage repair (Lewis et al., 2009; Loesch et al., 2016; Alkawar
et al., 2020). Aged skin exhibits decreased synthesis of IGF-1, which
results in the epidermal atrophy and proliferation of keratinocytes
with unrepaired DNA, leading to the development of age-related
non-melanoma skin cancers (Stachelscheid et al., 2008; Lewis et al.,
2009; Alkawar et al., 2020; Wlaschek et al., 2021). More recently,
Terlecki-Zaniewicz et al. (2019) showed that extracellular vesicles
derived from the senescent fibroblasts affect the terminal
differentiation of keratinocytes with decreased expression levels
of involucrin in a 2D cell culture model, which is reported to be
a major initiator of cornification. Senescent fibroblasts have also
been suggested to contribute to age-related pigmentation by
inducing activation of melanocytes through several factors such
as secreted frizzled-related protein 2, growth differentiation factor
15, and stromal-derived factor 1 (Kim et al., 2016; Yoon et al., 2018;
Kim Y. et al., 2020; Kim J. C. et al., 2022). This was also supported by
reduced epidermal pigmentation after radiofrequency treatment
with reduced p16INK4A-positive senescent fibroblasts in a pilot
study by (Kim et al., 2019).

There are also age-related structural changes in the dermal
elastic fibers. Elastic fiber networks are composed of elastin and
fibrillin, forming a unique arrangement within the dermis. In
the upper papillary dermis, oxytalan fibers, which are
microfibrillar bundles abundant in fibrillin, play a role in
preventing the epidermis from easily detaching from the
dermo-epidermal junction (DEJ) by forming a candlestick-
shaped organic bond with the DEJ (Heinz, 2021). In
photoaged skin, the oxytalan fibers undergo degeneration,
and the elastic fibers of upper dermis are degraded by
elastolytic enzymes including MMPs and neutrophil elastases
(Bernstein et al., 1996; Naylor et al., 2011; Bonta et al., 2013). In

addition, the altered, disorganized elastic fibers gradually
accumulate in the reticular dermis, appearing as solar
elastosis. In contrast, intrinsic skin aging is characterized by
overall depletion of the elastic fiber network (El-Domyati et al.,
2002).

Recently, it has been recognized that the basement
membrane not only provides physical support for
keratinocytes but also plays a major role in the regulation of
signaling and communication between epidermal and dermal
cells (Tsutsui et al., 2021). With age, the protein components of
the basement membrane zone, including collagen 7 and 17,
nidogen, integrins, and laminin 332, decrease, and the papillary
pattern of the DEJ flattens (Iriyama et al., 2011a; Amano, 2016;
Roig-Rosello and Rousselle, 2020). It has been postulated that
disrupted basement membranes allow soluble melanogenic
regulators from senescent fibroblasts to more easily stimulate
melanocyte activity and accelerate age-related pigmentation
(Goyarts et al., 2007; Amano, 2009; Iriyama et al., 2011b;
Bastonini et al., 2016). Iriyama et al. (2022) have shown that
the inhibition of basement membrane degradation with MMP
inhibitors and heparinase inhibitors promotes the deposition of
laminin-511 at the DEJ, which in turn promotes the secretion of
platelet-derived growth factor consisting of 2 B subunits
(PDGF-BB). Expression of COL5A1 and COL1A1 genes was
increased in the fibroblasts stimulated with PDGF-BB,
suggesting increased collagen expression in the papillary
dermis (Iriyama et al., 2022). Therefore, strengthening the
damaged basement membrane and restoring epidermal-
dermal integrity have been proposed as new anti-ageing
targets, but the actual clinical significance of the DEJ and its
role in aging requires much further research.

Age-related changes in proteoglycans (PGs) and
glycosaminoglycans (GAGs) are very complex, and there are
still many unknown aspects (Oh et al., 2011b; Lee et al., 2016).
Although previous research has often reported conflicting
results in the changes of PGs and GAGs, they have received
attention as promising targets for skin rejuvenation (Oh et al.,
2011a; Oh et al., 2011b; Lee et al., 2016; Wang et al., 2021).
Unlike collagen, which has a relatively long half-life, GAGs,
such as hyaluronic acid (HA), have a much shorter half-life
ranging from 24 to 36 h in human skin (Jiang et al., 2007;
Fallacara et al., 2018). While the regulation of collagen
metabolism takes a long time to show any visible changes,
GAGs have the advantage that a treatment effect can be
observed within a short period of time. However, further
follow-up studies are needed to understand the role of PGs
and GAGs in skin aging.

Table 1 summarizes the differences between intrinsic and
extrinsic aging of the skin that have been generally recognized to
date. However, recent research suggests that this distinction is
not as clear-cut as textbooks describe and can often be
confusing. It would be more clinically appropriate to
understand that middle-aged adults visiting dermatologic
clinics for skin rejuvenation undergo concomitant intrinsic
and extrinsic aging. Thus, the histological and molecular
changes related to skin aging that have been acknowledged to
date should be organized to establish an appropriate
treatment plan.
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3 Management of skin aging: focus on
dermal aging

3.1 UV protection

As mentioned above, UV rays play a critical role in cellular aging
and skin aging; thus, Sun protection—using sunscreen or protective
clothing and staying in the shade—is the most basic and essential
option for preventing skin aging and slowing the rate of aging-
related changes.

3.2 Energy-based devices

Various energy-based devices, such as lasers, high-intensity
focused ultrasound (HFU), and radiofrequency (RF) devices, have
grown increasingly common to address aging phenotypes. These
devices deliver thermal energy to the reticular dermis and
subcutaneous tissue, which subsequently causes tissue contraction
and stimulates neocollagenesis, leading to improvement in skin
laxity and rhytides (Orringer et al., 2012; Majidian et al., 2021;
Chen et al., 2022).

An ablative laser, such as a CO2 laser or an Erbium:YAG laser,
which requires re-epithelialization, has been used in the past, but
recently, a non-ablative fractional laser has been used mainly to
reduce the downtime and risk of adverse events including
postinflammatory hyperpigmentation or scarring (Nanni and
Alster, 1998; Chen et al., 2022). In contrast, fractional picosecond
lasers produce nonthermal, photomechanical stress in the dermis
and promote fibroblast proliferation (Tanghetti, 2016; K et al.,
2021). Recent ex vivo animal and clinical studies also support
that 532-nm and 1,064-nm picosecond Nd:YAG lasers may
improve photoaged skin (Yim et al., 2020; Connor et al., 2021;
Han et al., 2023). In addition, various lasers including low fluence

Q-switched Nd:YAG lasers, Q-switched ruby lasers, and Q-switched
alexandrite lasers are effective for treating aging-related
pigmentation through selective photothermolysis of melanosomes
(Anderson and Parrish, 1983; Sadighha et al., 2008; Vachiramon
et al., 2016).

HFU is a noninvasive and safe treatment that focuses ultrasound
waves on a localized area, much like a magnifying glass focuses light,
causing thermal coagulation of the subcutaneous tissue and
rearranging the collagen and elastic fibers of the subcutaneous
tissue without affecting the skin surface. In contrast, RF devices
deliver relatively diffuse thermal energy throughout the dermis (Suh
et al., 2015). Kwon et al. (2021) showed that bipolar RF device
treatment reduces the number of p16INK4A-positive senescent
fibroblasts and increases the expression of HSP70 and HSP90 in
melasma skin. More recently, fractional RF microneedling devices
that deliver targeted bipolar RF energy directly to the reticular
dermis via microneedles have been developed. Fractional RF
microneedling devices have also shown to be effective in treating
UV-induced hyperpigmentation by upregulating the anti-
senescence pathways (Rangarajan et al., 2013; Yoon et al., 2018;
Lee et al., 2021).

Furthermore, recent evidence suggests that a light emitting
diode (LED) can also ameliorate UV-induced changes in dermal
fibroblasts and promote collagen synthesis by photobiomodulation
(Baez and Reilly, 2007; Kim et al., 2015; Mamalis and Jagdeo, 2018;
Hong et al., 2022). The mechanisms underlying the effects of LEDs
aren’t fully understood, and clinical data are insufficient; therefore,
further studies are needed.

3.3 Topical agents

A variety of topical agents have been used to improve the signs of
skin aging, but retinoids are currently considered the most effective

TABLE 1 Histologic and biochemical differences between intrinsic and extrinsic aging.

Components Intrinsic aging Extrinsic aging References

Epidermal HA ↓ ↓ or ↔ Oh et al. (2011)

Lee et al. (2016)

Dermal HA ↔ ↑ Oh et al. (2011)

Reduced extractability Shortened length Lee et al. (2016)

Dermal sGAGs ↓ ↑ Oh et al. (2011)

Clumped Lee et al. (2016)

Proteins Slightly altered structures Markedly altered structures, Hydrophobic Gniadecka et al. (1998)

Collagen fibers Quan et al. (2004)

↓ ↑ or ↔ Li et al. (2013)

Thinned, less soluble Thickened, more soluble Sharma et al. (2020)

Fragmented, disorganized fibers Chung et al. (2000)

Decreased neocollagenesis, Type III to I ratio ↑ Wlaschek et al. (2021)

Elastic fibers ↓ ↑ (Accumulation of altered fibers) Bernstein et al. (1996)

El-Domyati et al. (2002)

Naylor et al. (2011)

Bonta et al. (2013)

Abbreviations: GAG, glycosaminoglycan; HA, hyaluronic acid; sGAG, sulfated glycosaminoglycan.
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option (Samuel et al., 2005). Retinoids have been shown to increase
types Ⅰ, III, and VII collagen and GAG deposition and to normalize
elastic tissue organization (Woodley et al., 1990). In addition, topical
tretinoin treatment also induces thickening of the granular layer and
compaction of the stratum corneum, resulting in smooth skin
(Berardesca et al., 1990). Clinical evidence also supports the role
of topical retinoids in the reversal of skin aging phenotypes
including fine wrinkling, dyschromia, and skin elasticity
(Weinstein et al., 1991; Olsen et al., 1992; Darlenski et al., 2010;
Milosheska and Roskar, 2022). Topical antioxidants, such as
ascorbic acid (vitamin C), have also been shown to be effective in
reducing skin aging. Ascorbic acid reduces ROS and is required for
collagen synthesis in human skin fibroblasts. However, its poor skin
penetration and chemical instability can reduce its clinical efficacy.
In addition, chemical peeling using topical alpha-hydroxy acids,
such as glycolic or lactic acid, have been shown to improve the
quality of elastic fibers, stimulate GAG and collagen production in
the dermis, and increase the epidermal thickness (Bernstein et al.,
2001; Hussein et al., 2008). Tricholoroacetic acid peels also have
been shown to promote neocollagenesis and improve benign
pigmented lesions (Kitzmiller et al., 2003; Chun et al., 2004).

The development of new formulations through advances in
nanotechnology and drug delivery systems is expected to further
increase the use of topical agents as well as cosmeceuticals.
Microneedling with a dermaroller has also been used to enhance
drug delivery by creating pores in the stratum corneum, promoting
neocollagenesis through release of various growth factors during the
micro-wound healing process (Hou et al., 2017). Similarly,
microdermabrasion using aluminum oxide crystals has been
shown to be effective in improving the drug delivery and
promoting dermal collagen synthesis. Recently, there is increasing
evidence that stem cell-derived exosomes can ameliorate aging-
related changes including UV-induced DNA damage and ROS
generation and MMP-1 expression in senescent fibroblasts, and
promote the expression of ECM proteins (Oh et al., 2018; Gao et al.,
2021). The autologous stromal vascular fraction extracted from
adipose tissue-derived stem cells has also shown to be effective in
dermal rejuvenation due to its regenerative capacity (Charles-de-Sa
et al., 2015; Rigotti et al., 2016). Still, clinical data are still insufficient,
and further studies are needed to elucidate the anti-aging effects of
exosomes and the stromal vascular fraction.

3.4 Injectables

The use of injectables in the dermatologic field has been
increasing to improve rhytides and restore the soft tissue
volume in aged skin. HA is one of the most commonly used
injectables available due to its biocompatibility, ease of use, and
reversibility. The injection of HA causes the dermis to stretch
mechanically and enhances the structural support of the ECM,
which activates dermal fibroblasts and leads to the production
of type I collagen by activating the TGF-β signaling pathway
(Wang et al., 2007; Turlier et al., 2013; Landau and Fagien,
2015). In addition, HA directly activates fibroblasts through its
hyaluronan receptors, CD44 and CD168, causing them to
migrate and proliferate (Mast et al., 1993; Turley et al.,
2002). HA injection is also effective in improving skin

hydration and texture (Ayatollahi et al., 2020). Recently, a
novel EGF-containing HA filler was shown to induce types I
and III collagen production and downregulate the expression of
MMP-9 (Shin et al., 2022). In addition to HA, biocompatible
polymers such as poly-L-lactic acid, polycaprolactone, and
polynucleotide have also been found to stimulate fibroblasts
and induce neocollagenesis and are thus increasingly used as
injectables (Park et al., 2016; Kim J. H. et al., 2020; Oh et al.,
2021). Furthermore, botulinum toxin injection not only
overcomes hyperkinetic rhytides but also improves skin
elasticity, skin hydration level and decrease skin erythema
via suppression of neurogenic inflammation (Gazerani et al.,
2009; Zhu et al., 2017). Table 2 summarizes the mechanisms of
skin aging and corresponding dermatological interventions.

3.5 Future perspectives

In very recent decades, researchers have attempted to counteract
aging using senotherapeutics that selectively target senescent cells.
Senotherapeutics are categorized into two groups. Senolytic drugs
selectively eliminate senescent cells, and senomorphic drugs inhibit
the negative effects of their SASPs. Since the combination of dasatinib
and quercetin was proposed as the first senolytic drug to suppress
genes that are increased in senescent cells, many studies have shown
that various substances such as ABT-737, ABT-263, A1155463, and
fiestin have anti-aging properties (Zhu et al., 2015; Thompson et al.,
2022).

In particular, ABT-263 and ABT-737, which are Bcl-2
inhibitors, have been found to selectively eliminate SA β-gal-
positive senescent cells in skin both in vitro and ex vivo
(Victorelli et al., 2019; Kim et al., 2022a; Kim et al., 2022b; Park
et al., 2022). Kim and his colleagues demonstrated that either ABT-
263 or ABT-737 treatment selectively eliminated dermal fibroblasts
in an intrinsic skin aging mouse model (Kim et al., 2022a). They also
showed that the treatment increased the collagen density, epidermal
thickness, and keratinocyte proliferation while reducing SASPs
including MMP-1 and IL-6. After, this team revealed that
treatment with ABT-263 and ABT-737 also attenuated the
induction of MMPs and decreased collagen density in the
photoaging mouse model (Kim et al., 2022b). In addition, ABT-
263 showed potential in reducing pigmentation caused by
photoaging in human skin inducing apoptosis of p16INK4A-
positive fibroblasts with its senolytic activity, resulting in
decreased levels of melanin and tyrosinase activity (Park et al., 2022).

One of the most notable targets of senomorphic agents is
the mechanistic/mammalian target of rapamycin (mTOR)
pathway, which regulates cellular metabolism and is linked
to cellular growth, proliferation, and autophagy (Papadopoli
et al., 2019). The mTOR pathway is also involved in the
synthesis of SASPs (Cayo et al., 2021). Rapamycin, an
mTOR inhibitor, exhibited significant reduction in
senescence markers and SASPs as well as oxidative cellular
stress in UV-induced photoaged human dermal fibroblasts (Bai
et al., 2021). Moreover, Chung et al. revealed the potential anti-
aging effect of topical application of rapamycin (an mTOR
inhibitor) (Chung et al., 2019). A total of 17 subjects over the
age of 40 years with age-related photoaging of the skin applied
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a rapamycin-containing hand cream to the dorsum of one hand
and a placebo hand cream to the other hand daily for 8 months
and found that the rapamycin-treated hand had a decrease in
p16 and an increase in collagen VII protein.

Taken together, these promising results suggest that
senotherapeutics may be a novel therapeutic option for skin
aging; however, the limitations of these drugs, such as their
specificity, selectivity, and efficiency, still need to be addressed,

TABLE 2 Mechanisms of skin aging and dermatologic interventions to counteract them.

Clinical properties Histological/Molecular changes Strategy

Roughness • Microdermabrasion

SC compaction ↑ • Superficial chemical peels

Epidermal thickness ↓ • Microneedling, fractional lasers, FRFM

Epidermal HA ↓ • AHA, RA, EGF, peptides, estrogen, biopolymers (PDRN, PN)

• Moisturization, LMWHA, acetylated HA

Solar lentigines • TCA peels

Elongation of RRs • Lasers (CO2, Er:YAG, ablative fractional laser)

Mutations of KC/MC genes • FRFM

MC No. ↑, melanogenesis ↑ • Selective photothermolysis

• IPL, low-fluence Q-switched Nd:YAG laser

Wrinkles Epidermal thickness ↓ • Microdermabrasion, superficial chemical peels, RA

• Microneedling, fractional lasers, FRFM

ROS → Inflammatory cytokines ↑ • Antioxidants, exosomes, GFs, PRP, SVF

→ MMPs ↑ • Biopolymers (PDRN, PN)

→ Degradation of ECM proteins • Lasers, IPL, RF, HFUS

• Synthetic polymers (PLA, PCL, PDO)

More dermal changes in photoaged skin • Photoprotection

Sagging ROS → MMPs ↑ • Antioxidants, biopolymers, synthetic polymers, GFs, HFUS

• Fibroblast stimulation by EBDs

Elastic fiber degeneration • Biopolymers, synthetic polymers, PRP, SVF

Collagen degradation • Fat injection, fillers

Remaining disorganized elastic fibers • Ablative fractional lasers, FRFM

Inelasticity Solar elastosis • Repeated chemical peels, topical RA

• Ablative fractional lasers, FRFM

Neutrophil elastase ↑ • Antioxidants

Edema Vascular leakage ↑ • Massage and drainage (mechanical, US, RF, shock wave, acoustic wave)

→ Fluid retention

Intervascular distance ↑ (loosely woven collagen network) • Fibroblast stimulation (EBDs, injectables)

Ectatic vessels with atrophic walls • Selective photothermolysis, FRFM

Telangiectasia Collagen and elastic fibers ↓ • Fibroblast stimulation (EBDs, injectables)

Redness Perivascular inflammation • Antioxidants, PRP, exosomes, PDRN, PN

Purpura Neurogenic inflammation • HFUS

• Botulinum toxin, mild cryotherapy

Abbreviations: AHA, alpha-hydroxy acid; EBD, energy-based device; ECM, extracellular matrix; EGF, epidermal growth factor; FRFM, fractional radiofrequency microneedling; GF, growth

factor; HA, hyaluronic acid; HFUS, high-frequency ultrasound; IL, interleukin; IPL, intense pulsed light; KC, keratinocyte; LMWHA, low-molecular weight hyaluronic acid; MC, melanocyte;

MMP, matrix metalloproteinase; PCL, polycaprolactone; PDO, polydioxanone; PDRN, polydeoxyribonucleotide; PLA, poly (lactic acid); PN, polynucleotide; PRP, platelet-rich plasma; RA,

retinoic acid; RF, radiofrequency; ROS, reactive oxygen species; RR, rete ridge; SC, stratum corneum; SVF, stromal vascular fraction; TCA, trichloroacetic acid; TNF, tumor necrosis factor; US,

ultrasound.
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and their mechanisms of action and side effects must be better
understood.

4 Conclusion

In conclusion, skin aging is a complex process that involves
numerous biological and biochemical changes, and clinicians must
have a thorough comprehension of skin aging physiology to devise
an effective treatment plan. It is hoped that this narrative review will aid
medical professionals in developing treatment plans to combat aging and
gain amore complete understanding of the intricate process of skin aging.
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