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Abstract

Background: Male infertility is an important issue that causes low production in the animal industry. To solve the
male fertility crisis in the animal industry, the prediction of sperm quality is the most important step. Sperm RNA is
the potential marker for male fertility prediction. We hypothesized that the expression of functional genes related

artificial insemination of boar semen.

to fertilization will be the best target for male fertility prediction markers. To investigate optimum male fertility
prediction marker, we compared target genes expression level and a wide range of field data acquired from

Results: Among the genes related to acrosomal vesicle exocytosis and sperm-oocyte fusion, equatorin (EQTN),
zona pellucida sperm-binding protein 4 (ZP4), and sperm acrosome membrane-associated protein 3 exhibited high
accuracy (70%, 90%, and 70%, respectively) as markers to evaluate male fertility. Combinations of EQTN-ZP4, ZP4-
protein unc-13 homolog B, and ZP4-regulating synaptic membrane exocytosis protein 1 (RIMST) showed the
highest prediction value, and all these markers are involved in the acrosome reaction.

Conclusion: The £QTN-ZP4 model was efficient in clustering the high-fertility group and may be useful for selection
of animal that has superior fertility in the livestock industry. Compared to the EQTN-ZP4 model, the ZP4-RIMST
model was more efficient in clustering the low-fertility group and may be useful in the diagnosis of male infertility
in humans and other animals. The appointed translational animal model and established biomarker combination
can be widely used in various scientific fields such as biomedical science.
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Introduction

Male infertility is a severe problem that extends across
all animals. In humans, increasing male infertility
threatens the deterioration of next-generation and even-
tually, the entire human race. The livestock industry
comprising cow, pig, and chicken also suffers from male
fertility issues. In cows and pigs, male infertility is dir-
ectly correlated with the economics of the livestock
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industry and world food production. Concerning this
issue, many scientists point out that a decrease in sperm
quality causes male infertility. Therefore, the precise as-
sessment of sperm quality is the first step to treat male
infertility. Traditionally, sperm quality is evaluated
employing laboratory techniques assessing sperm motil-
ity and viability [1, 2]. However, the clinical acceptance
of these methods is still uncertain in many species [3, 4].

There is an emphasis on the importance of an omics
approach to predict male fertility, instead of conven-
tional laboratory assays [5-7]. Many studies indicate the
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potential of sperm RNA as a diagnostic tool for assessing
male infertility [8-10]. Spermatozoa contain mRNAs,
fragmented tRNAs, tsRNAs, miRNAs, IncRNAs, piRNAs,
and siRNAs [11, 12]. Sperm RNAs are delivered to the
oocyte [13] and serve critical roles like transportation of
paternal phenotype [14—17], epigenetic modification of
offspring genome [18], and aid the detection of tran-
scripts to guide normal embryogenesis and implantation
[19]. Moreover, comprehensive omics studies have re-
vealed that the differential expression of sperm RNA is
related to different fertility statuses in humans, porcine,
bovine, ovine, and equine species [20-24]. Despite the
functional and clinical importance of sperm RNA, stud-
ies that use RNA to evaluate male fertility are still in the
experimental stage due to the lack of an accurate fertility
model for clinical trials.

Pig, as an animal model, contributes greatly to bio-
medical research, particularly studies on obesity, arth-
ritis, cardiovascular disease, skin and eye conditions, and
xenotransplantation [25, 26]. Compared to rodent
models, pigs are more physiologically related to humans
[27]. In addition, pig fertility is digitized accurately
through artificial insemination (AI) results [28]. Consid-
ering such diverse characteristics, pigs are an adequate
animal model to study the clinical acceptance of sperm
RNA on male fertility in animals, including humans.

The sperm-oocyte interaction is the starting point of
embryonic development, and for successful interaction,
all molecular mechanisms must work in harmony [29].
Before sperm-oocyte interaction, the acrosome of the
sperm undergoes several changes for fusion with the
zona pellucida. This biological process, called the acro-
some reaction, involves acrosomal exocytosis, substruc-
ture remodeling, and other biochemical modifications
[30]. These processes are inevitable for the successful fu-
sion of sperm to the oocyte plasma membrane in single
fertilization [31]. The normal functioning of genes re-
lated to the aforementioned mechanisms leads to fertility
success, and the expression pattern of genes is closely
related to the corresponding mechanisms. While such
genes provide early clues regarding male fertility in a ro-
dent model [13], little is known about their function in
humans and other large animals. Considering their im-
portant roles in rodents, we postulated that they may
play a key role in male fertility in other large animals.
Therefore, in this study, we aimed to identify male fertil-
ity markers by screening the mRNA expression levels of
genes that encode proteins crucial for acrosomal vesicle
exocytosis and sperm—oocyte fusion in pig spermatozoa.
To understand the physiological roles of these genes in
male fertility in other large animals, we selected pig as
the translational animal model of male fertility. We also
concluded the accuracy and sensitivity of our protocol
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by employing large samples of boar semen representing
a wide range of levels of field data.

Materials and methods

Experimental design

Firstly, ‘acrosomal vesicle exocytosis’ and ‘sperm-egg fu-
sion’ related genes were listed to investigate relevant
boar fertility prediction marker models.

Secondly, to narrow down target genes, high (average
litter size =13.97 +0.07)- and low (average litter size =
11.17 + 0.13)-fertility representative samples (n = 3) were
chosen based on total litter size data after Al trials. The
differentially expressed genes in high- and low-fertility
groups were progressed to further process.

Thirdly, the expression of genes from the second step
was tested in 20 randomly selected Yorkshire boars and
then compared with litter size. The genes that were sig-
nificantly correlated with litter size were subjected to
marker evaluation with the receiver operating character-
istic (ROC) curve analysis.

Finally, each evaluated markers were combined to im-
prove boar fertility prediction value. Multiple marker
model predictability of litter size (over and under cut-off
value) was evaluated with ROC curve analysis. Multiple
marker models which exhibited outstanding prediction
value in the previous analysis were subjected to further
statistical analysis. The predictability of marker models
to distinguish boars into three groups (high, medium,
and low) was evaluated to develop an optimum
combination.

Animal care

All procedures involving animals were approved by the
Institutional Animal Care and Use Committee of
Chung-Ang University (approval number: 2017-00018).
All boars and sows used in the experiment were reared
at 20 £ 5°C under a 2:1 light/dark cycle, continuous air
circulation, and appropriate feed and water.

Sperm sample preparation

A total of 26 Yorkshire boar (body weight over 90 kg
and age between 9 to 24 months) semen was collected
using the gloved-hand technique [32] from Sunjin Co.
(Danyang, Korea). The motile spermatozoa were sepa-
rated from semen with discontinuous 35% and 70% Per-
coll gradient (Sigma-Aldrich Co., St. Louis, MO, USA)
[33]. The spermatozoa were cultured using modified tis-
sue culture media 199 (containing 10% fetal bovine
serum [v/v], 0.91 mmol/L sodium pyruvate, 3.05 mmol/L
D-glucose, 2.92 mmol/L calcium lactate, and 2.2 g/L so-
dium bicarbonate) (Sigma-Aldrich Co.) under 5% CO,
and at 37°C for 30 min [34]. The sperm samples were
pelleted and then deep-frozen with liquid nitrogen (-
196 °C) and stored at — 80 °C before use.
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Sperm motility and motion kinematics assessment

Sperm motility and motion kinematics were analyzed by
a computer-assisted sperm analysis system (SAIS-Plus
ver.10.1; Medical Supply, Seoul, Korea) [35]. Washed
spermatozoa were resuspended in modified tissue cul-
ture media 199. Then, under a microscope, the motility
(%), hyperactivation (HYP; %), curvilinear velocity (VCL;
um/s), straight-line velocity (VSL; pum/s), average path
velocity (VAP; pum/s), linearity (LIN; %), beat cross fre-
quency (BCF; Hz), wobble (WOB; %), and mean ampli-
tude of head lateral displacement (ALH; %) of the
spermatozoa were measured on a pre-heated (37°C)
Makler counting chamber (Sefi Medical Instruments,
Haifa, Israel). For a single analysis, 200—-300 spermatozoa
were subjected, and all samples were analyzed three
times.

Capacitation status assessment

The spermatozoa were stained with chlortetracycline
(Sigma-Aldrich Co.) and Hoechst 33258 (Sigma-Aldrich
Co.) and their capacitation status were measured in ap-
proximately 400 spermatozoa per slide [36, 37]. Each
sample was smeared into three slides. Briefly, the incu-
bated spermatozoa are stained with Hoechst 33258 solu-
tion. Then, the excess dye was inactivated with a 2%
polyvinylpyrrolidone (Sigma-Aldrich) solution. Stained
spermatozoa were pelleted and then resuspended in
600 uL. of PBS and 600 puL of chlortetracycline (CTC)
fluorescence solution (750 mmol/L CTC in 5 pL buffer;
20 mmol/L Tris, 130 mmol/L sodium chloride, and 5
mmol/L cysteine, pH 7.4) (Sigma-Aldrich). The stained
samples were counted under epifluorescence illumin-
ation with UV BP 340-380/LP 425 and BP 450-490/LP
515 excitation/emission filters for Hoechst 33258 and
CTC, respectively, using a Microphot-FXA microscope
(Nikon, Tokyo, Japan). Sperm capacitation status was
further classified into four categories: live non-
capacitated (F; yellow fluorescence distributed evenly
throughout the sperm head), live capacitated (B; yellow
fluorescence over the acrosome region and a dark post-
acrosome region), acrosome-reacted (AR; showing no
fluorescence over the head), and dead (D; nuclei with
blue fluorescence within the sperm head).

Sperm RNA isolation

Sperm RNA was isolated according to a previous study
[38]. Briefly, sperm numbers were adjusted to 40-50 x
10° cells/mL. Sperm pellets were suspended in non-toxic
guanidine-isothiocyanate lysis buffer containing -
mercaptoethanol (40 pL/mL; Sigma-Aldrich Co.) and ho-
mogenized using a 20G syringe. TRIzol (500 pL) (Invi-
trogen, Carlsbad, CA, USA) and chloroform (200 pL)
were added to the homogenized sample and centrifuged
at 12,000 x g for 25 min. After centrifugation, the upper

(2022) 13:84

Page 3 of 11

layer (500 pL) was moved to a fresh tube and mixed with
pure ethanol (500 pL) (Sigma-Aldrich Co.). Sperm RNA
was attached to a spin cartridge and washed with the
PureLink RNA Mini Kit (Invitrogen) wash buffer 1 and
2. The isolated RNA was immersed in 20 puL of nuclease-
free water (60 °C). The quality (260/280 ratio) and quan-
tity of isolated RNA were measured using an Epoch Mi-
croplate Spectrophotometer (BioTek, Winooski, VT,
USA).

Reverse transcription-quantitative real-time polymerase
chain reaction

Reverse transcription was performed using PrimeScript
1st strand ¢cDNA Synthesis Kit (Takara Bio, Inc., Shiga,
Japan) according to the manufacturer’s protocol. Total
400 ng of sperm RNA from each sample was reverse
transcribed and 8-11pug of ¢cDNAs were yielded. The
relative expression of target genes was quantified using
the 7500 fast real-time PCR system (Applied Biosystems,
Foster City, CA, USA). SYBR Green PCR master mix
(Applied Biosystems) was used. The total reaction vol-
ume was 20 puL (100 ng of cDNA), and the cycling condi-
tions were set to initial denaturation at 95°C (10 min)
followed by 40 cycles at 95 °C for denaturation (15s) and
60°C for annealing (60s). The results were analyzed
using the 7500 Software v2.3 (Thermo Fisher Scientific,
Waltham, MA, USA) using the 2*%“Y method. All
primers used for qPCR were designed based on
Sscrofall.l Genome Assembly from The Swine Genome
Sequencing Consortium (Additional file 1: Table S1).

Artificial insemination

Male fertility status of randomly selected 20 Yorkshire
boars was evaluated from the results obtained after Al
using their semen. Boar semen was diluted with 100 mL
of the Beltsville thawing solution (30 x 10° sperm cells/
mL) [39]. Al was performed twice per estrus [40] in an
average of 19.3 + 1.2 sows per boar (total 386 trials). The
average number of piglets born was considered as the
male fertility status of the corresponding boar.

Bioinformatics

The Gene Ontology database was used to categorize tar-
get genes related with the functional classes “acrosomal
vesicle exocytosis” and “sperm—egg fusion.” The listed
genes were applied to the Pathway Studio program
(Elsevier) to visualize their biological functions.

Statistics

All data obtained were tested for normality and homo-
geneity of variance. The normality test (Shapiro—Wilk
test), homogeneity of variances test (Levene’s test), Stu-
dent’s t-test, linear and multiple regression test, and
ROC curve analysis were performed using the SPSS v1.8



Pang et al. Journal of Animal Science and Biotechnology

software (SPSS, Inc., Chicago, IL, USA). principal com-
ponent analysis (PCA), k-medoids clustering, silhouette
plotting, and heatmap analysis were conducted using the
R software (RStudio, Boston, MA, USA). P<0.05 was
considered to indicate significantly different results and
was correlated with fertility. Standard error of the mean
was used to show sampling distribution.

Results

Sperm motility, motion kinematics, and capacitation
status of boar spermatozoa

The functional parameters of spermatozoa, including
sperm motility, hypermotility, motion kinetics, and cap-
acitation status were analyzed from all boar spermato-
zoa. No functional parameter showed a significant
difference between the high- and low-fertility groups
(Table 1). The sperm motility, motion kinematics, and
capacitation status of 20 randomly selected Yorkshire
boars were shown in Additional file 1: Table S2.

Expression of fertility-related genes in the high- and low-
fertility groups

We found that equatorin (EQTN), zona pellucida sperm-
binding protein 4 (ZP4), regulating synaptic membrane
exocytosis protein 1 (RIMSI), Ras-related protein Rab-
3A (RAB3A), protein unc-13 homolog B (UNC13B), and
synaptotagmin-6 (SY76) are involved in acrosomal
vesicle exocytosis. Moreover, EQTN, Izumo sperm-—egg
fusion protein 1 (IZUMOI), sperm acrosome
membrane-associated protein 3 (SPACA3), CD9, lyso-
zyme like protein 6 (LYZL6), spermatogenesis-associated
protein 46 (SPATA46), and IZUMO1 receptor

Table 1 Functional parameters of spermatozoa and litter size of
the high- and low-fertility groups

High fertility Low fertility
Litter size 13.97 £ 0.07* 1117 £0.13
MOT, % 7294 + 1826 70.19 + 1468
HYP, % 13.19 £ 6.80 12,67 + 757
VCL, pm/s 13459 + 2157 13421 £ 25.00
VSL, um/s 5866 = 9.32 6551 £ 16.53
VAP, um/s 69.96 + 11.02 74.29 £ 14.75
LIN, % 4387 +3.14 49.25 + 796
BCF, Hz 1375 £ 1.10 1409 £ 1.28
WOB, % 5210+ 1.90 5594 + 531
ALH, um 5.96 + 092 6.01 = 1.01
AR, % 268 +0.88 820 £ 6.95
F, % 65.24 + 1042 7692 £ 932
B, % 3208 +10.58 14.88 + 2.80

MOT motility, HYP hyperactivation, VCL curvilinear velocity, VSL straight line
velocity, VAP average path velocity, LIN linearity, BCF beat cross frequency,
WOB wobble, ALH mean amplitude of head lateral displacement, AR acrosome
reacted, F normal, B capacitated. Data are expressed as mean + SEM; *P < 0.05
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(IZUMOIR) are involved in sperm-oocyte fusion. All
genes associated with acrosomal vesicle exocytosis are
differentially expressed in the high and low litter size
groups (Fig. 1A-E; P <0.05). Of the genes categorized in
“sperm—egg fusion” EQTN, IZUMOI1, SPACA3, CD9Y,
and IZUMOIR were differentially expressed in the high
and low litter size groups (Fig. 1E-I and L; P<0.05).
LYZL6 and SPATA46 were not differentially expressed
according to litter size (Fig. 1J and K, P <0.05). Of the
twelve genes investigated, ten differentially expressed
genes were selected to be further evaluated as candidates
for male fertility markers in validation trials.

Assessment of single fertility marker

The expression of genes encoding ZP4, RIMSI, RAB3A,
UNCI3B, SYT6, EQTN, IZUMOI, SPACA3, CD9, and
IZUMOIR were screened in 20 randomly selected boars.
The fertility of boars was significantly correlated with
the expression of EQTN, ZP4, UNCI3B, RIMSI, and
SPACA3 (Fig. 2B-F; P <0.05). The expression pattern of
the genes encoding these five proteins in 20 randomly
selected boars was the same as the expression pattern of
the high- and low-fertility groups. The male fertility pre-
diction value was assessed with ROC curve analysis [41].
The area under the curve ranged from 0.6 to 0.9, and
overall accuracy (OA) ranged from 45% to 90% (Fig. 2A
and Table 2). ZP4 showed the highest values of sensitiv-
ity (SN), specificity (SP), negative predictive value
(NPV), positive predictive value (PPV), and OA, all of
which were 90% (Table 2). The OA of UNCI3B and
RIMS1 were comparatively low (Table 2).

Assessment and optimization of multiple fertility marker
model

To improve the clinical validity of the fertility marker
candidate, we performed multiple regression tests using
all possible marker combinations with EQTN, ZP4,
UNCI3B, RIMS1, and SPACA3. A total of 14 combina-
tions were chosen to identify a significant marker model
to predict male fertility (Table 3, Fig. 3). The combin-
ation of EQTN-ZP4 (SN =100%, SP=100%, NPV =
100%, PPV =100%, OA =100%), ZP4-UNC13B (SN =
100%, SP=100%, NPV =100%, PPV =100%, OA =
100%), and ZP4- RIMSI (SN =100%, SP = 100%, NPV =
100%, PPV =100%, OA =100%) showed outstanding
predictive value (Table 3, Fig. 3A; P <0.05). The combi-
nations of UNC13B-SPACA3-CD9 (SN = 80%, SP = 80%,
NPV =80%, PPV=80% OA=80%) and RIMSI-
SPACA3-CD9 (SN =80%, SP =80%, NPV =80%, PPV =
80%, OA =80%) showed the highest predictive values
among three-marker predictive models (Table 3, Fig. 3B;
P <0.05). The multiple regression model was established
(Fig. 4A-E). In the correlation heatmap, the multiple-
marker models were more clustered and showed higher
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correlation value than the single-marker models (Fig. 5A,
P <0.05). To identify the predictive model most efficient
in diagnosing male fertility in the high-, medium-, and
low-fertility groups, PCA, k-medoids clustering, and sil-
houette plotting were employed. The average litter size
of high-, medium-, and low-fertility groups after cluster-
ing with each prediction model is shown in Additional
file 1: Table S3. The PCA plot showed that the EQTN-

ZP4 model is the most efficient in diagnosing the high-
fertility group (Fig. 4F) compared to other multiple-
marker models (Fig. 4G-J). Moreover, in clustering ana-
lysis, the EQTN-ZP4 model was efficient in clustering
the high-fertility group (Fig. 4F, K, and P) compared to
other multiple-marker models (Fig. 4G-J, L-O, and Q-
T). Compared to EQTN-ZP4, the ZP4-RIMSI and
RIMS1-SPACA3-CD9 models were more effective in
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Table 2 Male fertility prediction value of single markers
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Gene Cut-off value AUC Sensitivity, % Specificity, % NPV, % PPV, % OA, %
EQTN 1.0 0.8 70.0 70.0 70.0 70.0 700
ZP4 12 09 90.0 90.0 90.0 90.0 90.0
UNCI13B 15 06 60.0 50.0 55.6 54.5 550
RIMST 1.1 0.6 50.0 40.0 444 455 45.0
SPACA3 20 038 700 700 70.0 70.0 70.0

AUC Area under the curve. Sensitivity is the percentage of pigs showing true-positive results when tested with mRNA expression. Specificity is the percentage of
pigs showing true-negative results. The positive predictive value (PPV) is the percentage of pigs that tested as positive and simultaneously showed true-positive
litter size. The negative predictive value (NPV) is the percentage of pigs that tested as negative and simultaneously showed true-negative litter size. OA

overall accuracy

clustering the low-fertility group by excluding the high-
and medium-fertility groups (Fig. 4G, J, L, O, Q, and T).

Marker-related diseases and cell processes

To understand the functional significance of the genes
contained in male fertility predictive models, the Path-
way Studio program (v 12.0, Elsevier, Amsterdam, NL)
was used, and the following gene sets were applied to in-
vestigate the changing patterns of marker-related dis-
eases and cell processes: all 12 genes related to
“acrosomal vesicle exocytosis” and “sperm—egg fusion,”
10 differentially expressed genes in the high- and low-
fertility groups, and 5 genes passed the validation trial.
The percentage of fertility-related diseases and cell pro-
cesses changed according to the validation level of each
gene set (Fig. 5B and C). It was the highest when the five
genes that passed validation trials were applied to Path-
way Studio to find related diseases (11.1%; Fig. 5B) and
cell processes (8.7%; Fig. 5C). In fertility-related diseases,

Table 3 Male fertility prediction value of multiple marker models

” « ” «

terms like “infertility,” “germ cell neoplasm,” “male infer-
tility,” and “male sterility” were contained in the pro-
gram (Additional file 2: Table S4). For the fertility-
related cell processes, the terms like “acrosome exocyt-
osis,” “sperm cell function,” “spermatogenesis,” “sperm-
oocyte fusion,” and “sperm cell adhesion” were found
(Additional file 2: Table S4). Specifically, the genes part
of the male fertility predictive model was analyzed to
find the related cell processes. We found that acrosome
reaction is involved in all the two-gene male fertility pre-
dictive models (Fig. 5D—F). We also found that the genes
in the UNC13B-SPACA3-CD9 and RIMS1-SPACA3-CD9
male fertility predictive models played a common role in
membrane fusion (Fig. 5G and H).

Discussion

To the best of our knowledge, no systemic empirical re-
search exists addressing the question of how to translate
basic research findings into new diagnoses in male

Prediction model AUC Sensitivity, % Specificity, % NPV, % PPV, % OA, %
EQTN-ZP4 1.0 100.0 100.0 100.0 100.0 100.0
ZP4-UNC13B 10 100.0 100.0 100.0 100.0 100.0
ZP4-RIMST 1.0 100.0 100.0 100.0 100.0 100.0
UNC13B-CD9 0.6 50.0 50.0 50.0 50.0 50.0
[ZUMOTR-SPACA3 038 70.0 60.0 66.7 63.6 65.0
1ZUMO1-SYT6 0.7 70.0 60.0 66.7 63.6 65.0
SPACA3-CD9 1.0 90.0 80.0 889 81.8 85.0
CD9-RAB3A 038 80.0 80.0 80.0 80.0 80.0
CD9-SYT6 0.8 700 70.0 70.0 70.0 700
UNC13B-1ZUMO1-SYT6 0.7 700 60.0 66.7 63.6 65.0
UNC13B-SPACA3-CD9 09 80.0 80.0 80.0 80.0 80.0
UNCI13B-CD9-SYT6 0.7 700 70.0 70.0 70.0 700
RIMST-SPACA3-CD9 09 80.0 80.0 80.0 80.0 80.0
RIMS1-CD9-SYT6 0.7 70.0 60.0 66.7 63.6 65.0

AUC Area under the curve. Sensitivity is the percentage of pigs showing true-positive results when tested with mRNA expression. Specificity is the percentage of
pigs showing true-negative results. The positive predictive value (PPV) is the percentage of pigs that tested as positive and simultaneously has a true-positive litter
size. The negative predictive value (NPV) is the percentage of pigs that tested as negative or simultaneously had a true-negative litter size. OA overall accuracy
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infertility. This is the first translational study to predict
male infertility using pigs with sperm RNA markers. In
this study, we found that EQTN, ZP4, and SPACA3 ex-
hibited high accuracy as markers to evaluate male fertil-
ity. Combinations of EQTN-ZP4, ZP4-UNCIi3B, and
ZP4-RIMS1 showed the highest prediction value. The
EQTN-ZP4 model was efficient for clustering the high-
fertility group and may be useful for selection of animal
that has superior fertility. Compared to the EQTN-ZP4
model, the ZP4-RIMS1 model was more efficient in clus-
tering the low-fertility group.

Evaluation of sperm quality is critical in the timely
diagnosis and prevention of male infertility. Most diag-
nostic tools analyze the phenotype and morphology of
spermatozoa. However, the clinical value of such current
sperm evaluation methods is still debatable [3] because
of the complexity of processes involved in achieving
male fertility. Rodent models are widely used to under-
stand the highly structured mechanism of male fertility
[42, 43]. The short gestation period and well-established
gene regulation technique are the powerful benefits of
using a rodent model for investigating male fertility.
However, it is hard to apply the findings from studies on
rodents to humans or other large animals directly for
the following reasons: (i) insufficient clinical/phenotypic
information; (ii) lack of field/clinical trial; (iii) the high
genetic diversity of human and other large animals; and
(iv) the genetic differences between rodents and human/
large animals. The pig model has high genetic and

physiological similarities with humans [27, 44] and is a
better candidate for reproductive research than rodent
model. Recently, Yue et al. presented a pig germline gen-
ome engineering technique [45]. Moreover, huge and
delicate fertility data acquired from Al help to get quali-
fied field data. These factors make pigs more accessible
in studying male fertility. Therefore, we selected the pig
as a translational animal model to determine a promin-
ent marker to evaluate male fertility.

Large-scale transcriptomic analysis in many mamma-
lian species has revealed fertility-related differential gene
expressions [20—24]. Although the huge dataset available
is valuable for future male fertility studies, the clinical
application of differentially expressed genes as markers
is uncertain. Recently, our previous studies found fertil-
ity markers to predict male fertility [46—48]. However,
because of the polygenicity of male fertility, a single
marker is not enough to predict male fertility [49, 50].
Thus, we used a multiple-marker approach to establish
an optimum male fertility prediction model. We made
the following efforts: (i) listed the genes related to two
critical biological events that determine fertilization suc-
cess; (ii) found a single marker to predict male fertility
by analyzing field data; (iii) tested combinations of single
markers to establish multiple-marker prediction models,
and (iv) evaluated the multiple-marker prediction
models.

The marker genes ZP4, EQTN, and SPACA3 showed
high accuracy in male fertility prediction. ZP4 is known
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to play a critical role in the taxon-specific binding of the
spermatozoa to the oocyte [51] and induce the acroso-
mal reaction in human spermatozoa in a dose-
dependent manner in humans [52]. Although the func-
tion of the ZP4 protein in spermatozoa is unknown, its
mRNA expression is found in rodents and humans [53].
Evaluation from an evolutionary perspective can help us
understand how ZP4 mRNA expression is associated
with fertilization [54]. In Arabidopsis, short suspensor
transcripts are expressed during male gametogenesis and
conveyed to female gamete for zygotic translation. Pater-
nally derived ZP4 transcripts might affect fertilization by
aiding in detecting transcripts in the zygote.

EQTN is expressed in the equatorial segment of
spermatozoa and induces an acrosome reaction to help
sperm—oocyte fusion [55-57]. EQTN protein was differ-
entially expressed according to the fertility status of the

pig [4]. SPACA3 protein is expressed in cow [58] and
human spermatozoa [59], and it acts by interacting with
other sperm proteins to facilitate fertilization [60]. In
spermatozoa, mRNA-protein interaction is still unclear.
Therefore, it is suggested that sperm mRNAs have roles
separate from the functional roles of sperm proteins. In
another view, a study by Gur and Breitbart suggested the
presence of mitochondrial translation in spermatozoa
[61] and provided insights into the physiological roles of
EQTN and SPACA3 transcripts in spermatozoa. mRNA
levels cannot directly be correlated with protein expres-
sion as post-transcriptional processes are crucial in the
final synthesis of the native protein [62]. Therefore,
EQTN and SPACAS3 transcripts may be associated with
male fertility through the regulation of complex pro-
cesses including acrosome reaction, sperm—oocyte fu-
sion, fertilization, and beyond. Although, the mRNA
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expression of EQTN and SPACA3 are prominent
markers for determining male fertility, the elucidation of
the functional roles of mRNA in sperm warrants further
research.

After identifying single fertility markers, we conducted
multiple regression tests with all possible gene combina-
tions to establish an optimum prediction model. Mul-
tiple markers for the diagnosis of various diseases, such
as cancer and neurological diseases have been developed
[63, 64]. We established the EQTN-ZP4, ZP4-UNCI13B,
and ZP4- RIMSI prediction models that showed 100%
accuracy in the prediction of the fertility status in the
validation trial data. All genes in the three-gene predic-
tion models were related to acrosome reaction. This in-
dicates the importance of acrosome reaction in
fertilization success. Interestingly, ZP4 and UNCI3B
showed “immune response” and “cell differentiation” as
related cell processes. Thus, ZP4 and UNCI13B might be
potential targets for future studies on unraveling the
connection between immune response and fertility.

For further evaluation of the multiple-marker predic-
tion models, PCA and clustering were conducted. PCA
is a powerful tool to combine multiple factors that affect
the main variable and has been used to identify bio-
markers of various diseases [65—-68]. In the livestock in-
dustry, identifying animals with superior genetics is
crucial for increasing productivity. Therefore, the
EQTN-ZP4 model will be useful in this field because of
its efficiency in clustering high-fertility groups. Although
we only focused on the reproductive traits of pigs, other
traits such as immune resistance, heat stress resistance,
and growth rate could be improved by adopting the
same approach. Compared to the EQTN-ZP4 model, the
ZP4- RIMSI and RIMSI-SPACA3-CD9 models were
more efficient in clustering the low-fertility group by

excluding the high- and medium-fertility groups. There-
fore, we suggest that these models may be useful in bio-
medical studies to detect male infertility/sterility.

Conclusions

In conclusion, our study established an efficient male
fertility prediction model using the pig model and mul-
tiple gene combinations. These genes were involved in
biological events critical to male fertility. The ZP4 gene
is highly predictive of male fertility. ZP4 in combination
with EQTN has a higher predictive value and may be
useful in the livestock industry. The EQTN-ZP4 male
fertility prediction model demonstrated outstanding pre-
dictive value in detecting the low-fertility group. There-
fore, we postulate that this pig as a translational model
and biomarker combination can be utilized to diagnose
male infertility/sterility. However, as our study was con-
ducted in a single pig stud, validation of our proposed
prediction model requires further investigation and
trans-species evaluation.
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