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Abstract

Federated learning (FL) has emerged as a promising distributed machine learning technique. It has the potential to play a key role in future
Internet of Things (IoT) networks by ensuring the security and privacy of user data combined with efficient utilization of communication
resources. This paper addresses the challenge of maximizing energy efficiency in FL systems. We employed simultaneous wireless information
and power transfer (SWIPT) and multi-carrier non-orthogonal multiple access (MC-NOMA) techniques. Also, we jointly optimized power
allocation and central processing unit (CPU) resource allocation to minimize latency-constrained energy consumption. We formulated an
optimization problem using a Markov decision process (MDP) and utilized a deep deterministic policy gradient (DDPG) reinforcement
learning algorithm to solve our MDP problem. We tested the proposed algorithm through extensive simulations and confirmed it converges
in a stable manner and provides enhanced energy efficiency compared to conventional schemes.
© 2023 The Authors. Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The development and future evolution of wireless systems
indicate a preference towards decentralization. This is due
to privacy concerns and limited communication resources for
data transmission, which makes it infeasible for all wireless
devices to send their gathered data to a central data center.
Centralized machine learning algorithms and analysis rely on
data being readily available. Therefore, distributed learning
frameworks are gaining demand and would allow wireless
devices to collaboratively construct a shared learning model by
training their local data. The emerging federated learning (FL)
framework contains some of the most promising distributed
learning algorithms and is expected to be adopted in future
Internet of Things (IoT) systems.
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In federated learning, wireless devices collectively perform
a learning task by simply uploading local learning models to a
base station without needing to share all their training data. For
successful implementation of FL in wireless networks, local
training updates from wireless devices must be transmitted
over wireless links [1].

However, the limited availability of wireless resources,
including bandwidth, transmit power, and delay time, can
adversely affect FL performance. The real world constraints
of wireless devices pose a significant challenge for FL deploy-
ment. We must prioritize energy efficiency and delay reduction
in optimizing FL implementation to overcome the limitations
posed by wireless networks.

1.1. Related works and contributions

Recently, many research efforts have focused on reducing
energy consumption and latency for FL in wireless
networks [2–7]. In [2], Zhu et al. decreased latency by em-
ploying a broadband analog aggregation multi-access scheme
that leveraged the waveform superposition property of a multi-
access channel. In [3], Zeng et al. focused on reducing
ient federated learning algorithm with SWIPT and MC-NOMA, ICT Express (2023),
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Table 1
Comparison of proposed approach and existing studies.

Reference/ Indicators Uploading Delay efficiency Accuracy Convergence speed Energy efficiency

[2] Synchronous O

[3–6] Synchronous O

[10] Asynchronous O

[11–13] Asynchronous O O

Proposed Asynchronous O O O O
(

energy consumption while maintaining adequate learning
performance through bandwidth allocation and scheduling op-
timization. Next, Tran et al. [4] minimized both local
computation and wireless transmission energy by optimiz-
ing adjustments between latency and energy consumption.
In [5], Wu et al. minimized the total energy consumption of
a base station (BS) under simultaneous wireless information
and power transfer (SWIPT)-assisted FL networks with non-
orthogonal multiple access (NOMA). Li et al. [6] minimized
long-term energy consumption while ensuring FL convergence
in a SWIPT-assisted FL network through dynamic resource
allocation and UE scheduling. Finally, Chen et al. [7] delved
into the complexities associated with minimizing the FL loss
function. Their investigation considered not only the intri-
cacies of local computation but also factored in the energy
expended during the transmission process.

However, the proposed solutions in [2–9] require syn-
chronous uploading of learning models from all users. Real
world limitations surrounding this issue significantly degrade
convergence of their proposed FL systems. To address this
issue, recent works have investigated asynchronous uploading
from all users [10–13]. Bouzinis et al. [10] minimized the total
delay in an FL round by jointly optimizing computational and
communication-related resources. In [11], Yang et al. aimed
to minimize the overall energy consumption of the system by
considering local computing energy and wireless transmission
energy while also satisfying a latency constraint. Next, Pham
et al. [12] maximized the efficiency of unmanned aerial vehicle
(UAV) transmit power to solve user equipment (UE) battery
limitations for sustainable UAV-based FL wireless networks.
Finally, in [13], Pham et al. aimed to reduce energy consump-
tion for both an airborne server and UE to promote sustainable
FL in a UAV-based system with edge computing and wireless
power transfer.

On the other hand, the prevailing designs of FL model have
predominantly concentrated on optimizing some fundamental
performance indicators, commonly referred to represent by
metrics include convergence speed, latency efficiency, en-
ergy efficiency, and the accuracy of the model classified into
synchronous uploading and asynchronous uploading. How-
ever, it is noteworthy that, in many instances, these indicators
have been addressed separately, as outlined in Table 1. This
compartmentalized approach to addressing model accuracy,
convergence speed, and energy efficiency has been a common

trend in existing FL designs.

2

Fig. 1. The system model.

1.2. Contributions and organizations

This paper investigates optimal resource allocation to en-
hance energy efficiency for multi-carrier non-orthogonal mul-
tiple access (MC-NOMA) and SWIPT-based FL systems that
support asynchronous uploading. The main contributions of
this work are as follows

• First, we formulated a joint power and central process-
ing unit (CPU) resource allocation problem that mini-
mizes energy consumption while satisfying the latency
constraint in federated learning systems.
• Second, we transformed this joint optimization prob-

lem into a Markov decision process (MDP) formula-
tion, which is a NP-hard problem, and proposed a deep
deterministic policy gradient (DDPG)-based reinforce-
ment learning algorithm to efficiently utilize a continuous
variables action set.
• Third, we showed the algorithms’ polynomial complexity

and stable convergence. Also, through extensive sim-
ulations over line-of-sight (LoS) and non-line-of-sight
(NLoS) channels, we proved its enhanced energy effi-
ciency compared with other baseline schemes.

2. System model and problem formulation

2.1. SWIPT-assisted MC-NOMA network

We consider a FL system that consists of a BS as shown
in Fig. 1. The BS is equipped with a FL server and N =

{1, 2, . . . , N } rechargeable battery-powered IoT user devices
UEs). For downlink transmission, the FL server broadcasts
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Fig. 2. A system diagram illustrates how FL, SWIPT, and MC-NOMA are
leveraged.

the global learning model to all UEs. Meanwhile, in the uplink,
we employ MC-NOMA transmission with M = {1, 2, . . . ,M}
ub-channels. The operation period of the system is divided
nto T time slots which are denoted by the index t ∈ T =
1, 2, . . . , T }. We assume that: (i) the communication between
he FL server and each UE is primarily characterized by a
LoS link [12,14,15], and (ii) all channel conditions between

he BS and the UEs remain relatively static and unchanged
uring the FL iterations. The channel gain of UE n ∈ N at
ime slot t ∈ T is calculated as gn,t = ιβ̂0(dn,t )−α , where ι,
, β̂0, and dn,t are the additional attenuation factor, the path

oss exponent, the reference channel gain at d0 = 1m, and the
distance between UE n and the BS, respectively.

For low-energy UE nodes, we employ energy harvesting by
using SWIPT. During the downlink duration, each UE receives
data and harvests energy through power splitting technology.
The ratio between energy harvesting and data reception is
determined by the power splitting ratio κ . Pκn denotes re-
ceiving data while P(1 − κn) denotes harvesting energy with
∈ [0, 1] [5]. Next, we denote the harvested energy of UE
at time slot t by Eha

n,t . Following [5], the harvested energy
rom the FL server of UE n can be expressed as

Eha
n,t = η0τ

down
t P (1− κn) gn,t , (1)

here P , η0 ∈ (0, 1], and gn,t are the transmit power of the
S, the energy conversion efficiency of UE n, and the channel
ain between the UE n and the BS, respectively. In addition,
e assumed that each UE n has a battery level ψn,t (Joule) at

he beginning of timeslot t . Then, the battery level of the UE
n the following timeslot can be expressed as:

n,t+1 = min
(
max(ψn,t − Ecp

n,t − Ecm
n,t + Eha

n,t , 0), ψmax) , (2)

here ψmax , Ecp
n,t and Ecm

n,t denote the maximum battery ca-
acity of a UE, the computation energy consumption, and the

ommunication energy consumption of UE n, respectively.

3

.2. Federated learning process

Each UE has a local dataset D with D data samples
xpressed in bits. All UEs are equipped with an on-board
omputing processor responsible for training a local model.
dditionally, each UE is equipped with an energy circuit

o harness energy transmitted from the FL server. Each UE
an efficiently handle multiple tasks concurrently, including
arvesting energy from the FL server, performing FL tasks,
nd communicating with the FL server [12,13,15]. Without
oss of generality, we also assume that the computational
ower of the FL server is sufficiently fast compared to the UEs.
his ensures that the time required for aggregating all the local
odels at the FL server can be neglected when compared to

he downlink time, the computing time at the UEs, and the
ransmission uplink time [11,12,16].

One FL round with SWIPT and MC-NOMA consists of a
our step process as shown in Fig. 2 with each time duration,
here τ down

t , τ cp
t , τ cm

t and τ agg
t are the model broadcast time,

he energy harvesting time, the model upload time, and the
ime to build a global model, respectively. The detailed process
s as follows:

• Step 1: At the beginning of t , the FL server broadcasts
the global parameter ωt and transfers energy to all UEs
with τ down

t .
• Step 2: Each UE receives the harvested energy from the

FL server and utilizes this energy to train its local model
based on its dataset within τ cp

t .
• Step 3: The UEs transmit their local parameters ωn,t+1 to

the FL server via uplink MC-NOMA with τ cm
t .

• Step 4: Upon receiving the local models, the FL server
aggregates all the local models to construct a global
model within τ agg

t . Subsequently, the server broadcasts
the global parameter ωt+1 to all UEs, initiating the next
time slot.

his process is repeated until the global model converges.

.2.1. Local computation
Let fn,t represent the computational capacity of UE n at

ime slot t , which is measured by the number of CPU cycles
er second. Then, the computation time required by UE n for
ata processing is

cp
n,t =

δLocal
n,t Cn,t Dn,t

fn,t
, (3)

here Cn,t , Dn,t , and δLocal
n,t are the number of CPU cycles

required for computing one bit of data, the data samples, and
the number of local iterations of UE n, respectively.

2.2.2. Transmission
Regarding MC-NOMA in the uplink, Nm,t and |Nm,t | de-

note the set of UEs and the number of UEs assigned to
the mth sub-channel, respectively. Meanwhile, each UE can
only associate with one sub-channel. Each sub-channel can
accommodate multiple UEs simultaneously. Without loss of

generality, UEs are assigned to one sub-channel based on their
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espective channel conditions, i.e. Nm,t∩Nm′,t = ∅ where m ′ ∈
and m ′ ̸= m. In this work, we omitted the optimization of

electing user-subcarrier association and rather applied a fixed
ule. We will consider the optimization of association variables
n our future work.

At the BS, for each sub-channel, the FL server uses suc-
essive interference cancellation (SIC) to decode the uploaded
ocal model parameters of the UEs. In this sub-section, to
void possible confusion, we use kth index to indicate the users
ithin the group of users associated to mth sub-channel. Let
k,m,t be the decoding order of UE k ∈ Nm,t . We followed
widely adopted assumption where the decoding order of the
Es at the BS is determined using the ascending order of their

hannel gains. The achievable rate of UE k over sub-channel
at time slot t can be expressed as [17]:

k,m,t = Bt log2

(
1+

pk,m,t gk,m,t∑k−1
k′=1 pk′,m,t gk′,m,t + Btσ 2

)
, k, k′ ∈ Nm,t ,

(4)

here Bt , pk,m,t , gk,m,t , and σ 2 are the bandwidth allocated to
ach sub-channel, the transmit power of UE k, the channel
ain between BS and UE k, and the power spectral den-
ity of the Gaussian noise at time slot t , respectively. Also,

k−1
k′=1 pk′,m,t gk′,m,t is the intra-interference that user k suffers

rom other users k ′ sharing the same sub-channel with decod-
ng order less than πk,m,t . We assume that all UEs have the
ame model size Z , which must be transmitted to the FL server
ithin τt [15]. Then, the transmission time of UE k is

cm
k,m,t =

Z
rk,m,t

. (5)

.2.3. Energy consumption model
According to [11], the computation energy consumption of

E n at time slot t is expressed as

Ecp
n,t = ζ δ

Local
n,t Cn,t Dn,t f 2

n,t , (6)

here ζ is a coefficient that depends on the hardware and
hip architecture [11]. Meanwhile, the communication energy
onsumption of UE n is defined as

Ecm
n,t = pn,tτ

cm
n,t , (7)

here pn,t and τ cm
n,t are the transmit power and the trans-

mission time of UE n, respectively. Finally, the total energy
onsumption of UE n can be expressed as

En,t = Ecp
n,t + Ecm

n,t . (8)

.3. Problem formulation

We aimed to develop a FL framework that minimizes the
otal energy consumption of all UEs under a latency constraint
nd various resource constraints. The minimization problem
an be expressed as

min
p,f

T∑
t=1

( N∑
n=1

En,t

)
(9)

.t. 0 ≤ p ≤ pmax ,∀n ∈ N ,∀t ∈ T (10)
n,t n

4

f min
n ≤ fn,t ≤ f max

n ,∀n ∈ N ,∀t ∈ T (11)

τ down
n,t + τ

cp
n,t + τ

cm
n,t ≤ τt ,∀t ∈ T (12)

Ecp
n,t + Ecm

n,t ≤ ψn,t + Eha
n,t ,∀n ∈ N ,∀t ∈ T , (13)

where p = [p1, . . . ,pT ] ∈ RT×N with pt = [p1,t , . . . , pN ,t ]
∈ R1×N and f = [f1, . . . , fT ] ∈ RT×N with ft =

[ f1,t , . . . , fN ,t ] ∈ R1×N . Constraint (10) denotes the transmis-
sion power allocation for the UEs, where pmax

n denotes the
maximum transmit power of UE n. Constraint (11) denotes
the CPU frequency allocation for the UEs, where f min

n and
f max
n denote minimum and maximum frequency, respectively.

Constraint (12) ensures that each global round should be
completed within the time frame τt . Finally, constraint (13)
ensures that the sum of the residual battery and the harvested
energy for each UE should always be greater than or equal
to the total energy consumption needed for local training and
uploading.

3. Proposed solution

Due to the real nature of control variables and the coupling
relations among the variables as in (4), the original problem
is a non-convex and non-deterministic polynomial time (NP)-
hard problem. We reformulated the optimization problem as
an MDP and developed a DDPG-based reinforcement learning
algorithm to effectively solve the MDP.

3.1. Markov decision process

To find a dynamic solution for (9), we transformed the
problem into an MDP model. This model is defined as a tuple
of (S,A,R), where S is the set that represents the actual
state of the environment; A is the action space set; and R:
S × A → R is the reward space set that the agent receives
from the environment when it takes an action a at state s. Next,
γ ∈ [0, 1) is denoted as the discount factor. The objective of
the agent is to learn a mapping function, which is termed a
policy, µ: S → A that maximizes the expected long-term
discounted reward. We clarify the definitions of the notions
of state space, action space, reward, and penalty as follows:

1. State space: At each time slot t , the agent observes the
network environment. The system state is determined at
the beginning of time slot t as st =

{ψn,t , τ
cp
n,t−1, τ

cm
n,t−1}n∈N . This includes the current en-

ergy level, the computation time, and the transmission
time from the previous time slot for each UE, respec-
tively. By using the historical information from previous
steps, the learning behavior would be more stable.

2. Action space: The action taken in response to the cur-
rent state st is defined as at = {pn,t , fn,t }n∈N . This
includes the transmit power and the CPU frequency for
each UE, respectively. The action space A encompasses
all possible continuous values of the relevant variables.

3. Reward and penalty: We define an energy consumption
metric (ECM) for UE n at the end of time slot t as

R = −E , (14)
n,t n,t



M.C. Ho, A.T. Tran, D. Lee et al. ICT Express xxx (xxxx) xxx

3

a
l
t
e
w
f
m
a
c
l
e
t
t
p
a
a
t
d

µ

w
T
e

b

A
a
r
T
(
s
d

f
a
T
i

∇

w

t
l

w

t
a
θ

c

a

w
t
g
t
1

t
t
s
a
s
c

3

c
a
i

where En,t = Ecp
n,t + Ecm

n,t . Penalties play a pivotal
role in influencing the agent’s behavior and can aid in
achieving specific objectives or constraints during the
learning process. We include two distinct penalties: an
energy penalty and a time penalty.
The energy penalty of each time slot is defined based on
the constraint (13), which is peenergy

t =
∑

n∈N peenergy
n,t .

Thus, The energy penalty of UE n is defined as

peenergy
n,t = max(Ecp

n,t + Ecm
n,t − (ψn,t + Eha

n,t ), 0). (15)

Additionally, the system is stable when the batteries
of all UEs have enough energy. We denote a battery
variable Ψn,t that describes the energy state of UE n,
where

Ψn,t =

{
1, UE satisfies (13),
0, otherwise. (16)

Next, the time penalty of each time slot is defined based
on constraint (12): petime

t =
∑

n∈N petime
n,t , where

petime
n,t =

{
0, UE satisfies (12),
0.001, otherwise. (17)

The objective is to maximize the ECM for all UEs under
a latency constraint and various resource constraints.
The agent receives an instant reward (r : S ×A→ R)
after making decision at when in state st . This is defined
as

rt =

N∑
n=1

(
Rn,t − peenergy

n,t − petime
n,t

)
. (18)

.2. DDPG-based energy efficient FL framework

We have developed a DDPG-based reinforcement learning
lgorithm to solve our MDP problem. The deep reinforcement
earning (DRL) agent is deployed on the FL server to learn
he optimal decision policy. Our DDPG algorithm utilizes an
xtension of the actor-critic approach, where deep neural net-
orks (DNNs) are employed to approximate policy and value

unctions [18]. This algorithm is adept at managing decision-
aking processes that entail extensive state and continuous

ction spaces. The extensive state space and action space
ontained in this work are due to the many variables and
arge number of UEs. We introduce a DDPG-based energy
fficient FL algorithm, outlined in 1, as an effective solution
o address our optimization problem. The key components of
he DDPG algorithm include utilizing two primary DNNs: a
olicy network and a critic network. Specifically, our DDPG
pproach parameterizes the policy µ(s|θµ) with action given
state as a = µ(s|θµ) and the critic network Q(s, a|θQ) with

he weight parameter sets θµ and θQ , respectively. We aim to
etermine the optimal policy, defined as
∗(s|θµ) = arg max

a∈A

{
Q
(
st , at |θ

Q)} , (19)

here Q
(
st , at |θ

Q
)

is the value of chosen action at at state st .
hus, we find the optimal joint action a∗ that maximizes the

∗
(

Q
)

xpected cumulative Q-value Q st , at |θ . We achieve this B

5

y solving the following Bellman equation:

Q∗
(
st , at |θ

Q)
= E

[
max
a∈A

[
rt + γ Q∗

(
st+1, at+1|θ

Q)]] . (20)

t time slot t , after observing the system state st , the agent
pplies action at to the environment. Subsequently, the agent
eceives an instant reward rt at the end of the time slot.
he system then transits to state st+1. Each experience tuple

st , at , rt , st+1) is stored in a replay buffer H with a limited
ize. Additionally, DDPG incorporates a target actor network,
enoted as µ′(s|θµ), and a target critic network, denoted as

Q′(s, a|θQ), to improve the stability of network training.
The agent is equipped with an actor network, responsible

or learning the policy. This network takes the current state
s input and generates the corresponding action as an output.
he actor network is updated using a policy gradient, which

s defined as:

θµ J (θµ) ≈ EH∈H
[
∇θµµ(st |θ

µ)∇at Q(st , at |θ
Q)|at = µ(st |θ

µ)
]
,

(21)

here H is the batch sample data.
At the same time, the critic network takes both the state and

he action as inputs and produces the Q-value as its output. The
oss function of the critic network is defined as:

L(θ Q) = EH∈H
[
(yt − Q(st , at |θ

Q))2] , (22)

here yt is expressed as

yt = rt + γ Q′(st+1, µ
′(st+1|θ

µ)|θQ). (23)

To maintain the stability of yt during the training process,
he parameters of the target networks are slowly updated with

small coefficient, ξ ∈ [0, 1], as θµ′
= ξθµ

+ (1− ξ )θµ′ and
Q′
= ξθ Q

+ (1− ξ )θ Q′ .
Next, to improve the exploration during the training pro-

ess, the continuous policy is modified as follows:
∗

t = µ (st |θ
µ)+ χ0, (24)

here χ0 is added noise to ensure adequate exploration of
he current policy. We use the Ornstein Uhlenbeck process to
enerate this noise [19]. Next, we employ sigmoid activation
o scale the actor’s output within the range of [0,1]. Algorithm

outlines our DDPG-based energy efficient FL framework.
In addition, the learning rate in the DDPG algorithm con-

rols the step size of the parameter updates during the op-
imization process. Particularly, it influences how quickly or
lowly the algorithm converges to a solution and the stability
nd robustness of the training process. In ‘Simulation Results’
ection, we showed the effects of the learning rate on the
onvergence of the proposed algorithm in Fig. 3.

.3. Complexity analysis

During the training phase, the agent employs its actor and
ritic networks to conduct forward propagation and backprop-
gation for weight updates. The time complexity of system
s evaluated as O(n) with n as the size of the matrices.

esides, DDPG algorithm uses experience replay, a technique
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Algorithm 1 DDPG-based Energy Efficient FL Algorithm
Initialize hyperparameters: γ , the critic learning rate lra, the actor learning
rate lrc, H , H, χ .
Initialize the actor network, µ(s|θµ), and the critic network, Q(s, a|θQ ) with
weights θµ and θQ .
Initialize the target actor network µ′(s|θµ

′

) and the target critic network
Q′(s, a|θQ′ ) with weights θµ

′

← θµ and θQ′
← θQ .

Initialize a replay buffer H.
for each episode e = 1, 2, ..., emax do

Initialize system state s1 and random action nose χ0.
for t = 1, 2, , , , , T do

Initialize the terminal variable Ψt .
Observe st .
Execute overall action a∗t according to (24).
Observe reward rt with penalties (15), (17) and next state st+1.
Store experience in the buffer H and uniform sample a batch of H

to train the DNNs.
Update the actor network and the critic network.
Update the target actor network and the target critic network.
Update the battery variables Ψn,t according to (16).
Update Ψt according to variables Ψn,t .
if Ψt = 0 do

break.
end for

end for

wherein experiences are stored in a replay buffer and sampled
randomly during the training process. The time complexity of
sampling from the replay buffer is O(1). Consequently, the
time complexity for a single episode during the training phase
can be expressed as O

(
H (I V + (U − 2)V 2

+W V )
)
, where

H represents the batch sample data, U ≥ 2 is the number
f layer, V is the hidden layer size, and I , W denote the
imensions of the input and output layers, respectively. In the
pecific context of the problem, I = 5, where 5 is the sum of
he observation and action space dimensions. Moreover, W is
he output Q-value, equal to 1. In the execution phase, only
orward propagation is necessary for the actor network, result-
ng in a computational complexity of O

(
(U − 2)V 2

+ 5V
)
.

otably, while the computational complexity is affected by the
umber of UEs, it demonstrates that it remains unaffected by
he number of sub-channels during the training phase.

. Simulation results

To evaluate our algorithm, we deployed a network that
onsisted of one BS and 10 UEs. Here, the UEs are randomly
istributed within a circular disc with a radius of 50 m from the
S. The system has three sub-channels, and each sub-channel
as a 1 MHz bandwidth. For our energy harvest model, the BS
ransmit power is P = 40 W, the energy harvesting efficiency
s η0 = 0.8 [5], the power splitting ratio is κ = 0.001 [5],
nd the model broadcast time is τ down

t = 0.01 s. Regarding
ocal UE computation, the maximum CPU frequency for each
E is 1 GHz [15] and the coefficient for the chip is ζ =
0−28 [11]. Finally, the number of local iterations, the amount
f local data, and the workload are randomly selected from
he ranges [1,4] [12], [10,20] Mb [15], and [10,15] cycles
er bit [15], respectively. For wireless communication, the
aximum power for each UE is 10 dB [11], the additional
6

Fig. 3. Convergence of the proposed algorithm under LoS and NLoS
assumption.

Fig. 4. Comparison of system reward and energy consumption under LoS
assumption.

attenuation factor ι = 0.2 [14], and the data size Z = 100
Kb [12]. Regarding DDPG hyper-parameters, the discount
factor γ , steps per episode, the critic learning rate lrc, the actor
earning actor lra, the small coefficient ξ , the batch size H ,
nd Buffer capacity H are 0.99 [5], 150, 1e−2. 1e−3, 1e−3,

1024, and 75,000, respectively. Finally, the duration of each
time slot is defined as τt = 0.5 s, the power spectral density

f the Gaussian noise σ 2 is −174 dBm/Hz [11], the reference
hannel gain at d0 = 1 m is −30 dB [12], and the maximum
attery capacity of a UE is assumed as 100 mJ.

In these simulations, we compared our proposed algorithm
ith competing learning-based schemes: (1) Proximal Policy
ptimization (PPO) scheme: this approach employs the actor-

ritic framework to train a stochastic policy in an on-policy
anner; (2) user power transmit fixed scheme (MC-NOMA-
): in this scheme, the transmit power of all UEs is fixed, while
e optimize the CPU resource allocation with an MC-NOMA
plink; (3) CPU frequency fixed scheme (MC-NOMA-F): in
his scheme, the CPU frequency of all UEs is fixed, while
e optimize the power allocation with an MC-NOMA uplink;

nd (4) random scheme: the agent’s actions in this scheme are
elected randomly.

Fig. 3 illustrates the convergence behavior of our proposed
lgorithm for both LoS and NLoS assumptions under different
earning rates. We can see that the average rewards initially
ncrease for all cases, but they ultimately converge in a stable

anner. It should be noted that the average rewards with learn-
ng rates of 0.1 and 0.01 are quite similar. However, a smaller
earning rate can lead to slower convergence. Consequently,
he optimal reward occurs with a learning rate of 0.01. We
dopted a learning rate of 0.01 for our simulations.

Figs. 4(a) and 5(a) compare the system rewards for differ-
nt schemes. The proposed algorithm outperforms the other
ethods. In comparison to the MC-NOMA-P scheme and
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Fig. 5. Comparison of system reward and energy consumption under NLoS
assumption.

Fig. 6. Effect of the local data size and the number of UEs under LoS
assumption.

Fig. 7. Effect of the local data size and the number of UEs under NLoS
ssumption.

he MC-NOMA-F scheme, the proposed algorithm jointly
ptimizes the transmit power and CPU frequency, while the
ransmit power is fixed for MC-NOMA-P, and the UE CPU
requency is fixed for MC-NOMA-F. Next, when compared
o the PPO scheme, the proposed algorithm provides slightly
etter performance. The DDPG algorithm appears to be more
uitable in this scheme due to uniform random sampling
xperiences from experience buffers instead of sampling the
ransitions of experience as in PPO. This would break the
emporal relations between the consecutive experiences and
elp DDPG become easier to escape local minima than PPO.
igs. 4(b) and 5(b) compare the average energy consumption.
he results indicate that the energy consumptions of the pro-
osed algorithm and the PPO scheme are lower compared
o other schemes. Additionally, the energy efficiency of the
roposed algorithm is slightly better than the PPO scheme.

Figs. 6(a) and 7(a) show the impact of local data size
n the performance. As the local data size increases from
0 Mb to 50 Mb, the average reward for all schemes decreases
ver the total duration. This decrease can be attributed to
7

the fact that the UEs require more energy to train their local
models given the larger local data sizes. Consequently, there
is a significant increase in energy consumption that leads to
decreased performance. The proposed solution consistently
outperforms the competing schemes over different local data
size.

Figs. 6(b) and 7(b) show the impact of the number of
UEs on performance. As the number of UEs increases, the
average reward for all schemes decreases. This decline can be
attributed to the growing interference in each sub-channel as
the number of UEs increases. As a result, the UEs require more
energy to transmit their local models to the FL server. This
causes a decrease in performance across all schemes. How-
ever, it is noteworthy that the proposed solution consistently
outperforms the competing schemes over different number of
UEs.

5. Conclusion

This paper outlined an energy efficient FL system that
includes SWIPT and MC-NOMA. First, we formulated a
joint power and CPU resource allocation problem to mini-
mize energy consumption under a latency constraint. Next,
we transformed this joint optimization problem into an MDP
formulation, and proposed a DDPG-based reinforcement learn-
ing algorithm. Finally, the simulations confirmed that the
proposed algorithm stably converges under different learning
rates and provides enhanced energy efficiency compared with
competing schemes. As a future work, the communication and
energy efficient of federated learning system under satellite
and IRS-assisted network will be investigated.
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