
Received December 12, 2019, accepted March 13, 2020, date of publication March 18, 2020, date of current version April 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981818

HE-Friendly Algorithm for Privacy-
Preserving SVM Training
SAEROM PARK1, JUNYOUNG BYUN2, JOOHEE LEE 3,
JUNG HEE CHEON 3, AND JAEWOOK LEE 2
1Department of Convergence Security Engineering, Sungshin Women’s University, Seoul 02844, South Korea
2Department of Industrial Engineering, Seoul National University, Seoul 08826, South Korea
3Department of Mathematical Sciences, Seoul National University Seoul 08826, South Korea

Corresponding author: Jaewook Lee (jaewook@snu.ac.kr)

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (2018R1D1A1A02085851), and in part by the National Research Foundation of Korea (NRF) Grant funded by the
Korean Government (MSIT) under Grant NRF-2019R1A2C2002358, and Grant NRF-2017R1A5A1015626.

ABSTRACT Support vector machine (SVM) is one of the most popular machine learning algorithms.
It predicts a pre-defined output variable in real-world applications. Machine learning on encrypted data is
becoming more and more important to protect both model information and data against various adversaries.
While some studies have been proposed on inference or prediction phases, few have been reported on
the training phase. Homomorphic encryption (HE) for the arithmetic of approximate numbers scheme
enables efficient arithmetic evaluations of encrypted data of real numbers, which encourages to develop
privacy-preserving machine learning training algorithm. In this study, we propose an HE-friendly algorithm
for the SVM training phase which avoids inefficient operations and numerical instability on an encrypted
domain. The inference phase is also implemented on the encrypted domain with fully-homomorphic
encryption which enables real-time prediction. Our experiment showed that our HE-friendly algorithm
outperformed the state-of-the-art logistic regression classifier with fully homomorphic encryption on toy and
real-world datasets. To the best of our knowledge, this study is the first practical algorithm for training an
SVMmodel with fully homomorphic encryption. Therefore, our result supports the development of practical
applications of the privacy-preserving SVM model.

INDEX TERMS Cryptography, data privacy, fully homomorphic encryption, support vector machine,
privacy-preserving training.

I. INTRODUCTION
Machine learning has gained considerable attention recently,
because of its usefulness in many big data analytic tasks
involving artificial intelligence such asmarketing, healthcare,
and financial services. Data privacy has become more and
more crucial in machine learning since the GDPR (General
Data Protection Regulation) will make the unauthorized use
of data owners’ personal information not only immoral but
also illegal. As a result, there are increasing demands for
services using machine learning algorithms. This is gen-
erating a definite need for new and increasingly effective
privacy-preserving technologies.

The associate editor coordinating the review of this manuscript and

approving it for publication was Berdakh Abibullaev .

Among machine learning algorithms, Support Vector
Machine (SVM) is one of the most popular methods of
classifying data. Despite the explosive popularity of deep
learning, the SVMmodel is still crucial because deep learning
algorithms require a lot of data, and the kernel methods work
well on medium-sized data. The SVM works by learning
complicated nonlinear data patterns using a kernel trick [1].
To find optimal parameters, the training phase of the SVM
model must solve the convex optimization problem, while
for deep learning models it must solve the non-convex opti-
mization problem. In the test phase of the SVM, the decision
function, including some of the training data, called support
vectors (SVs), is calculated to obtain a label for the new data.
Accordingly, to apply SVM models in real-world scenarios,
the model parameters and training data need to be protected
to preserve secrecy.

57414 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1901-2410
https://orcid.org/0000-0002-7085-2220
https://orcid.org/0000-0001-5720-8337
https://orcid.org/0000-0002-8623-5526

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

Fully Homomorphic Encryption (FHE) enables homo-
morphic computations of ciphertexts, which mainly sup-
ports addition and multiplication of encrypted data. Using
FHE, multiple institutes can share their data in an encrypted
form and evaluate machine learning algorithms on them.
Several works have been conducted on secure computa-
tions in machine learning algorithms with fully homomor-
phic encryptions: prediction phases [2]–[4] and training
phases [5], [6] of the Logistic Regression Model (LRM),
decision trees inference phases [7], and deep neural net-
work inference phases [8], [9]. Notably, few works have
been reported that propose private training for support vector
machine (SVM) algorithms using FHE because the SVM
training model has many constraints and non-polynomial
functions.

Recently, an FHE scheme called HEAAN (Homomorphic
Encryption for Arithmetic of Approximate Numbers) [10]
has been developed for approximate arithmetic among real
number data. HEAAN is much more suitable than other
FHE schemes for many machine learning tasks since it
serves homomorphic computations on real number data,
although it requires careful manipulation to employ HEAAN
in such tasks efficiently. In this paper, we present a new
privacy-preserving SVM training algorithm using HEAAN.
In earlier works [11], [12], private training and prediction for
SVM were suggested using additive HE and several secure
multi-party computation protocols. However, their protocols
still reveal some information, such as the number of rounds
of SVM, and they did not present any evidence that their
solutions ccould be used in practice. Several papers have sug-
gested privately computing the SVM kernel [13], [14] using
additive HE and secure multi-party computations, but they
did not implement all of the training phases in an encrypted
form, and implied the use of the computation in the inference
phase. Subsequent works [15]–[21] have only focused on the
private SVM prediction phases. Recently, Barnett et al. [22]
suggested a way to compute a polynomial kernel and to carry
out a prediction for SVM in a privacy-preserving manner
with FHE.

In this study, we propose a secure training algorithm for
the SVM model which protects both model information and
training data without having access to them in a two-party
computation scenario. We can summarize our contributions
as follows.
• First, we introduced the least square SVM algorithm to
replace the constrained optimization problem that con-
tains the inefficient operations in the encrypted domain.

• We propose a privacy-preserving training algorithm for
the SVM model with FHE for the first time, which
is based on a gradient descent for the least squares
problem.

• We devised two different packing strategies with par-
allelizable calculations (comlumn-wise packing and
sub-matrix packing). While column-wise packing con-
sumes one less ciphertext level per iteration, submatrix

packing is scalable for a large matrix and extendible to
the multi-class classification problem.

• We implemented a secure SVM training algorithm and
compared it with the state-of-the-art secure training
algorithm. The training algorithms were evaluated using
various real-world datasets.

II. DESIGN COMPONENTS
A. HOMOMORPHIC ENCRYPTION
FHE is a cryptosystem which enables homomorphic oper-
ations such as additions and multiplications on encrypted
data. After Gentry’s blueprint [23], there have been many
following works [24]–[40], and many applications of FHE
have also emerged for various tasks in medical, genomic,
or financial fields of studies [2], [3], [41]–[43]. Remarkable
improvements in the area of FHE have occured, and HE
libraries such as HElib [39], [44] or YASHE [36] have shown
some good implementation results in their applications [3],
[41], [43], [45]. However, there have been some difficul-
ties adapting the real datasets in general cases since they
only support operations over a fixed integer modulus space.
In fact, the encoding strategy for real data affects the real
time needed for implementation, and especially for huge
dataset with much entropy, any hired encoding strategy can
cause a blow-up in parameters. They can also be very costly
to implement. Recently, a homomorphic encryption scheme
which focuses on the arithmetic of approximate numbers,
namely HEAAN [10], appeared to mitigate this problem. The
main idea of HEAAN is to treat a noise from the hardness
assumption of a scheme as part of an error that occurred in
the approximate computations. Indeed, they suggest a kind
of converting technique to turn a FHE scheme with certain
hardness assumptions into a FHE scheme that carries out
approximate computations efficiently. The efficient compu-
tations enables the development of training algorithms for
machine learning models with FHE.

We describe the algorithms in the (leveled) FHE scheme
HEAAN of depth L here. First, we set the parameters such
as a power of two M ′, integers h, P, p, q0, and qL = pL ·
q0, and a real number σ , where the underlying hard problem
with regard to these parameters and certain secret distribution
achieves λ-bit security for targeted λ. Let 8M ′ (x) be an M ′-
th cyclotomic polynomial of degree φ(M ′) so that 8M ′ (x) =
xM + 1 where φ(M ′) = M .
LetR = Z[x]/(8M ′ (X)) andRq := R/qR for q ∈ Z. The

sequence of moduli {qi}Li=0 for the ciphertext space in each
depth is set by qi = pi ·q0 for 0 < i ≤ L. Then, the ciphertext
space of the level ` is R2

q` . One of the characteristics of
HEAAN is that a plaintext can be an arbitrary complex vector,
and it is encoded into the space R. Let S be a subgroup of
Z∗M ′ satisfying Z∗M ′/S = {±1}, and H = {z = (zj) ∈ Z∗M ′ :
zj = z−j,∀j ∈ Z∗M ′}. For an efficiently computable field
isomorphism φ : R[X]/(8M ′ (X))→ CN/2, the specification
of their algorithms is as follows.

VOLUME 8, 2020 57415

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

• (pk, sk, evk)← KeyGen(1λ):

– Sample random a ← RqL , sparse signed binary
polynomial s in R of h non-zero coefficients, and
e ∈ RP·qL of small sizes of which sizes depend on
σ 2. Calculate b ← −as + e mod qL , and set the
secret key sk ← (1, s) and the public key pk ←
(b, a) ∈ R2

qL .
– Sample random a′ ← RP·qL and e′ ∈ RP·qL of

small sizes of which sizes depend on σ 2. Calculate
b′←−a′s+ e′+Ps′ (mod P ·qL), where s′← s2.
Set the evaluation key evk ← (b′, a′) ∈ R2

P·qL .

• m ∈ R← Encode(Ev ∈ RM ,1): For a plaintext vector
of real numbers Ev ∈ RM , outputm ∈ R← bφ−1(1·Ev)e.

• Ev ∈ RM
← Decode(m ∈ R,1): Output Ev ∈ RM

←

1−1 · φ(m).
• Ec ←Encrypt(pk , m): Sample Er ∈ R2 for which coeffi-
cients of each component would be zero with probabil-
ity 1/2, and ±1 with probability 1/4, respectively, and
e0, e1← DGqL (σ 2).
Output Ec← Er · pk + (m+ e0, e1) ∈ R2

qL .
• m←Decrypt(sk , Ec = (c0, c1)): Output m← c0 + c1 · s
mod q`.

• Ecadd ←Add(Ec1, Ec2): Output Ecadd ← Ec1 + Ec2 mod q`.
• Eccmult ← CMult(evk, a ∈ R, Ec): For Ec ∈ R2

q` , output
Eccmult = a · Ec (mod q`).

• Ecmult ←Mult(evk , Ec1, Ec2): Set c1 = (b1, a1) and c2 =
(b2, a2). Let (d0, d1, d2)← (b1 ·b2, a1 ·b2+a2 ·b1, a1 ·
a2) ∈ R3

q` . Output Ecmult ← (d0, d1) + b 1P · (d2 · evk
mod P · q`)e ∈ R2

q` .
• Ec′←Rescaling`→`′ (Ec): For a level ` ciphertext Ec, output
Ec′← b q`′q` · Ece ∈ R2

q`′
at level `′.

HEAAN also provides a rotation function called Rotate
on plaintext slots. The Rotate function requires a rotation
key rk which is an additionally generated public information,
a ciphertext, and the number of slots to rotate, and produces
a ciphertext of plaintext of rotated slots.

• EcRotate ← Rotate(rk, Ec,R): Given rotation key rk ,
encrypt rotated plaintext vector of Ec by R position and
output EcRotate, where R > 0 represents right-shift, and
R < 0 represents left-shift.

For more details, we recommend [10]. Despite its useful-
ness, using FHE to privately evaluate machine learning algo-
rithms is not straightforward and needs careful manipulation
for the following reasons.

1) The homomorphic evaluation of non-polynomial oper-
ations is still heavy. For example, divisions, compar-
isons, and sortings are very important in many machine
learning algorithms, but they are expensive when eval-
uated on ciphertexts.

2) Even though all the operations can be effectively rep-
resented as a polynomial evaluation, the homomorphic
evaluation would be infeasible if the depth of the circuit
is too high. When the circuit depth is higher than the
limit which is determined by the prefixed parameter set,

bootstrapping becomes necessary which causes over-
whelming costs to the whole process.

3) In our context the FHE only supports component-wise
addition, multiplication, and scalar multiplication
although a vector of multiple plaintexts is packed in a
single ciphertext. Multiplications between the matrix
and vector, or the inner products of vectors, require
redundant rotations which is costly, and therefore a lot
of wasted plaintext slots occurs

4) Accessing a plaintext of an arbitrary index cannot be
done efficiently, since it requires heavy rotations and
multiplications in order to pad 0’s instead of dummy
values. Hence, it is hard to employ some useful tools
such as Gaussian elimination when encrypted.

5) HEAAN supports the approximate computations.
Because of this property, it is required that all eval-
uations to be homomorphically calculated should be
numerically stable to achieve the correctness property.
Hence, arithmetic operations like inversion (for arbi-
trary numbers) are not adequate for FHE.

These properties are fundamental in homomorphic encryp-
tion, and they are crucial to implement the machine learning
algorithm with FHE. Therefore, we aim to implement the
SVM algorithm suggesting a HE-friendly algorithm to avoid
all of them.

B. LEAST SQUARE SUPPORT VECTOR MACHINE
In this study, we aim to develop a scalable secure SVM
training algorithm based on the HEAAN scheme. SVM is one
of the most popular classification algorithms which predict
class labels from training examples in a non-parametric way.
SVMcan find themaximummargin nonlinear classifier in the
high-dimensional space with kernel tricks. We assume that
there are some training examples {(x1, y1), . . . , (xn, yn)} ⊂
Rd
× {−1, 1}. The optimization problem of the linear SVM

model is as follows:

min
w,b,ξ

1
n

n∑
i=1

ξi + λ‖w‖2 (1)

s.t. yi(w · xi + b) ≥ 1− ξi,

ξi ≥ 0,∀i = 1, . . . , n,

where b ∈ R, ξi ∈ R, i = 1, . . . , n, and w ∈ Rd . Using
hinge loss l(ŷ) = max {0, 1− y · ŷ}, the above problem (1)
is equivalent to minimizing 1

n

∑n
i=1 l(w · xi + b) + λ‖w‖2.

However, this problem contains homomorphic encryption
unfriendly functions such as max{0, x}. Although the SVM
problem is usually transformed into a dual problem which
represents quadratic programming, solving the problem is
still difficult to implement on the encrypted domain because
of linear and box constraints. Thus, a secure SVM algorithm
can be formulated based on the least square SVMalgorithm to
train the SVMmodel over encrypted data where all operations
should be represented as Add, Mult and Rotate. In addition,
if the nonlinear basis function φ(x) : Rd

→ Rl is introduced,
we can obtain the nonlinear SVM model. The nonlinear least

57416 VOLUME 8, 2020

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

square SVM problem can be formulated as follows [46]:

min
w,b,ei

1
n

n∑
i=1

ei + λ‖w‖2

s.t. yi [w · φ(xi)+ b] = 1− ei, ∀i = 1, . . . , n, (2)

where w ∈ Rl . From this optimization problem (2), we can
construct the Lagrangian function:

L(w, b, e,α) = λ‖w‖2 +
1
n

n∑
i=1

e2i

−

n∑
i=1

αi{[w · φ(xi)+ b]+ ei − 1} (3)

where dual variables are α = [α1, . . . , αn] ∈ Rn. With the
optimality conditions of the Lagrangian function (3), we can
the following equations:

∂L
∂w
= 0→ w =

n∑
i=1

αiyiφ(xi) (4)

∂L
∂b
= 0→

n∑
i=1

αiyi = 0 (5)

∂L
∂ei
= 0→ ei − λαi = 0, ∀i (6)

∂L
∂αi
= 0→ yi{w · φ(xi)} − 1+ ei = 0, ∀i (7)

We can obtain the following linear system by removing w
and e using (4) and (6):

Ab =
[
0 yT

y �+ λIn

] [
b
α

]
=

[
0
1n

]
= 1̃ (8)

where In ∈ Rn×n is an identity matrix, 1n = [1, 1, . . . , 1]T ∈
Rn, and� ∈ R(n+1)×(n+1) s.t.�i,j = k(xi, xj) = φ(xi)Tφ(xj).
Finally, training the SVM classifier can be reduced to

solving the linear system (8). In this study, we aim to develop
an HE-friendly SVM training algorithm based on the linear
system (8). After obtaining the solution α and b, we can
acquire the following SVM classifier.

y(x) =

∑
m∈Isv

αmymk(x, xm)+ b

 (9)

where Isv = {m|αm > 0}, and k(x, x′) = φ(x)T · φ(x′).
There are three popular approaches for solving a linear

system: 1. obtain the inverse of the matrix; 2. Gaussian elim-
ination (GE); 3. iterative method. First, obtaining the inverse
matrix is not appropriate because it is numerically unsta-
ble and costly on an encrypted domain (O(n3) on plaintext
domain). GE implemented with FHE is also highly inefficient
because GE requires many random accesses and reciprocal
operations. With iterative methods, it is important to examine
the convergence conditions.

Fortunately, our linear system is positive semi-definite
because we usually use Mercer’s kernels such as linear, poly-
nomial, and radial basis function (rbf) kernels. In addition,

we can obtain positive definite linear system by multiplying
AT on both sides in (8). Therefore, both the Gauss-Seidel
method and iterative least-square method can be converged
to the solution of the linear system (8). However, we finally
selected the least-square iterative algorithm as our train-
ing algorithm because the Gauss-Seidel method consumes
ciphertext levels in every coordinate update. In the following
section, we will introduce the HE-friendly least square SVM
algorithm to minimize the expensive operations, and to avoid
numerical instability.

III. TRAINING ALGORITHM FOR SECURE SUPPORT
VECTOR MACHINE
In this study, we propose an HE-friendly support vector
machine algorithm to secure data and model information dur-
ing the training and inference phases. Our algorithm enables
training of the SVM model with FHE, in contranst to most
researches on secure SVM algorithm, which have focused
on either an inference phase with FHE, or training phases
with multi-party computation protocols. We assume that all
inputs are encrypted using the same key instead of using
multiple keys. Therefore, in this section, we explain how
to construct and pack the training data for encryption and
how to implement training and prediction phases using the
HE-friendly operations.

A. DATA PREPARATION
The HEAAN supports encrypting a vector of multiple plain-
texts into one ciphertext with slot-wise operations. For effi-
cient computation, it is essential to design the packing of
plaintexts from a given database. Thus, we propose two dif-
ferent encoding methods depending on the size of the given
data. Suppose that we have n instances x1, x2, . . . , xn ∈
Rd which have d features and their labels y1, y2, . . . , yn ∈
{−1, 1}. First, we constructed the input design matrix
X ∈ Rd×(n+1) with a zero column as follows:

X =
[
0 x1 x2 · · · xn

]
(10)

This matrix is used to build the matrix A in (8) because
most of the kernel matrices can be obtained from XTX ∈
R(n+1)×(n+1). Let the number of slots be m. Then, we can
encode amatrix column-wise ifmax{d, n+1} ≤ m; otherwise
encode to submatrices.

Moreover, when applying previous researches on secure
computations of nonlinear kernels, we can start our algorithm
with the matrix A Other encryption methods can be used
for efficient calculations even if re-encryption is required.
As a result, like the input design matrix, the matrix A will
be encoded column-wise if n + 1 ≤ m; otherwise they can
be encoded to submatrices. If possible, we pack multiple
columns into one ciphertext to make the computations more
efficient. Fig.1 illustrates two types of packing for encrypting
a matrix with ciphertexts c1, . . . , ct .

Depending on the packing method, our training procedure
with FHE uses different algorithms for elementary operations

VOLUME 8, 2020 57417

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

FIGURE 1. Two types of packing methods for encrypting a matrix with
ciphertexts.

and different parallelization strategies for efficient computa-
tions. Therefore, in the next section, we introduce the SVM
training procedure with HE-friendly operations and paral-
lelizable components.

B. TRAINING PHASE
In the training phase, we select the least-square approaches
to solve the linear system (8). The least-square problem has
a unique solution if ATA is positive-definite (PD). How-
ever, obtaining the exact least square solution is still expen-
sive and numerically unstable because it requires computing
(ATA)−1. Thus, to train a secure SVM model we use the
gradient descentmethod for the least square problem, because
the iterative solution can approach to the optimal solution
even when computations on the HEAAN scheme involve
approximation errors. A secure iterative least square algo-
rithm requires matrix multiplications and gradient descent
steps with fully homomorphic encryption.

1) MATRIX MULTIPLICATIONS
Matrix multiplications on an encrypted domain should be
carefully designed because the product of two square n × n
matrices has n3 multiplications and (n−1)n2 additions in the
worst case. Moreover, for the ciphertexts, the cost of multipli-
cation is muchmore expensive than the cost of addition. After
packing the multiple slots into one ciphertext,Rotate enables
the sum of slots and column-unit or row-unit operations.

Our algorithm contains one matrix multiplication to calcu-
lateATA, whereA is a symmetric matrix. We propose differ-
ent efficient matrix multiplication algorithms depending on
the packing method. For simplicity, we can assume that n+1
and m are power-of-two integers where zeros can be padded
tomatrixA to make n+1 be power-of-two. As a result, we can
pack matrix A into t = (n+ 1)2/m ciphertexts Ec1, Ec2, . . . , Ect .
Let the resulting ciphertexts denote Ed1, Ed2, . . . , Edt . Then,
matrix multiplications can be efficiently implemented by par-
allelizing the calculations column-wise because calculating Edi
is not affected by calculating Edj for ∀i 6= j.
We use a dot product formulation for matrix multiplication

because our encryption scheme supports slotwise operations,
and the ciphertext for column i of symmetric matrix A is
the same as for row i of symmetric matrix A. Thus, we can

implement matrix multiplication only with the column-wise
paddings Ec1, . . . , Ect .

Algorithm 1 shows a detailed description of the
encrypted calculation on ATA. Algorithm 1 contains
some sub-functions for the matrix multiplication for
columnwise packing such as CalculateAtAColumns,
ProductMatVec, and PadColumns. For simplicity,
we skipped the mod reduction procedure to make the preci-
sion bits the same. In addition, we slightly modified some
notations for ciphertext operations. For example, we used
Rescaling(Ec; pc) instead of Rescaling`→`′ (Ec) by replacing
the level change with the scaling factor, and we skipped the
key notations such as evk and rk in CMult, Mult and Rotate.

To some extent, our algorithm can inherit the par-
allelizable property of the matrix multiplication as
shown in the main part of algorithm 1. The function
CalculateAtAColumns can be executed concurrently
in different threads because the function execution for each
ciphertext requires the read operation without modifying the
original data matrix. Also, all of the functions reduce the
computational cost by recursively rotating and adding the
ciphertext with log (m/(n+ 1)) times instead of m/(n+ 1).

However, although column-wise packing can be efficient
for calculating AtA with FHE, it cannot support an arbi-
trary large matrix A. Therefore, we propose another packing
method which is scalable for a large matrix. Algorithm 2 is an
alternative algorithm to compute the matrix multiplication on
the encrypted domain. First, the given matrix is divided into
sub-matrices. Each sub-matrix is padded column-wise as a
vector, which is encrypted to a ciphertext. Finally, we obtain
s × s blocks as in Fig.1b. Using the encrypted submatrix
blocks, we peroformed an efficient parallel implementation
of the Fox algorithm.

Our algorithm can generate the maximum s2 threads,
where ProdMatrixIter is executed concurrently in mul-
tiple threads. Therefore, ProdMatrixIter conducts only
s ProdMatrixFoxs which involves expensive operations
such as Mult and Rotate. Although updating Edjl requires
temporary memory locking, this is negligible because of the
low cost of the Add operation. This multithreading approach
enables efficient computations on a large matrix.

In the discussion section, we compare the parallel fox algo-
rithm with the original fox algorithm. ProdMatrixFox
calculates the multiplication of the ciphertexts from two
sub-matrices using the Fox algorithm. ProdMatrixFox
containsExtractDiagonal andRowUpMatrix because
stage k involves row-wise broadcasting of the k-th diagonal of
matrixA, and a column-wise k upward shift ofmatrixB. Thus,
we implemented the encrypted versions of the operations for
vectorized matrices in Algorithm 2. Algorithm 2 allows our
SVM training algorithm to be not only scalable for a large
matrix but also to be extensible to mult-class classification,
just by adding linear complexity. In the discussion section,
we describe the extendible property of this algorithm for the
multi-class SVM problem.

57418 VOLUME 8, 2020

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

Algorithm 1 Matrix Multiplication for Columnwise Packing

input : A symmetric matrix A ∈ R(n+1)×(n+1), ciphertexts Ec1, Ec2, . . . , Ect which have m slots, and the bit precision
parameter pc

output: Ed1, Ed2, . . . , Edt which are the resulting ciphertexts for ATA
1 Encrypt the matrix A column-wisely into Ec1, Ec2, . . . , Ect
2 Denote the set C = {Ec1, . . . , Ect }
3 Define a vector x1 = [x11 , . . . , x

m
1] ∈ Rm where xu1 = 1 if u%(n+ 1) = 1 and xu1 = 0, otherwise.

4 Define a vector zl = [z1l , . . . , z
m
l] ∈ Rm where zul = 1 for u = l(n+ 1), . . . , l(n+ 1)− 1 and zul = 0, otherwise.

5 Generate t threads
6 for i = 1; i ≤ t; i = i+ 1 do

// The below functions are executed concurrently in different threads
7 di =CalculateAtAColumns((C,i))
8 end
/* Define function for calculate the i-th ciphertext for ATA */

9 Function CalculateAtAColumns(C,i):
10 Initialize Ect2 with the ciphertext encrypting a zero matrix
11 for j = 1; j ≤ m/(n+ 1); j = j+ 1 do
12 k = i ∗ (n+ 1)+ j // k-th column of the matrix A
13 Ect1 = PadColumn(Eci,k,n+ 1,m)
14 Ect1 = ProductMatVec(C, Ect1)
15 Ect2← Add

(
Ect2,Rotate(Ect1, j(n+ 1))

)
16 end
17 return Ect2

/* Calculate Matrix-Vector product where (n+ 1)-dimensional vector is repeated
m/(n+ 1) times and encrypted as Ect. */

18 Function ProductMatVec(C, Ect):
19 for i = 1; i ≤ t; i = i+ 1 do
20 Ect1← Rescaling

(
Mult(Eci, Ect); pc

)
21 for j = 0; j < log (m/(n+ 1)); j = j+ 1 do
22 Ect1← Add

(
Ect1,Rotate(Ect1,−2j)

)
23 end
24 a ∈ R← Encode(x1, pc)
25 Ect1← Rescaling(CMult(a, Ect1); pc)
26 for j = 0; j < log(m/(n+ 1)); j = j+ 1 do
27 Ect1← Add(Ect1,Rotate(Ect1, 2j − 2j+

m
n+1))

28 end
29 b ∈ R← Encode(z1, pc)
30 Ect2← Rescaling

(
CMult(b, Ect1); pc

)
31 Ect2← Add(Ect2,Rotate(Ect2, i))
32 end
33 return Ect2

/* Define function to make the padded ciphertext with the k-th column of A */
34 Function PadColumn(Eci, k, n+ 1, m):
35 l = k%m // modulo operation
36 a ∈ R← Encode(zl, pc)
37 Ect ← Rescaling

(
CMult(evk,a, Eci); pc

)
38 for j = 0; j < log(m/(n+ 1)); j = j+ 1 do
39 Ect ← Add

(
Ect,Rotate(Ect, 2j)

)
40 end
41 return Ect
42

2) EFFECT OF PARALLELIZABLE IMPLEMENTATIONS
In this section, we demonstrate the effect of our subma-
trix packing in terms of parallelizable implementation for

matrix multiplication and the extensible implementation to
multi-class classification. In the In SVM model, we need
to deal with the kernel matrix to train the model. In our

VOLUME 8, 2020 57419

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

Algorithm 2 Matrix Multiplication for Submatrix Packing

input : A symmetric matrix A ∈ R(n+1)×(n+1), ciphertexts Ecij which have m slots for i, j = 1, . . . , s for encrypting the
matrix A, and the bit precision parameter pc

output: Edij for i, j = 1, . . . , s which are the resulting ciphertexts for ATA
1 Encrypt the matrix A with sub-matrices into Ecij for i, j = 1, . . . , s
2 Denote C = {Ecij : i, j = 1, . . . , s}, D = {Edij : i, j = 1, . . . , s}, Ci· = {Eci1, . . . , Ecis} and Di· = {Edi1, . . . , Edis}
3 Set b = (n+ 1)/s
4 Define xl is the columnwise padded vector of the matrix that is the l right-shifted identity matrix
5 Define yk (zk) are the columnwise padded vectors of the matrix whose rows above(below) k-th row are ones
including(except) k-th row, and the other rows are zeros.

6 Initialize Edij for i, j = 1, . . . , s with the ciphertext encrypting a zero matrix
7 Generate s2 threads Thread ij for i, j = 1, . . . , s
8 for i = 1; i ≤ s; i = i+ 1 do
9 for j = 1; j ≤ s; j = j+ 1 do
10 k = (i+ j)%s
11 Thread ij←ProdMatrixIter(Dj·, Ecjk , Ck·)
12 end
13 end

/* Calculate j-th row of the resulting matrix at i-th iteration */
14 Function ProdMatrixIter(Dj·, Ecjk , Ck·):
15 for l = 1; l ≤ s; l = l + 1 do
16 Ect ← ProdMatrixFox(Ecjk ,Eckl)

// Lock Edjl for updating

17 Edjl ← Add
(
Edjl, Ect

)
// Unlock Edjl after updating

18 end
19 Function ProdMatrixFox(Ea, Eb):
20 Initialize Ect with the ciphertext encrypting a zero matrix
21 for i = 0; i < log(b); i = i+ 1 do
22 Ect1← ExtractDiagonal(Ea, i), Ect2← RowUpMatrix(Eb, i)
23 Ect ← Add

(
Ect,ReScaling

(
Mult

(
Ect1, Ect2

)
; pc

))
24 end
25 return Ect
26 Function ExtractDiagonal(Ea, k):
27 l = k%b
28 a ∈ R← Encode(xl, pc)
29 Ect ← Rescaling(CMult(a, Ea); pc)
30 for i = 0; i < log b; i = i+ 1 do
31 Ect ← Add(Ect,Rotate(Ect, 2i))
32 end
33 return Ect
34 Function RowUpMatrix(Ea, k):
35 a1← Encode(yk , pc), a2← Encode(zk , pc)
36 Ect1← CMult(Rotate(Ea,−k),a1) Ect2← Rotate(Cmult(Rotate(Ea,−k),a2), b)
37 Ect ← Rescaling(Add(Ect1, Ect2); pc)
38 return Ect

experiment, we used 100 training examples and test exam-
ples, where the base matrix As were 101 × 101 and the
number of blocks was 16). However, when we use the larger
training datasets, more submatrices are needed. In this case,
our multi-threading approach can be much more efficient.
We identified the effect of multithreading by increasing the

number of blocks s in the sub-matrix packing. Fig.2 shows the
relative time which is the ratio of original and multi-threading
multiplications. We found that the relative time increases as
the number of blocks increased. Therefore, if the number of
submatrices is large enough, multithreading makes the matrix
multiplication much more efficient.

57420 VOLUME 8, 2020

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

FIGURE 2. Comparison of original and multi-threading matrix
multiplications. X-axis refers to s in Algorithm 2, and Y-axis refers to the
relative time between the original fox algorithm and the multi-threading
fox algorithm.

3) GRADIENT DESCENT FOR THE LEAST SQUARES PROBLEM
After calculating ATA, we can use the gradient descent
approach to obtain the SVM coefficient α, b in equation (8).
We can designate the vector of the SVM coefficients as β =

[b αT]T . The linear least square problem for equation (8)
is a convex problem which satisfies the Normal equation
ATAβ = AT 1̃ and has one global minimizer β∗. Although
most algorithms for the linear least square problem require
computing matrix inversions, we avoided the matrix inver-
sion because it is highly expensive on an encrypted domain.
Instead, we simply computed the descent direction of the k-th
iteration as p(k) = ATAβ(k)

− AT 1̃. The single iteration
explicitly requires one matrix-vector multiplication and one
vector-vector subtraction, because we can pre-compute ATA
and AT 1̃. We can implement the gradient descent algorithm
because all operations are linear operations and, therefore,
HE-friendly.

C. PREDICTION PHASE
For the prediction phase, we need to construct an SVM
classifier (9) from the trained SVM parameter β = [b αT]T .
Calculating the kernel function k(x, xm) between the new test
data x and training example xm is implemented similarly to
the data construction phase. If we use a polynomial kernel,
this calculation can be implemented with fully homomor-
phic encryption without approximation. To predict the output
value, we need to obtain β ′ = [b (α · y)T]T . Without
decryption, we can obtain β ′ by using matrixA, and the inner
product between the kernel value and β ′ induces the SVM
function (9).

IV. EXPERIMENTS
In this section, we evalulate our secure SVM training algo-
rithm for toy examples and various real-world datasets. We
compare the performance of our model with the logistic
regression model using FHE proposed in [47], which is
currently the state-of-the-art model supporting fully homo-
morphic training. The SVM model was tested for using
the polynomial kernel (SVM-poly) and the rbf kernel

(SVM-rbf). Since both secure training algorithms are based
on the gradient descent method, we compare the average time
per iteration and test accuracy. Moreover, we compare two
packing methods for secure SVM training.

A. DATA DESCRIPTION
1) TOY EXAMPLES
To demonstrate the superiority of our model over various data
distributions, we conducted experiments for two non-linearly
separable synthetic datasets named linear and ring, respec-
tively. Figure 3 illustrates the two-dimensional linear and
ring datasets which have a single binary class label. Both
datasets contain a total 79 data points, where 63 are used
for training, and the rest are used to measure test accuracy.
The linear dataset consists of two overlapping chunks with a
linear decision boundary. The ring dataset has a single mass
wrapped in a ring with a non-linear (circular) boundary.

2) REAL-WORLD DATASETS
We also implemented themodel for 8widely used datasets the
fromUCI data repository [48], and 4 datasets used in [47]. For
the UCI datasets, we excluded categorical variables (>2) as
predictive variables, even if we included the binary variables
which had values of 0 or 1. 100 training samples and 100 test
samples were extracted from each dataset. For the SVM
model, we used the pre-computed A matrix defined in 8.
A detailed description of each dataset can be found in Table.1.

B. EXPERIMENTAL SETTINGS
For a fair comparison, all of the experiments were con-
ducted on a machine with an Intel Xeon CPU E5-2660 v3 @
2.60GHz. 10 iterations of gradient descent were done for both
models. For the logistic regression model, the approximation
degree of the sigmoid function was set to 7 to maximize
accuracy, and the learning rate was the same as that pre-
sented in the paper [47]. The learning rate for SVM train-
ing was chosen in {0.00005, 0.0001, 0.0005, 0.001, 0.005}.
In the polynomial kernel, we used degree 2 polynomial
k(x, x′) = (γ xT x′ + c)2 where γ and c were chosen
in {0.01, 0.05, 0.1, 0.5} and {0.05, 0.1, 0.5, 1}, respectively.
The rbf kernel k(x, x′) = exp (−γ ‖x− x′‖2) was also used,
where γ was selected in {0.1, 0.5, 1, 5, 10}. Table 1 shows
several parameters for encryption that should also be deter-
mined. In the experiment, the value of log(qL) was set to
1200, which is the maximum value available. The value of
log(p) was set to 25. When encrypting a real data matrix
with column-wise packing, the number of sub-ciphertexts
was 101, while the number of blocks for submatrices packing
was 16.

C. RESULTS
Fig.4 shows the classification results for the toy examples.
As shown in the first column, the logistic regression model
showed relatively poor performance, especially for the ring
dataset. This is because the logistic classifier essentially has

VOLUME 8, 2020 57421

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

FIGURE 3. Description of toy examples.

TABLE 1. Description of real datasets.

FIGURE 4. Classification results for test sets of Toy Examples. True label is distinguished by color, ’o’ means correctly classified, and ’x’ means
misclassified.

the simple decision boundary. The SVM model, on the other
hand, was able to classify data very accurately even in nonlin-
ear cases, especially with the rbf kernel, which can find more
complex decision boundaries (including circular boundary).
Also, Table.2 shows that the average computation time for

iteration for the SVMmodel is about 2 times less than that of
the logistic regression model.

The results for the real datasets can be found in Table.3
and Table.4. We implemented our secure SVM training for
12 real-world datasets. The tables contain the classification

57422 VOLUME 8, 2020

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

TABLE 2. Description and results for Toy Datasets. The best result for each dataset is highlighted in bold.

TABLE 3. Results for real datasets with columnwise packing. SVM classification accuracies for plaintexts are also listed in parentheses. The best result for
each dataset is highlighted in bold.

TABLE 4. Results for real datasets with Submatrices packing.

accuracy of plaintext. Both tables show that the SVM model
had better classification accuracy than the logistic regres-
sion model for most of the real-world datasets, because
nonlinear boundaries are appropriate for real-world datasets.
In the SVM model, for 10 iterations, the polynomial ker-
nel seemed to outperform the rbf kernel, but the classifi-
cation accuracy of the plaintext did not, when the results
in the parentheses were compared. We also compared the
computation time for an iteration. Comparing Table.3 and
Table.4, the column-wise packing was always faster than
the submatrix packing with a fixed data size, even though
the number of sub-ciphertexts was larger for column-wise
packing. Therefore, column-wise packing is preferred for
mid-sized datasets, but submatrix packing is scalable and
can be more efficient for a large matrix, because of
multithreading.

V. DISCUSSION
In this study, we proposed a secure SVM training algorithm
for binary classification. However, our submatrix packing
allows it to be efficiently extended to a multi-class SVM
model. The SVM model was originally developed for binary
classification. Thus, there are two approaches that can be
used to transform a multi-class classification into multiple
binary classification problems, the one-versus-one and one-
versus-rest approaches. In the c-class classification problem,
the one-versus-one approach requires solving the c(c− 1)/2
binary classification problems, whereas the one-versus-rest
approach requires solving the c binary classification prob-
lems. When training the SVM, calculatingATA is expensive.
However, in the c-class classification problem, each binary
classification problem can share the matrix A, excep the first
row and the first column of the matrix (label information y).

VOLUME 8, 2020 57423

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

For example, in a one-versus-rest approach, the number of
multiplications to obtain the encrypted ATA increases by
about s × c compared with one binary classification SVM
problem, where s has the same meaning as in Algorithm 2.

VI. CONCLUSION
In this study, we proposed a secure least squares SVM
algorithm for the training phase. To the best of our knowl-
edge, our study is the first to propose an SVM training
algorithm with FHE, because the original SVM training
algorithm contains lots of HE-unfriendly operations and pro-
cedures. We addressed the problem by using a least squares
SVM model which not only makes it possible to avoid
many HE-unfriendly operations, such as comparisons and
non-polynomial functions, but also to reduce the training
procedure to the linear system.

We devised two different packing methods, column-wise
packing and submatrix packing. For small datasets,
column-wise packing is more efficient than submatrix pack-
ing, since column-wise packing requires one less Rescaling
procedure. However, submatrix packing is applicable for an
arbitrary large matrix. We implemented efficient matrix mul-
tiplication by introducing multi-threading approach. More-
over, submatrix packing makes it easy to extend the training
algorithm of the binary classification to multi-class classifi-
cation with a small marginal cost.

In the experimental results, we found that our algorithm
achieved better classification performance for the toy dataset
and most of the real datasets. In addition, the average time
of iteration for our algorithm was efficient because our algo-
rithm does not require any non-polynomial approximate oper-
ations during training iteration. Our training algorithm can be
combined with the state of the art inference algorithms with
FHE for the SVMmodel. Thus, our study enables for an entire
SVM classification algorithm from training to inference to be
with FHE.

REFERENCES
[1] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,

vol. 20, no. 3, pp. 273–297, 1995.
[2] J. W. Bos, K. Lauter, and M. Naehrig, ‘‘Private predictive analysis on

encrypted medical data,’’ J. Biomed. Informat., vol. 50, pp. 234–243,
Aug. 2014.

[3] J. H. Cheon, J. Jeong, J. Lee, and K. Lee, ‘‘Privacy-preserving compu-
tations of predictive medical models with minimax approximation and
non-adjacent form,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur.
Cham, Switzerland: Springer, 2017, pp. 53–74.

[4] Y. Jiang, J. Hamer, C. Wang, X. Jiang, M. Kim, Y. Song, Y. Xia,
N. Mohammed, M. N. Sadat, and S. Wang, ‘‘SecureLR: Secure logistic
regression model via a hybrid cryptographic protocol,’’ IEEE/ACM Trans.
Comput. Biol. Bioinf., vol. 16, no. 1, pp. 113–123, Jan. 2019.

[5] S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong, and
X. Jiang, ‘‘Healer: Homomorphic computation of exact logistic regres-
sion for secure rare disease variants analysis in GWAS,’’ Bioinformatics,
vol. 32, no. 2, pp. 211–218, 2016.

[6] J. H. Cheon, D. Kim, Y. Kim, and Y. Song, ‘‘Ensemble method for
privacy-preserving logistic regression based on homomorphic encryption,’’
IEEE Access, vol. 6, pp. 46938–46948, 2018.

[7] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, ‘‘Privately evaluating
decision trees and random forests,’’ Proc. Privacy Enhancing Technol.,
vol. 2016, no. 4, p. 335, Oct. 2016.

[8] X. Jiang, M. Kim, K. Lauter, and Y. Song, ‘‘Secure outsourced matrix
computation and application to neural networks,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Jan. 2018, pp. 1209–1222.

[9] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, ‘‘CHET: An optimizing compiler
for fully-homomorphic neural-network inferencing,’’ in Proc. 40th ACM
SIGPLAN Conf. Program. Lang. Design Implement. (PLDI), 2019,
pp. 142–156.

[10] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘‘Homomorphic encryption
for arithmetic of approximate numbers,’’ in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur. Cham, Switzerland: Springer, 2017, pp. 409–437.

[11] S. Laur, H. Lipmaa, and T. Mielikäinen, ‘‘Cryptographically private sup-
port vector machines,’’ in Proc. 12th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2006, pp. 618–624.

[12] Y. Hu, L. Fang, and G. He, ‘‘Privacy-preserving SVM classification on
horizontally partitioned data with secure multi-party computation,’’ J. Inf.
Comput. Sci., vol. 6, no. 6, pp. 2341–2347, 2009.

[13] H. Yu, X. Jiang, and J. Vaidya, ‘‘Privacy-preserving SVM using nonlin-
ear kernels on horizontally partitioned data,’’ in Proc. ACM Symp. Appl.
Comput. (SAC), 2006, pp. 603–610.

[14] K.-P. Lin and M.-S. Chen, ‘‘On the design and analysis of the
privacy-preserving SVM classifier,’’ IEEE Trans. Knowl. Data Eng.,
vol. 23, no. 11, pp. 1704–1717, Nov. 2011.

[15] Y. Rahulamathavan, R. C.-W. Phan, S. Veluru, K. Cumanan, and
M. Rajarajan, ‘‘Privacy-preserving multi-class support vector machine for
outsourcing the data classification in cloud,’’ IEEE Trans. Depend. Sec.
Comput., vol. 11, no. 5, pp. 467–479, Sep. 2014.

[16] S. G. Teo, S. Han, and V. C. S. Lee, ‘‘Privacy preserving support vector
machine using non-linear Kernels on Hadoop mahout,’’ in Proc. IEEE 16th
Int. Conf. Comput. Sci. Eng., Dec. 2013, pp. 941–948.

[17] F. Liu, W. K. Ng, and W. Zhang, ‘‘Encrypted SVM for outsourced
data mining,’’ in Proc. IEEE 8th Int. Conf. Cloud Comput., Jun. 2015,
pp. 1085–1092.

[18] M. Z. Omer, H. Gao, and F. Sayed, ‘‘Privacy preserving in distributed
SVM data mining on vertical partitioned data,’’ in Proc. 3rd Int. Conf. Soft
Comput. Mach. Intell. (ISCMI), Nov. 2016, pp. 84–89.

[19] H. Zhu, X. Liu, R. Lu, and H. Li, ‘‘Efficient and privacy-preserving online
medical prediagnosis framework using nonlinear SVM,’’ IEEE J. Biomed.
Health Inform., vol. 21, no. 3, pp. 838–850, May 2017.

[20] L. Wang, J. J. Shi, C. Chen, and S. Zhong, ‘‘Privacy-preserving face
detection based on linear and nonlinear kernels,’’ Multimedia Tools Appl.,
vol. 77, no. 6, pp. 7261–7281, Mar. 2018.

[21] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and
F. Koushanfar, ‘‘Chameleon: A hybrid secure computation framework for
machine learning applications,’’ in Proc. Asia Conf. Comput. Commun.
Secur. (ASIACCS), 2018, pp. 707–721.

[22] A. Barnett, J. Santokhi, M. Simpson, N. P. Smart, C. Stainton-Bygrave,
S. Vivek, and A. Waller, ‘‘Image classification using non-linear support
vectormachines on encrypted data,’’ IACRCryptol. ePrint Arch., vol. 2017,
p. 857, 2017. [Online]. Available: https://eprint.iacr.org/2017/857.pdf

[23] C. Gentry, ‘‘A fully homomorphic encryption scheme,’’ Ph.D. dissertation,
Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 2009. [Online].
Available: http://crypto.stanford.edu/craig

[24] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘Fully homo-
morphic encryption over the integers,’’ in Advances in Cryptology—
EUROCRYPT. Berlin, Germany: Springer, 2010, pp. 24–43.

[25] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, ‘‘Fully homomor-
phic encryption over the integers with shorter public keys,’’ in Advances in
Cryptology—CRYPTO. Berlin, Germany: Springer, 2011, pp. 487–504.

[26] J.-S. Coron, D. Naccache, and M. Tibouchi, ‘‘Public key compression and
modulus switching for fully homomorphic encryption over the integers,’’ in
Advances in Cryptology—EUROCRYPT. Berlin, Germany: Springer, 2012,
pp. 446–464.

[27] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi,
and A. Yun, ‘‘Batch fully homomorphic encryption over the integers,’’ in
Advances in Cryptology—EUROCRYPT. Berlin, Germany: Springer, 2013,
pp. 315–335.

[28] J. H. Cheon, J. Kim, M. S. Lee, and A. Yun, ‘‘CRT-based fully
homomorphic encryption over the integers,’’ Inf. Sci., vol. 310,
pp. 149–162, Jul. 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S002002551500184X

[29] Z. Brakerski and V. Vaikuntanathan, ‘‘Lattice-based FHE as secure
as PKE,’’ in Proc. 5th Conf. Innov. Theor. Comput. Sci. (ITCS).
New York, NY, USA: ACM, 2014, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/2554797.2554799

57424 VOLUME 8, 2020

S. Park et al.: HE-Friendly Algorithm for Privacy-Preserving SVM Training

[30] Z. Brakerski and V. Vaikuntanathan, ‘‘Fully homomorphic encryption from
ring-LWE and security for key dependent messages,’’ in Advances in
Cryptology—CRYPTO. Berlin, Germany: Springer, 2011, pp. 505–524.

[31] Z. Brakerski, ‘‘Fully homomorphic encryption without modulus switching
from classical GapSVP,’’ in Proc. Annu. Cryptol. Conf., Adv. Cryptol.
(CRYPTO). Berlin, Germany: Springer, 2012, pp. 505–524.

[32] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully homo-
morphic encryption without bootstrapping,’’ ACM Trans. Comput. The-
ory, vol. 6, no. 3, pp. 1–36, Jul. 2014, [Online]. Available: http://doi.
acm.org/10.1145/2633600

[33] C. Gentry, S. Halevi, and N. P. Smart, ‘‘Better bootstrapping in fully
homomorphic encryption,’’ in Public Key Cryptography—PKC. Berlin,
Germany: Springer, 2012, pp. 1–16.

[34] C. Gentry, S. Halevi, and N. P. Smart, ‘‘Homomorphic evaluation of the
AES circuit,’’ in Proc. Annu. Cryptol. Conf. Berlin, Germany: Springer,
2012, pp. 850–867.

[35] A. López-Alt, E. Tromer, and V. Vaikuntanathan, ‘‘On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,’’ in
Proc. 44th Symp. Theory Comput. (STOC), 2012, pp. 1219–1234.

[36] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, ‘‘Improved security for a
ring-based fully homomorphic encryption scheme,’’ in Cryptography and
Coding, M. Stam, Ed. Berlin, Germany: Springer, 2013, pp. 45–64.

[37] C. Gentry, A. Sahai, and B.Waters, ‘‘Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based,’’ in Advances in Cryptology—CRYPTO. Berlin, Germany: Springer,
2013, pp. 75–92.

[38] J. H. Cheon andD. Stehlé ‘‘Fully homomophic encryption over the integers
revisited,’’ in Advances in Cryptology—EUROCRYPT. Berlin, Germany:
Springer, 2015, pp. 513–536.

[39] S. Halevi and V. Shoup, ‘‘Bootstrapping for HElib,’’ in Advances
in Cryptology—EUROCRYPT. Berlin, Germany: Springer, 2015,
pp. 641–670.

[40] L. Ducas and D. Micciancio, ‘‘FHEW: Bootstrapping homomorphic
encryption in less than a second,’’ in Advances in Cryptology—
EUROCRYPT. Berlin, Germany: Springer, 2015, pp. 617–640.

[41] M. Naehrig, K. Lauter, and V. Vaikuntanathan, ‘‘Can homomorphic
encryption be practical?’’ in Proc. 3rd ACM Workshop Cloud Comput.
Secur. Workshop (CCSW), 2011, pp. 113–124.

[42] K. Lauter, A. López-Alt, and M. Naehrig, ‘‘Private computation on
encrypted genomic data,’’ in Proc. Int. Conf. Cryptol. Inf. Secur. Latin
Amer. Cham, Switzerland: Springer, 2014, pp. 3–27.

[43] J. H. Cheon, M. Kim, and K. Lauter, ‘‘Homomorphic computation of
edit distance,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur. Berlin,
Germany: Springer, 2015, pp. 194–212.

[44] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully
homomorphic encryption without bootstrapping,’’ in Proc. 3rd Innov.
Theor. Comput. Sci. Conf. (ITCS). New York, NY, USA: ACM, 2012,
pp. 309–325. [Online]. Available: http://doi.acm.org/10.1145/2090236.
2090262

[45] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, ‘‘GAZELLE:
A low latency framework for secure neural network inference,’’ in
Proc. 27th USENIX Secur. Symp. (USENIX Secur.). Baltimore, MD,
USA: USENIX Association, 2018, pp. 1651–1669. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar

[46] J. A. Suykens and J. Vandewalle, ‘‘Least squares support vector machine
classifiers,’’ Neural Process. Lett., vol. 9, no. 3, pp. 293–300, 1999.

[47] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, ‘‘Logistic regression
model training based on the approximate homomorphic encryption,’’ BMC
Med. Genomics, vol. 11, no. 4, p. 83, 2018.

[48] D. Dua and C. Graff. (2017).UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

SAEROM PARK received the B.S. and Ph.D.
degrees in industrial engineering from Seoul
National University, in 2013 and 2018, respec-
tively. She is currently an Assistant Professor with
the Department of Convergence Security Engi-
neering, Sungshin Women’s University, Seoul,
South Korea. Her research interests include kernel
machines, representation learning, transfer learn-
ing, and secure machine learning.

JUNYOUNG BYUN received the B.S. degree in
industrial engineering from Seoul National Uni-
versity, Seoul, South Korea, in 2017. He is cur-
rently a Graduate Student with the Department of
Industrial Engineering, Seoul National University.
His research interests include machine learning
and neural networks.

JOOHEE LEE received the B.S. degree in math-
ematical education from Korea University, Seoul,
South Korea, in 2013. She is currently pursuing
the Ph.D. degree with the Department of Mathe-
matical Science, Seoul National University, South
Korea, advised by Prof. J. H. Cheon. Her cur-
rent research interests include lattice cryptography,
cryptographic protocols, and information security.

JUNG HEE CHEON received the B.S. and Ph.D.
degrees in mathematics from KAIST, in 1991 and
1997, respectively.

He was with ETRI, from 1997 to 2000, Brown
University, in 2000, and ICU, from 2000 to 2003.
He is currently a Professor with the Department
of Mathematical Sciences and the Director of
the Industrial and Mathematical Data Analytics
Research Center (IMDARC), Seoul National Uni-
versity (SNU). His research focuses on compu-

tational number theory, cryptology, and their applications to practical
problems. He received the Best Paper Award in Asiacrypt 2008 and
Eurocrypt 2015. He co-chaired ANTS-XI, Asiacrypt 2015/2016, and Math-
Crypt 2017/2018. He has served as a Program Committee for Crypto,
Eurocrypt, Asiacrypt, and so on. He is also an Associate Editor of Design,
Codes and Cryptography and the Journal of Communication Network, will
join to the editorial board of the Journal of Cryptology which is the most
prestigious journal in Cryptology.

JAEWOOK LEE received the B.S. degree in math-
ematics from Seoul National University, Seoul,
South Korea, in 1993, and the Ph.D. degree in
applied mathematics from Cornell University, in
1999. He is currently a Professor with the Depart-
ment of Industrial Engineering, Seoul National
University. His research interests include machine
learning, neural networks, global optimization,
and their applications to data mining and financial
engineering.

VOLUME 8, 2020 57425

	INTRODUCTION
	DESIGN COMPONENTS
	HOMOMORPHIC ENCRYPTION
	LEAST SQUARE SUPPORT VECTOR MACHINE

	TRAINING ALGORITHM FOR SECURE SUPPORT VECTOR MACHINE
	DATA PREPARATION
	TRAINING PHASE
	MATRIX MULTIPLICATIONS
	EFFECT OF PARALLELIZABLE IMPLEMENTATIONS
	GRADIENT DESCENT FOR THE LEAST SQUARES PROBLEM

	PREDICTION PHASE

	EXPERIMENTS
	DATA DESCRIPTION
	TOY EXAMPLES
	REAL-WORLD DATASETS

	EXPERIMENTAL SETTINGS
	RESULTS

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	SAEROM PARK
	JUNYOUNG BYUN
	JOOHEE LEE
	JUNG HEE CHEON
	JAEWOOK LEE

