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The authors proposed a privacy-preserving evaluation algorithm for
support vector clustering with a fully homomorphic encryption. The
proposed method assigns clustering labels to encrypted test data with
an encrypted support function. This method inherits the advantageous
properties of support vector clustering, which is naturally inductive to
cluster new test data from complex distributions. The authors efficiently
implemented the proposed method with elaborate packing of the plain-
texts and avoiding non-polynomial operations that are not friendly to
homomorphic encryption. These experimental results showed that the
proposed model is effective in terms of clustering performance and has
robustness against the error that occurs from homomorphic evaluation
and approximate operations.

Introduction: Recently, machine learning technologies have success-
fully solved real-world problems in various fields, including biomedical
and financial applications. Sensitive data such as personal data, biomet-
ric data, medical information, and financial information can be used to
construct high-quality machine learning models. Therefore, moral and
legal issues about data protection and privacy use have received atten-
tion, and the conflict between data utilization and protection needs to
be addressed.

Fully homomorphic encryption (FHE), which enables numerical op-
erations on encrypted data, is considered to be a promising direction
that satisfies data utilization and protection [1, 2]. Privacy-preserving
machine learning algorithms with FHE have been proposed to train
supervised models and evaluate the models on the encrypted domain,
where encrypted data can be transmitted to the model without revealing
the original data [3, 4]. However, implementing machine learning algo-
rithms with FHE involves much slower computations and much larger
data storage than implementing the same algorithms on the plaintext do-
main. Implementing machine learning algorithms without considering

the operational characteristics of FHE can worsen the problems and de-
grade the performance.

Clustering is a representative unsupervised learning task widely used
in areas including image segmentation, information retrieval, and mar-
keting. Clustering algorithms partition given instances into a set of sub-
groups called clusters depending on their similarity (or distance). Clus-
tering on the encrypted data can be more complicated than classification
or regression because the shape and the number of clusters are unknown.
Clustering algorithms such as k-means clustering and mean shift clus-
tering methods have been implemented on encrypted data but lack the
performance of complex and non-convex data [5, 6]. In contrast, the sup-
port vector clustering (SVC) algorithm can capture the complex shape of
clusters by labelling the support of data distribution based on the support
vector domain description (SVDD) [7, 8].

In this letter, we propose a privacy-preserving evaluation for SVC.
Our work aims to implement an efficient SVC inference on the encrypted
domain, where it can capture the complex data distribution with a sup-
port function and assign the most appropriate cluster for a new test data.
Our algorithm enables robust SVC labelling for test data on an encrypted
domain without decryption by configuring the entire procedure as a ho-
momorphic operation. In the experiments, six datasets were used to eval-
uate the performance of clustering algorithms on the encrypted domains.

FHE and HEAAN scheme: An FHE scheme aims to construct a ho-
momorphic encryption (HE) scheme that supports an unbounded num-
ber of operations for evaluating any function f on encrypted data
without decryption [1]. An FHE scheme consists of four procedures:
KeyGen, Encrypt, Decrypt and Evaluate. The correctness condition for
evaluated ciphertexts ensures that for any function f, a plaintext m
and its encryption ¢, the decryption result of the ciphertext ¢’ =
Evaluate(f, ¢) is the same as f(m). In FHE, any evaluation function
is represented as a composition of homomorphic additions and multipli-
cations. Thus, homomorphic evaluations of non-polynomial operations
can consume a much longer time and have faster error propagation than
the evaluations on the plaintext domain.

In this letter, we used a HEAAN scheme that supports the approx-
imate computation of real numbers, where a small error is added to
the plaintext vector after decryption [2]. HEAAN can provide efficient
floating-point operations at the expense of a bounded loss of precision.
A complex vector (plaintext) can be encoded into a ring element and
encrypted into a single ciphertext, and the slot rotation of the vector on
the encrypted domain enables an efficient parallel computation of the
ciphertexts. Because of efficient computation, many machine learning
algorithms based on HEAAN have been proposed for real-world appli-
cations [4, 6].

Initializing the HEAAN scheme, some parameters are determined to
achieve a targeted level of security, including N, initial ciphertext modu-
lus log g, and scaling factor p, where N is related to the ciphertext space
and the number of plaintext slots (= N/2). The parameters log g, and p
determine the precision of the calculations and the number of operations
without bootstrapping. Since the error in the evaluated ciphertext grow
rapidly with multiplication compared to other operations, it is necessary
to rescale the ciphertext after multiplication to control the magnitude of
the error with decreasing the ciphertext modulus.

The bootstrapping procedure allows the evaluated ciphertext to be
refreshed by homomorphically evaluating the Decrypt function with in-
creasing the ciphertext modulus. In the case of HEAAN, the computa-
tional cost of bootstrapping increases with the number of plaintext slots
with O(log N/2) [9]. Although bootstrapping of HEAAN is more ef-
ficient than other FHE schemes, it is still the most expensive part of
HEAAN. Therefore, it is essential to consider the trade-off between the
efficiency of parallel operation and the cost of bootstrapping. For de-
tailed information about the scheme, we refer the readers to [2, 9].

SVC: Support-based clustering starts with estimating the support func-
tion of data distribution obtained by the SVDD, Gaussian process clus-
tering, or kernel density estimation. In this study, we used SVDD with
the Gaussian kernel to obtain the support function as follows:

N N, N,
S(X) =1-2 Z ﬂie—SHX—X,H: + Z Z ﬂiﬂje_(sux’_x/”z’ (1)
i=1

i=1 j=1
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ALGORITHM 1 HE friendly evaluation of support-based clustering

Input: Test data {x[}‘,.\l?’ , SEVs {s‘}‘.jI , SVs {v[]?:’I , support function s, number of
iteration 7', learning rate n

Output: Clustering label {l,-}?l‘i“’
1:for i = 1 to N,y do

2: x? <~ X;

3: fort=1to7 do

4: X < xi7 =y Vs(xih)
5: end for

6: Find the nearest SEV (s;) ofx[T, and label x; as /;, the label of's;.

7: end for

where § > 0 is the width parameter for the Gaussian kernel and N, de-
notes the number of support vectors (SVs). The support function (1) can
be used to partition the data space into basin cells by constructing the
following dynamical system:

dx_ v )
= = —Vs(v). @

A stable equilibrium vector (SEV) of the system (2) is an equilibrium
state where all the eigenvalues of Hessian V2s(x) are positive. Then, the
basin cell B(s;) is defined as the closure of the set of all the data points
that converge to a SEV s; following the system (2). Some SEVs are con-
nected to constitute clusters using the characteristic of the dynamical
system (2), and the points in a basin cell are labelled with the cluster la-
bel of the corresponding SEV [7, 8, 10]. SVC can be inductive and have
an efficient and stable inference phase using the system (2) [7, 10].

HE-friendly evaluation of SVC: In user-server scenarios, the inference
phase of the clustering algorithm with FHE can provide to partition the
given encrypted instances while protecting user’s privacy from curious
servers. In this letter, we present the inference phase of the SVC algo-
rithm with FHE because SVC is naturally inductive and has a stable
inference. For SVC, most inference methods are based on the system
(2) that a test point follows to find the SEV. In particular, the simplest
inference method is to allocate the test points to the cluster of the clos-
est SEV. However, this inference cannot capture the complex clusters
because it ignores the intrinsic data distribution. Therefore, we present
an elaborate inference algorithm of SVC which utilizes the support func-
tion (1) of the data distribution. We addressed the challenge of dealing
with HE-unfriendly operations of SVC inference while balancing effi-
ciency and accuracy.

We propose a HE-friendly evaluation that utilizes the basin induced
from the system (1) to stabilize the inference. Our algorithm consists of
two parts. In the first part, we use the dynamical system (2) to move the
given test data to more stable points. We can postulate that the boundary
regions between two different basins are the most unstable, whereas the
SEVs are the most stable points. Thus, our algorithm makes the points
evade the boundary region by applying the system (2) which converges
to SEVs. In the second part, our algorithm assigns the cluster label by
finding the SEV closest to the point obtained after the first part. The
procedure of our proposed method is presented in Algorithm 1.

In Algorithm 1, we need to implement the calculation of the gradient
of the support function Vs(x) homomorphically. When using the Gaus-
sian kernel, Vs(x) can be directly calculated as:

N,
Vs(x) =48y Be I (x —v)). 3)

j=1

HEAAN is used to efficiently implement the approximate computation
of real numbers on encrypted data, which supports homomorphic addi-
tions and multiplications. However, it requires polynomial approxima-
tions for non-polynomial operations. The gradient (3) contains the ex-
ponential function and the distance between a test point and the SVs.
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Fig. 1 Illlustration of gradient step for Algorithm 1, where the gray points
represent training data, the blue points represent test data, the red points
represent the data point after each gradient step, and each “x” point repre-
sents the corresponding SEV of the basins region with different colors

After the first part has been found without decryption, finding the near-
est SEV consists of two components: calculating the distances between
a test point and the SEVs and finding the minimum distance between
them. The exponential function is approximated with a Taylor expan-
sion. To obtain the min-index of the distances, we used the iterative al-
gorithm in [11]. However, the appropriate packing strategy is needed to
improve the computational efficiency of calculating the distances and
finding the min-index.

We design the plaintext packing to avoid bootstrapping. For simplic-
ity, we assume that all vectors, including test data, SVs, and SEVs, are
d-dimensional row vectors. Figure 2 shows the structures of the packed
plaintexts, where a plaintext vector will be encrypted into a ciphertext.
Note that HEAAN supports addition, element-wise multiplication, and
right-shift and left-shift rotations for plaintext vectors on the encrypted
domain. We designed the plaintext vector to efficiently calculate the
distances using these operations because both parts of Algorithm 1 in-
volve the calculation of the distances. The test samples x;, X, ..., Xy,
are repeated as many as Ny, while each instance of SVs v; and SEVs
s; are repeated as many as the number of test data N,y as in Figure 2.
For SEVs, N, times repeated vectors are additionally repeated Ny /Ng
times. The plaintexts become dN,., Ny -dimensional vectors, which con-
sist of d-dimensional sub-vectors. In this way, subtracting all SVs or
SEVs from all test data can be done with only one operation. In ad-
dition, B = [B1, ..., By, ] were packed in the same way as SVs, where
B;’s were repeated d times to constitute a vector like v; € R?. Depend-
ing on the number of test samples N,.;; and SVs Ny, we can use multiple
ciphertexts for a plaintext vector and parallelize the homomorphic oper-
ations.

Finally, we can efficiently compute the difference x; —v; for ob-
taining the gradient (3) and x; —s; for finding the closest SEV. After
constituting all necessary ciphertexts, we can compute the gradient us-
ing homomorphic operations without decryption by replacing the entire
operations with the polynomial operations. When finding the nearest
SEV, we use the min-index algorithm whose output has a reciprocal of
the number of minimal elements for the indices of the minimal elements
and 0O for the other indices as in [6]. Because the min-index algorithm on
the encrypted domain involves an approximate error, the outputs of the
minimal elements can be indistinguishable from Os with the errors when
the number of minimal elements is large. However, the gradient phase of
our algorithm induces the test samples near the boundary to move to the
SEV, resulting in more accurate homomorphic results for the min-index
algorithm. Figure 1 illustrates the change of test points after one gradient
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Fig. 2 Description of the packing method
Table 1. Summarization of the datasets
Dataset Instances Attributes Clusters Convexity
Hepta 212 3 7 convex
Tetra 400 3 4 convex
Lsun 400 2 3 convex
Two diamonds 800 2 2 convex
Target 758 2 2 non-convex
Chainlink 1000 3 2 non-convex

descent iteration. We can notice that the test points move toward the
SEVs of their basins and away from the other SEVs simultaneously. It
can affect the clustering performance for complex data distribution.

Experiments: We evaluated the proposed method on six datasets shown
in Table 1 from the fundamental clustering problems suite [12]. We com-
pared clustering performance in terms of the adjusted Rand index (ARI)
metric and computation time with HE-friendly mean shift clustering
(Meanshift) and k-means clustering (KMeans), which are currently the
state-of-the-art clustering models used with FHE. The ARI measures the
similarity between two data partitions and has a value between 0 and 1,
where 1 represents a perfect agreement between two data partitions. To
verify how the error included in ciphertext affects the clustering results,
we compared the results of Algorithm 1 to encrypted data (ARI-enc) and
unencrypted data (ARI-no). We implemented the evaluation of KMeans
and Meanshift, following [6].

We used an Intel Xeon CPU E5-2660 v3 @2.60GHZ processor. We
set log g, = 1200, log p = 30, N = 2'% and § = 2 for all datasets. We
conducted the experiments with different test rates in {0.2, 0.5, 0.9},
which means the ratio between the number of test data and the num-
ber of training and test data. Training data was sampled five times for
each experiment to measure the average performance. For Algorithm 1,
we used one iteration step of (2), where the learning rate was set to 0.5
for the Chainlink dataset and 0.8 for the other datasets.

Table 2 shows the clustering results. KMeans showed almost the same
computation time for all experiments since a plaintext vector is en-
crypted into a single ciphertext. In contrast, except Hepta and Lsun, the
proposed method showed the longest execution time because it needed
to split a plaintext into multiple ciphertexts. The total execution time
is highly dependent on the number of ciphertexts, which is related to
the number of SVs for the proposed method, to the number of modes
for Meanshift, and to the number of clusters for Kmeans. Therefore, we
can reduce the computational cost if the SVC algorithm obtains a sparse
support function (1) with few support vectors.

For Hepta and Tetra datasets, which have simple and convex dis-
tributions, all the models showed good performance. For all the other
datasets, our method showed the highest ARI value regardless of the test
rate. The other algorithms showed poor performance, especially for the
Target and Chainlink datasets that have non-convex data distributions,
while our model achieved high ARIs. For the Lsun dataset that consists
of rectangular clusters with different lengths and widths, the ARI values
of the KMeans and Meanshift algorithms for encrypted and unencrypted
data are different significantly, whereas SVC always showed consistent
results even after encryption. These results demonstrate that by pulling

Table 2. Comparison of the results of three algorithms on FCPS

datasets. For each experiment, the highest ARI value is highlighted
in bold

Dataset Test rate KMeans Meanshift SvVC

ARl-enc time (s) ARI-enc time(s) ARIl-enc time (s)

ARI-no ARI-no ARI-no
Hepta 0.2 1 16.967 1 17.332 1 30.402
1 1 1
0.5 1 17.001 1 16.994 1 28.360
1 1 1
0.9 1 17.025 1 17.028 1 27.239
1 1 1
Tetra 0.2 1 16.162 0957 16962 0927  57.585
1 0.970 0.927
0.5 1 16.505 0.973 17.383  0.947 113.896
1 0.973 0.947

0.9 0994 16.110 0915 17.033  0.961  109.437

0.994 0.915 0.961
Lsun 0.2 0.351 15386  0.629 16.543  0.875  25.673
0.417 0.613 0.875

0.5 0.346 15328 0.611 16494 0931  25.837
0.400 0.651 0.931
0.9 0.342 15409 0.663 16.171  0.993  25.368
0.400 0.734 0.993
Two diamonds 0.2 0.897 14978 0.812 15476 0.995  26.147
0.897 0.812 0.995
0.5 0.891  15.085 0.842 15404 0934  52.469
0.891 0.842 0.934

0.9 0.879  14.640 0.777 15.534  0.923  102.129

0.879 0.777 0.923
Target 0.2 0.105  14.694  0.619 17.055 1 26.375
0.105 0.623 1

0.5 0.119  14.822 0.620 17.331 1 53.773
0.119 0.620 1

0.9 0.121  14.857 0.627  17.185 1 104.359

0.121 0.627 1
Chain-link 0.2 0.094 15639 0235 18.890 0.853 111.958
0.094 0.231 0.853

0.5 0.098 15465 0228 37.062 0.887 223.896
0.098 0.229 0.887
0.9 0.068 15548 0318 15513  0.967 220.380

0.068 0.318 0.967

the data point at the boundary toward the center of the basin cell, SVC
can attain robustness against the error that can occur from homomor-
phic operations.

Figure 3 shows the result of our investigation of the difference in clus-
tering performance by presenting the clustering results for three data
sets. Figure 3a,b illustrates that KMeans and Meanshift failed to cap-
ture the clusters, especially for the data points at the boundary of the
divided region. However, our method correctly allocated the clusters be-
cause of the robustness of our method, as stated in the above paragraph.
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(d) Target-Meanshift (e) Target-KMeans (f) Target-SVC

(i) Chain-SVC

(g) Chain-Meanshift (h) Chain-KMeans

Fig. 3 Visualization of clustering results for Lsun, Target and Chainlink
datasets. Each estimated cluster is color-coded

In the case of datasets with non-convex distributions such as Target and
Chainlink, we found that KMeans essentially did not reflect the non-
convex distribution, and Meanshift was not able to connect the clusters
into a single cluster. On the other hand, SVC completely clustered the
Target dataset, and for the Chainlink dataset, almost all data points were
properly clustered except for the points located where two clusters are
adjacent to each other.

Conclusion: In this letter, we proposed a privacy-preserving evaluation
algorithm of SVC with fully homomorphic encryption. Our model en-
ables the allocation of the cluster label for new test data without decryp-
tion, improving the clustering performance for non-convex data, and
provides robustness of data points near the boundary. The experimen-
tal results show that the proposed method effectively clusters encrypted
data with various distributions in a realistic amount of time. In the fu-
ture, we can improve the computational cost of our algorithm by training
a sparse SVC model and parallelizing computationally expensive opera-
tions when using multiple ciphertexts.
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A capacitive force sensor is one of the electronics components used
in several electronic devices and applications. An improvement of
sensing characteristics of the sensor, for example sensitivity and
response time, becomes an interesting research topic. The alter-
native approach to enhance the sensitivity and response time of
polydimethylsiloxane-based capacitive force sensors is proposed by
introducing poly(3,4-ethylenedioxythiophene) polystyrene sulphonate,
a conductive polymer, into polydimethylsiloxane active layer. Two
sensors using different active layers, (i) polydimethylsiloxane (conven-
tional sensor) and (ii) poly(3,4-ethylenedioxythiophene) polystyrene
sulphonate mixed polydimethylsiloxane (modified sensor), were
fabricated and characterised to reveal the sensing enhancement.
Interestingly, the modified sensor shows the significant increase in
the sensitivity from 0.7 to 1.14 kPa™! (+62.86%) and the shortening
response time from 1.55 to 0.43 s (—72.26%) with respect to the
conventional sensor. In addition, the deterioration in elastic behaviour
and the faster charge—discharge behaviour observed from the poly(3,4-
ethylenedioxythiophene) polystyrene sulphonate mixed polydimethyl-
siloxane film indicate the better deformation and charge transport than
that from polydimethylsiloxane film. Therefore, it can be concluded that
the conductive poly(3.4-ethylenedioxythiophene) polystyrene sulfonate
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