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Abstract: Developing a robust and sustainable system is an important problem in which deep
learning models are used in real-world applications. Ensemble methods combine diverse models
to improve performance and achieve robustness. The analysis of time series data requires dealing
with continuously incoming instances; however, most ensemble models suffer when adapting to a
change in data distribution. Therefore, we propose an on-line ensemble deep learning algorithm that
aggregates deep learning models and adjusts the ensemble weight based on loss value in this study.
We theoretically demonstrate that the ensemble weight converges to the limiting distribution, and,
thus, minimizes the average total loss from a new regret measure based on adversarial assumption.
We also present an overall framework that can be applied to analyze time series. In the experiments,
we focused on the on-line phase, in which the ensemble models predict the binary class for the
simulated data and the financial and non-financial real data. The proposed method outperformed
other ensemble approaches. Moreover, our method was not only robust to the intentional attacks
but also sustainable in data distribution changes. In the future, our algorithm can be extended to
regression and multiclass classification problems.

Keywords: ensemble deep learning; on-line learning; time series analysis; adaptive learning

1. Introduction

Ensemble methods have been developed to achieve robust and high performance in various
tasks, such as image classification, on-line learning, financial data prediction, and clustering [1–7].
Such methods aim to construct a group of models and aggregate the results of the models, where a
high diversity of models is preferred. Two important issues must be addressed in ensemble learning:
selecting candidate models and aggregating the results of the models [3,4]. Although the selection of
candidate models can have a greater impact than the aggregation strategy, the selection may require
a difficult decision and depend on prior knowledge. Applying the aggregation strategy can have
a similar effect as selecting models. These two components of ensemble learning are appropriate
for applying to on-line learning scenarios because they help to adapt the entire model to changing
input data.

On-line ensemble learning has become popular because ensemble learning cannot only increase
the robustness of models for atypical events but also the predictive performance. In general, we can
postulate that no single dominant model can be used for all unknown samples [8]. Various properties,
such as seasonality, concept drift, and trend, which can change dominant models, should be considered
in analyzing time series data. On-line ensemble learning has solved this problem by changing candidate
models or adjusting weights on the basis of competence levels for new samples [2,3,9]. However,
the cost of training a new model or retraining the existing models is too high to be applied to streaming
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data, particularly in deep learning models. For example, financial data prediction requires data that
are constantly utilized during trading sessions; thus, the only means to improve the prediction model
is on-line learning, and the models can be retrained only if given sufficient time, such as nontrading
days [7,10]. Benkeser et al. proposed an on-line cross-validation-based ensemble learning method
to avoid retraining models with new samples; however, they only used simple base learners, such
as bounded logistic regression models. Therefore, we developed a new on-line learning method to
reduce the training and retraining costs of deep learning models. This method can act as a fundamental
building block for a robust and sustainable system for time series data.

In ensemble deep learning, candidate models for an ensemble model are made of deep learning
models. Training a deep learning model requires solving a high-dimensional nonconvex optimization
problem, which can have multiple local minima [11,12]. Ensemble deep learning methods that use
model averaging with multiple neural networks have won first places in various tasks, such as image
classification, localization, and detection, in ImageNet Large-scale Visual Recognition Challenge 2012,
2014, and 2015 [13–15]. Such methods use a simple averaging strategy to combine multiple models
and show more interests in designing the sophisticated network structures. However, this simple
averaging is vulnerable to a small number of poor candidate models and non-adaptive to data. Thus,
an ensemble deep learning method for aggregation is required to achieve refined weights [1]. Ju et al.
developed a stacking-based ensemble deep learning method to compute the ensemble weights of
neural network models; the weights were obtained by solving a constrained convex optimization
problem or training the weights with a validation dataset [1]. Although training the weights exhibited
good performances, the performance of this method can highly depend on the selection of validation
data. An ensemble of deep learning models can significantly improve the performance of time series
classification [16]. However, this ensemble model implicitly postulates off-line learning, and cannot
provide the adaptability to the change of time series data. Fan et al. proposed on-line deep ensemble
learning method for predicting citywide human mobility, which constructs the adaptive human
mobility predictor and combines the pre-trained predictors instead of deep learning models [17]. This
on-line deep ensemble learning method can be applied only to GRU-based deep learning model.
Therefore, we aim to develop an efficient on-line ensemble deep learning method that adjusts the
ensemble weights by using continuously incoming data and is applicable to any deep learning models
minimizing loss function in the current study.

The fundamental objectives of this study are to propose an on-line learning procedure for deep
learning models and to develop an adversarial on-line ensemble learning method by using the loss
function value of the previous stage. In our scenario, off-line learning (i.e., training deep learning
models) is computationally intensive, but the adaptability of the algorithm is necessary to dynamically
adapt to changes in continuously incoming data. Therefore, we augment adaptability by introducing
an aggregation strategy of ensemble deep learning for classification. We propose a new regret measure
for our ensemble model and demonstrate that our algorithm can minimize regret based on adversarial
assumption. We verified our on-line ensemble learning algorithm through extensive experiments
with financial and non-financial time series data. We also conducted experiments to demonstrate
the effectiveness of our algorithm from two aspects. The first aspect showed the robustness of the
ensemble model when several classifiers deteriorated. The second aspect was about adaptability to
time series data when the data distribution changed.

The remainder of this paper is organized as follows. In Section 2, we review ensemble deep
learning and on-line learning research. In Section 3, we propose an on-line ensemble deep learning that
updates ensemble weight on the basis of the loss value of streaming data, theoretically demonstrate
the convergence of our algorithm, and provide an overall framework to apply the proposed algorithm
to real-world problems that involve analyzing time series data. In Section 4, we present the verification
of the effectiveness of our algorithm through various experiments using simulated data, financial time
series, and non-financial time series. In Section 5, we discuss the robustness and the sustainability
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of our algorithm to intentional attacks and the changes in the data distribution. Section 6 concludes
this study.

2. Related Work

2.1. Ensemble Deep Learning

Deep learning models have been successfully used in various supervised tasks, such as computer
vision, speech recognition, and natural language processing [13,15,18,19]. A representative example
of deep learning models is the feed-forward deep neural network that builds a complex function by
composing simple functions. Convolutional neural networks (CNN) are specialized neural networks
for data with grid-like topology, such as time series and image data [13,20]. Recurrent neural networks
(RNN) are designed for sequential data [21–24]. With the advent of the big data era, these deep
learning models have achieved state-of-the art performance in many real-world applications. However,
the models are based on the assumption that data distribution remains unchanged, and, consequently,
changes in data distribution can deteriorate the performance of the models. Therefore, we need a more
sustainable model.

Ensemble methods can be one of the most promising research directions to improve the
sustainability of models. These methods have been used mostly to improve the performance in
deep learning applications [1,13–15]. Candidate models of ensemble deep learning share the same
network structure, but with different model checkpoints or with different initial parameters [1].
Although the ensemble of deep learning models with cross-validated unequal weights can improve
robustness for noisy data, the deterioration caused by a change in data distribution in time series data
is inevitable because ensemble weights are fixed [1,25,26]. In the case of time series data, detecting
and dealing with a change in data distribution are important [4]. Therefore, we aim to propose an
ensemble deep learning method for on-line time series analysis that is adaptable and sustainable in
real-world applications.

2.2. On-Line Learning

The primary objective of on-line learning is to minimize the regret, which is the difference between
the performance of the on-line learning algorithm in a streaming data setting and the off-line algorithm
using all the data. In general, an on-line learning setting assumes that the algorithm receives an
instance xt and makes a prediction ŷt ∈ {0, 1}. Let an on-line setting have T rounds and M experts,
where the prediction of the expert m at tth round is ŷt,m, the true label at tth round is yt, and the loss at
tth round is `(ŷt, yt). Regret is defined as:

RT =
T

∑
t=1

`(ŷt, yt)− min
m=1,...,M

T

∑
t=1

`(ŷt,m, yt). (1)

The objective of on-line learning is to minimize regretRT . However, this regret postulates that
the on-line algorithm should find the best expert among candidate learners. However, in the case of
time series data, the best model can change due to various reasons, such as covariate shift, varying
distribution, and seasonality. Thus, base learners are constructed by deep learning models based on
diverse variables. Our algorithm keeps all experts active instead of finding the best expert. In this
study, we propose a new regret measure that is compatible with our algorithm and demonstrate the
convergence of our algorithm in Section 3.

The simplest algorithm for on-line learning is the Halving algorithm, which makes a prediction
from the majority vote over all active experts. Incorrect models are filtered every round, and the
remaining models are kept as the set of consistent experts Ct = {m : ŷs,m = ys, ∀s = 1, . . . , t− 1} for
the next round t. However, the Halving algorithm strongly assumes that the best expert is perfect.
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The exponential weighted average algorithm relieves this assumption by using weights based on
past performance.

The exponential weighted average algorithm introduces the weights wt = (wt
1, . . . , wt

M) ∈ RN .
The prediction is given as ŷt = 1 ft>0.5 where

ft =
∑M

m=1 wt
m f t

m

∑M
m=1 wt

m
.

We denote the cumulative loss of model i up to time t as Lt
m = ∑t

s=1 `( f s
m, ys) and the

cumulative loss of the algorithm up to time t as Lt = ∑t
s=1 `( fs, ys). The weights wt is updated

as w̃t+1
m ← wt

m exp (−ηLt
m), and wt

m = w̃t
m/ ∑k w̃t

k. Although the Halving algorithm uses 0–1 loss,
the exponential weighted average algorithm uses convex loss function ` : [0, 1]× {0, 1} → [0, 1], such
as squared loss and absolute loss. In the regret in Equation (1), ŷt is replaced with ft, as shown in the
following equation:

RT =
T

∑
t=1

`( ft, yt)− min
m=1,...,M

T

∑
t=1

`( f t
m, yt). (2)

In accordance with Theorem 7.6 in [27], the regret of this algorithm after T round can be bounded
by
√
(T/2) log M for η =

√
8 log M/T. However, this analysis is based on the external regret that

compares the cumulative loss of the algorithm and the cumulative loss of the best expert among
M models. Therefore, we propose and analyze a new regret based on the comparison between the
cumulative loss of the algorithm and the cumulative loss of the ensemble model with the optimal
weight in Section 3.

3. Proposed Method

In this study, we propose an on-line ensemble deep learning method for time series data. This
method is adaptive to atypical events and robust to the attacks for several candidate models. Our
method consists of off-line and on-line learning phases. In the off-line phase, we train candidate deep
learning models with the accumulated time series data. In the on-line phase, the ensemble weights are
updated depending on the performance of deep learning models with incoming data. In Section 3.1, we
introduce the on-line ensemble deep learning algorithm and prove that the sequence of the ensemble
weights of our algorithm can converge to the optimal solution that minimizes total expected loss.
Section 3.2 describes the overall framework for analyzing time series data using the on-line ensemble
deep learning method.

3.1. Loss-Driven Adversarial Ensemble Deep Learning

Training deep learning models requires determining the cost function and using the iterative
gradient-based optimization algorithm to solve nonconvex optimization problems, even if the cost
function is convex in the first argument (the predicted value). The on-line ensemble deep learning
algorithm calculates the cost function for incoming data, and updates only the ensemble weights on
the basis of the calculation. For a classification task, the cross entropy loss between the prediction and
the training label is typically used. The binary cross entropy loss function `CE : [0, 1]× {0, 1} → R+ is
given as:

`CE(ỹ, y) = −y log ỹ− (1− y) log (1− ỹ). (3)

In Section 2.2, on-line learning algorithms postulate that the best expert exists among candidates,
and each round receives an instance and makes a prediction. In on-line ensemble deep learning,
however, each round can receive a mini batch of instances and update ensemble weights based on the
batch. In such cases, the cost function is calculated from the mini batch similar to training the deep
learning models. We can also use the error rate of the batch as the loss function to update the ensemble
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weights. This mini batch strategy can be appropriate for coping with the effect of abrupt jumps in time
series data.

During the on-line phase, our algorithm combines the base classifiers fm(x), m ∈ {1, ..., M} with
weight vector wt = (w(t)

1 , . . . , w(t)
M ),. The prediction f (t)(x) at t is obtained by stacking the predictions

of the base classifiers as f (t)(x) = ∑M
m=1 w(t)

m fm(x), as in [8,28]. The proposed method aims to obtain
the on-line ensemble strategy, which can converge to an optimal weight that minimizes the average
total loss for a series of instances while not training the candidate models.

After training candidate models, we set the initial weight w(0)
m = 1

M . We denote the loss matrix
A ∈ [0, 1]M×N , which is defined by Ami = `(yi, fm(xi)), over the base classifiers m = 1, . . . , M and
the data instance i = 1, . . . , N, which is the number of data in the on-line phase. The loss matrix A is
constructed by using the bounded convex loss function as indicated in Equation (2), where a monotonic
transformation can be used for an unbounded loss function such as that in Equation (3). At each
round t = 1, . . . , T, a distribution pt = (p(t)1 , . . . , p(t)M ) ∈ RM over the base classifiers is obtained by

p̃(t+1)
m = p(t)m exp (−η`

(t)
m ), similar to the exponential weighted average algorithm in Section 2.2, and a

vector `t = Aeit = (`
(t)
1 , . . . , `(t)M ) represents an incurred loss vector, where `

(t)
m is the loss associated

with the classifier fm(x), ei ∈ RN denotes the ith unit vector, and eit is determined by the series
of instances. Using this expression, we propose a new regret measure for our algorithm based on
adversarial assumption, as presented in the following equation:

RT :=
T

∑
t=1

pT
t Aêt −min

p

T

∑
t=1

pTAêt, (4)

where êt is defined in an adversarial manner as êt ∈ arg maxei pT
t Aei, i = 1, . . . , N. The regret in

Equation (4) differs from the previous regrets in Equations (1) and (2) given that it considers the
distribution over M candidate models instead of the single best model. Moreover, the regret in
Equation (4) is slightly modified from regret measure in on-line optimization on the simplex [29]
by introducing adversarial assumption to demonstrate the convergence in the worst case scenario.
Therefore, the objective is to minimize the total cumulative loss that is incurred during the on-line
phase (over T rounds) LT = ∑T

t=1 Lt where Lt = ∑M
m=1 p(t)m `

(t)
m .

The following theorem shows that the weight vector pt converges to a limiting vector. This
process minimizes average total loss.

Theorem 1. Assume that the loss function L is convex in its first argument and takes values within [0, 1].
Then, pt is generated by the aforementioned algorithm that converges to the limiting vector p∗ for an appropriate
selection of η. p∗ is the optimal solution that minimizes total expected loss, minp maxq pTAq.

Proof. Let pt be generated by the aforementioned algorithm with ηt =
√
(8 ln M)/t. As t → ∞,

ηt → 0, and p̂(t+1)
m /p(t)m = exp(−ηt`

(t)
m ) → 1; therefore, p(t+1)

m = p̂(t+1)
m / ∑M

m=1 p̂(t+1)
m → p(t)m for all

m = 1, ..., M. Accordingly, pt converges to the limiting vector p∗.

Approximately, for T ≥ 2s− 1, this selection of ηt consists of dividing time into periods [2k, 2k+1−
1], k = 0, ..., s, and selecting ηk =

√
(8 ln M)/2k in each period. By utilizing the proof of Theorem 7.7

in [27] and Corollary 6.4 in [30], we can show that

RT
T

:=
1
T

T

∑
t=1

pT
t Aêt −min

p

1
T

T

∑
t=1

pTAêt = O(
√

ln M/T)
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which implies that the used on-line learning algorithm is a regret minimization algorithm; that is,
RT/T → 0 as T → ∞. Hence, the following holds:

min
p

max
i=1,...,N

pTAei ≤ max
i=1,...,N

(
1
T

T

∑
t=1

pT
t Aei

)
≤ 1

T

T

∑
t=1

max
i=1,...,N

pT
t Aei =

1
T

T

∑
t=1

pT
t Aêt

By definition of regret, the right-hand side can be expressed and bounded as follows:

1
T

T

∑
t=1

pT
t Aêt = min

p

1
T

T

∑
t=1

pTAêt +
RT
T

= min
p

pTA

(
1
T

T

∑
t=1

êt

)
+

RT
T

≤ max
q

min
p

pTAq +
RT
T

This implies that for the min-max of all T ≥ 1 and limT→∞
RT
T = 0, the following bound holds:

min
p

max
i=1,...,N

pTAei ≤ max
q

min
p

pTAq

To demonstrate reverse inequality, the definition of min is adopted, and we have minp pTAei ≤
pTAq ≤ maxi=1,...,N pTAei. Taking the maximum over q of both sides yields maxq minp pTAei ≤
maxi=1,...,N pTAei for all p, and subsequently, taking the minimum over p proves the inequality
maxq minp pTAq ≤ minp maxi=1,...,N pTAei. Therefore, we obtain

min
p

max
i=1,...,N

pTAei = max
q

min
p

pTAq

If we let ê∗ maximize pT
∗Aei over i = 1, ..., N, then from RT/T → 0, we derive

pT
∗Aê∗ = min

p
pTAê∗ = min

p
max

i=1,...,N
pTAei = max

q
min

p
pTAq = min

p
max

q
pTAq

The last equality originates from von Neumann’s minimax theorem. Therefore, p∗ is the minimal
solution for total expected loss.

3.2. On-Line Time Series Analysis

In the previous section, we focus on the on-line phase that updates the ensemble weights to
analyze time series data when the candidate models are given. In this section, we introduce the
overall framework for analyzing time series data using our algorithm. We conduct several experiments
based on this framework in Section 4. Figure 1 illustrates the process that consists of the off-line and
on-line phases.

When analyzing time series data, continuously incoming instances appear more realistic than the
entire training data being given and fixed. Our algorithm is based on the former scenario. We cannot
immediately utilize the incoming instances to learn the parameters of deep neural networks because
training such networks requires adequate data. Therefore, we train the classifiers with the initial
dataset, accumulate the incoming instances during the on-line phase, and update the training dataset
with the accumulated instances. Our on-line ensemble deep learning algorithm enables reflecting the
incoming instances to the ensemble model by updating the ensemble weights.
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Figure 1. Overall framework for analyzing time series data using the on-line ensemble deep
learning algorithm.

4. Experiment

4.1. Experimental Design

In this paper, we propose an on-line ensemble deep learning algorithm for a sustainable and robust
analysis. This algorithm postulates continuously incoming training data. We verified the effectiveness
of our algorithm by applying it to simulated and real-world time series data. Although our overall
framework in Section 3.2 can be applied to continuously incoming time series data, we excluded the
retraining phase and focused on one-time off-line and on-line phases. We generated simple time series
data based on the sine function to explore the properties of our algorithm. We conducted experiments
using financial and non-financial time series data to demonstrate the effect of our algorithm on various
real-world examples. Financial time series examples consist of S&P 500, Nasdaq future, gold future,
commodity future, and cryptocurrency. Non-financial time series data consist of temperature and
power consumption.

The simulated and power consumption data are univariate time series. The others, namely S&P
500, Nasdaq future, gold future, commodity future, cryptocurrency, bankruptcy data and temperature,
are multivariate time series. In this study, we concentrated on the classification problem of time series
data even if most time series prediction models have focus on regression problems. Deep learning
models have accomplished the state-of-the-art performances in classification problems, and up and
down prediction can be effectively used. For univariate time series, we used xt, xt−1, ..., xt−(k−1), where
k is the window size of the input to predict the target variable yt, and constructed the base classifiers
using the different window sizes from 1 to 6. The target variable of a univariate case was set to yt = 1
if the time series value at time step xt+1 was greater than that at time step xt to predict the trend
(direction) at the next time step of the time series. For multivariate time series, we similarly constructed
the base classifiers with xt, xt−1, . . . , xt−k+1 where the input at time t, xt, is a vector. The target variable
of the multivariate case was obtained by calculating yt from one of the variables in xt. The base
classifiers of the multivariate time series can use different variables, unlike the univariate case.

The experiments consisted of off-line and on-line phases. In the off-line phase, data from t = 1
to t = l were used to train deep learning models, which were multilayer perceptrons with various
configurations, such as the different network structures and the different input variables. We minimized
cross entropy loss (Equation (3)) with an Adam optimizer [31]. During the on-line phase, our algorithm
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adjusted ensemble weights depending on the losses of the base classifiers for a batch of D incoming
instances from t = l + 1 to t = T with η = 10.0. We divided the total data into 55 % of data for the
off-line phase and 45 % of data for the on-line phase.

We measured the effectiveness of our algorithm in the on-line phase on the basis of accuracy,
the precision, the recall, and area under the curve (AUC) of the receiver operating characteristics
(ROC) curve because our algorithm was applied to the classification problems of time series data.
We also examined the distribution of the ensemble weight to investigate the adaptability of the
proposed algorithm.

We compared our algorithm with other ensemble methods. The baseline method is a simple
ensemble model of deep learning models with a fixed weight. We also learned tree-based ensemble
methods, including random forest and gradient boosting. For implementation, we used the
most popular machine learning library, namely, scikit-learn in Python, for the tree-based ensemble
methods [32], and the keras library to train deep learning models [33].

4.2. Simulated Time Series Data

We utilized the simulated time series data before applying the proposed methodology to real data.
The simulated time series was generated based on a sine functions, with a single sine function and a
combination of sine functions with the different frequencies.

4.2.1. Data Description

We generated simple time series data from the function xt = sin 0.04πt for t = 1, . . . ,10,000.
As mentioned in Section 4.1, we divided the data into the off-line phase t = 1, . . . , 5500 and the
on-line phase t = 5501, . . . , 10,000. The target variable is nearly balanced, where the ratio of y = +1
is 47.9%. Figure 2a shows the generated time series of the simple sine function. We also generated
a complex sine function, which is a combination of three simple sine functions with different cycles
xt = sin 0.04πt + sin 0.16πt + sin 0.64πt. In total, 10,000 data were generated, similar to the simple
sine function. The time periods of the off-line and on-line phases were the same as that of the simple
sine case, but the class distribution of the target variable was changed to 32.2%. Figure 2b shows the
generated time series of the combined sine function.

(a) Sine function. (b) Composite sine function.
Figure 2. Sine function and composite sine function.

4.2.2. Results

In this section, we present the experimental results of the simulated time series data to verify the
significance of our algorithm. Figure 3 presents the illustrative change in ensemble weight and the
quantitative performance measures, such as accuracy, precision, recall, and AUC, over time during the
on-line phase. Figure 3a,b shows that the distribution of the ensemble weight changed even when the
initial distribution was uniform. For both the simple sine and the combined sine, we found that the
weights were adjusted to improve the performance of the ensemble models in Figure 3c–l.



Sustainability 2019, 11, 3489 9 of 24

(a) Sine: Change of weight distribution (b) Combined sine: Change of weight distribution

(c) Sine: Stack graph of weights over time (d) Combined sine: Stack graph of weights over time

(e) Sine: Accuracy (f) Combined sine: Accuracy

(g) Sine: Precision (h) Combined sine: Precision

(i) Sine: Recall (j) Combined sine: Recall

(k) Sine: AUC (l) Combined sine: AUC

Figure 3. Performance measures of sine and combined sine.

For the simulated data, deep learning models with varying performance constitute the ensemble
models. In Figure 3a,b, the models on the left exhibited better performance than the models on the
right. Consequently, the weight of the models on the right decreased even when the distribution of
the weights of the models on the right was also changed in accordance with the change in incoming
instances. This tendency was evident for the simple periodic time series data, as shown in Figure 3a.
Figure 3c,d presents the stack graphs of the ensemble weight over time for the sine and combined
sine examples, respectively, where the height of the graph represents the weight of each classifier,
and the sum of weights is 1. The proposed algorithm aims to increase the proportion of classifiers that
perform efficiently over time and to reduce the weight of classifiers that exhibit poor performances
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in adapting to incoming instances. Our ensemble algorithm can compensate for relatively inferior
classifiers, whereas most ensemble models can be easily deteriorated by such classifiers.

Figure 3e,f shows the predicted and cumulative accuracies for the sine and combined sine
cases, where the incoming instances were considered with an instance or a batch as a unit. In both
examples, the difference between the cumulative batch accuracy of the proposed model and that of
the equal weight model increased with time. That is, the proposed model exhibited a more stable
performance than other methodologies. However, the accuracy and the precision of the proposed
method also eventually decreased, as shown in Figure 3c–f. This result implies the necessity of our
overall framework in analyzing time series data. The performances of random forest and gradient
boosting remained unchanged because the simulated data were periodic, and the ensemble models
were not updated. For the simulated data, the deep learning based ensemble models were significantly
better than the tree-based ensemble models.

Figure 3g–j shows the precision and the recall calculated by type 1 and type 2 errors. The deep
learning-based ensemble models had the higher precision and recall scores than the tree-based models,
although they decreased in the later part. In the case of the combined sine example, the tree-based
models had good recall score, but their accuracy and precision scores were considerably lower than
those of the deep learning ensemble models. Figure 3k,l shows the AUC of sine and composite sine,
respectively. In both cases, the AUC of the proposed model achieved the best performance, which was
close to 1.

As mentioned in Section 4.1, we fixed the hyperparameter η = 10. We examined the role of η,
which was used to adjust the effect of loss when updating the weight in p̃(t+1)

m = p(t)m exp (−η`
(t)
m ),

to justify the fixed value. Figure 4 shows the accuracy of the proposed ensemble model for different
ηs, with η changing from 0.001 to 100.0 in the log scale. Unexpectedly, the accuracy scores of η =

0.001, . . . , 1.0 hardly changed even when η changed in the log scale. The accuracy score substantially
increased when η increased from 1.0 to 10.0. Changing η = 10.0 to η = 1000.0 did not drastically
improve the accuracy. Therefore, we set the hyperparameter η to 10.0 in all cases.

Figure 4. Role of η in the proposed model.

4.3. Financial Time Series Applications

We applied our algorithm to real financial time series data. Real financial time series data are
typically aperiodic and complex given that they can exhibit a trend, a nonstationary property, or a
sudden drift. Therefore, we expect that our algorithm can help stably analyze the time series data
during the on-line phase.

4.3.1. Data Description

We used S&P 500, Nasdaq future, gold future, and sugar future datasets to verify the effectiveness
of the proposed method for financial time series data. The S&P 500 data were collected at 5-min
intervals from January 2016 to December 2018. The other datasets were collected at one-day intervals
from January 2010 to December 2018. Nasdaq data were obtained from https://investing.com/.
Table 1 summarizes the basic information of each dataset, such as the number of instances, frequency,

https://investing.com/
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target, and predictive variables. For S&P 500, gold, and, sugar, the predictive variables contain the
spot indexes, such as open price, low price, high price, close price and volume information. Eight
additional variables were extracted from the time series of close price, namely, RDP (−5), MA (5),
MA (10), EMA (5), OSCP, EOSCP, DISP (5), and EDISP (5), based on the work in [34]. In addition,
for Nasdaq, nine variables were extracted from the time series, namely OBV, MA(5), BIAS(6), PSY(12),
ASY(5), ASY(4), ASY(3), ASY(2), ASY(1), based on the work in [35]. The explanation of these variables
is provided in Tables A1–A3 in Appendix A. The target variable was constructed using close price.

Table 1. Description of financial data.

Data Predictor Target Freq # of Data

S&P 500

13 variables in Appendix A

trend of price

5 min 59,453

gold future

daily

2246

commodity—sugar future 2252

Nasdaq future 9 variables in Appendix A 2297

cryptocurrency—Bitcoin 17 variables in Appendix A 2683

bankruptcy—savings bank 38 variables in Appendix A default or not quarterly 4225

Figure 5 shows the four financial time series datasets that we used. S&P 500 and Nasdaq future
present increasing trends and sudden drops, with the irregular patterns mostly concentrated in latter
periods. The ratios of y = 1 for S&P 500 and Nasdaq future in on-line phase are 51.3% and 56.0%,
respectively. The gold future and sugar future datasets exhibit different properties from the previous
examples because they do not demonstrate a consistent trend. However, they have sudden drops and
rises mostly during the early periods. The ratios of y = 1 for gold future and sugar future in on-line
phase are 49.3% and 47.2%, respectively.

(a) S&P 500 (b) Nasdaq future

(c) Gold future (d) Sugar future
Figure 5. Financial time series examples.

Bitcoin price data were obtained from September 2011 to August 2019 through an on-line source
(https://Bitcoincharts.com/markets/). Bitcoin price was used at intervals of one day and was from
bitstamp exchanges. Bitcoin price was averaged over daily open price, close price, lowest price and
highest price to calculate the target variable. Using this price, we produced a binary class variable
with a value of 1 if the price is increased the next day and 0 otherwise. The ratio of y = 1 for Bitcoin in
on-line phase is 55.9%. We used 17 variables as input to predict the target variable, as explained in the
Table A1 in Appendix A. The predictive variables were used to train the base learners of the proposed
model during the off-line phase. Among these variables, crude oil, SSE, gold, VIX, and FTSE100
were obtained from https://finance.yahoo.com/; and USD/CNY, USD/JPY, and USD/CHF were
obtained from https://ofx.com/en-au/forex-news/historical-exchange-rates/. We also used various
blockchain-related variables explained in the Table A1 in Appendix A. Such data were obtained from
https://blockchain.info/.

https://Bitcoincharts.com/markets/
https://finance.yahoo.com/
https://ofx.com/en-au/forex-news/historical-exchange-rates/
https://blockchain.info/
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Figure 6 shows Bitcoin daily price, which exhibits considerable changes. For example, the value
of 1 Bitcoin was approximately $5 in September 2011 but reached approximately $4000 in August 2017
when market volatility became exceptional. However, after hitting approximately $20,000, the price
started to decrease with high volatility. Therefore, the later part is important in analyzing Bitcoin price.

Figure 6. Bitcoin.

4.3.2. Results

Figure 7 shows the accuracy and the weight change over time for each financial example.
The accuracy of the financial time series example (from 50% to 60%) was considerably lower than the
accuracy result of the example of the toy data. In an efficient market, stocks follow a fairly random
walk. Hence, a single base classifier would achieve a slightly better performance than a trivial classifier
that predicts only one value. This can lead to the small improvement of ensemble model in the case
of financial time series such as index, future, and asset. Nonetheless, to clarify the effectiveness of
our ensemble algorithm, we compared all ensemble methods with the trivial classifier, whose final
cumulative accuracy represents the ratios of y = 1 in Figure 7. Table 2 shows the average difference
between the performance of the proposed method and the performance of a single base learner that
predicts only one value for all the batches for all the examples. The performance of a single base
learner exhibited a degree of imbalance in each example. By contrast, the proposed model achieved
the best performance for all examples.

Table 2. The average difference (%).

Sine Combination
Sine

S&P
500 Nasdaq Gold Sugar Bitcoin Temperature Power

Consumption

proposed 46.69 27.12 0.66 0.59 0.06 0.73 0.86 6.83 18.66
equal 42.03 25.81 0.13 0.29 −0.44 −1.07 −0.14 2.97 17.8

rf 39.99 −0.64 −0.46 −5.57 −0.66 −1.97 −5.47 3.15 −1.02
bg 35.99 0.33 −0.17 −1.17 −0.14 −2.97 −1.64 4.9 2.21

Figure 7a,c,e–g demonstrates the cumulative accuracies of the ensemble models and the trivial
classifier. Our on-line ensemble algorithm outperformed the other ensemble models not only on all
datasets but also at most time steps. For the S&P and Nasdaq datasets, deep learning based ensemble
algorithms outperformed other ensemble methods, and our ensemble algorithm slightly outperformed
the equal ensemble and the trivial classifier. In Appendix B, we add Figure A1 to compare our proposed
method with the equal ensemble and the trivial classifier in more detail. As shown in Figure A1,
we found that our algorithm had better performances in the later part of the S&P despite of high
volatility, as shown in Figure 5. On the other hand, gold and sugar future datasets exhibited obvious
improvements compared to the other methods. This shows that our method can efficiently adapt to
the change of input distribution by updating the ensemble weights.

Figure 7b,d,f,h,j presents graphical representations of how weight changes over time for each
financial example. Similar to the previous toy data example, the weight of each classifier changed
with time to recognize the pattern change inherent in the data over time. In the case of the S&P 500,
5-min data were used, as described above, and the remaining examples used daily data. S&P 500
was intended as an example of high-frequency trading. Consequently, the weight assigned to each
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classifier changed with time in all the examples, regardless of whether it is a high-frequency trading
scenario or a daily scenario. In particular, in the beginning of the on-line phase, a significant change in
weight distribution occurred starting from the initial uniform distribution; thereafter, a slight weight
distribution change was observed. In the case of financial time series, except for Bitcoin, the process
of each time series followed a random walk, and a considerable change did not occur in weight
distribution after finding the appropriate weight distribution by updating with the error of the initial
state. Once the appropriate weight distribution is found, performance cannot improve through weight
change. In the Bitcoin example, weight changed dramatically over time, presumably because the
patterns inherent in Bitcoin data are more likely to vary with time than other financial time series data.
That is, the Bitcoin process changed in a manner that follows a different type of distribution over time
compared with other time series processes.

(a) S&P 500: Accuracy (b) S&P 500: Change of weight over time

(c) Nasdaq: Accuracy (d) Nasdaq: Change of weight over time

(e) gold: Accuracy (f) gold: Change of weight over time

(g) sugar: Accuracy (h) sugar: Change of weight over time

(i) Bitcoin: Accuracy (j) Bitcoin: cChange of weight over time

Figure 7. Performance measures of financial time series data.



Sustainability 2019, 11, 3489 14 of 24

4.4. Non-Financial Time Series Applications

In this section, we explored time series data with different properties from the financial time
series data in the previous section. We compared the performance of our algorithm with those of other
ensemble algorithms during the on-line phase through a classification task.

4.4.1. Data Description

We tested our method on two non-financial time series datasets, namely temperature and power
consumption, as shown in Table 3. This table presents the predictor, target, frequency and number of
instances for non-financial data for each example. The temperature dataset represents the weather
information for Austin, Texas and comprises data from December 2013 to July 2017. This dataset
was obtained from https://www.kaggle.com/grubenm/austin-weather. Each instance included 18
numerical variables and two categorical variables, but we only used 15 numerical variables and
excluded those that directly indicate temperature as input variables for the experiment. The predictive
variables were divided into five categories: dew point, humidity, sea level pressure, visibility, and wind.
The detailed information of the variables is shown in Table A1 in Appendix A.

Table 3. Description of non-financial data.

Data Predictor Target Freq # of Data

temperature 18 variables in Appendix A trend of temperature daily 1304

power consumption historical value trend of consumption 5055

The power consumption dataset is based on data from the American Electric Power (AEP)
at https://www.kaggle.com/robikscube/hourly-energy-consumption. AEP is among the largest
generators of electricity in the USA, and it delivers electricity to more than five million customers in 11
states. The dataset contains the power consumption from December 2004 to January 2018. Data are
recorded in 1-h timestamp; hence, the data for the same day were summed to change the unit into
day. As a univariate dataset, the power consumption values from the previous day and two days
before were used as input. Therefore, the preprocessing step was similar to that of the simulated data.
For both datasets, we created binary variables in the same manner as the financial datasets to use them
as target variables. In addition, the ratios of y = 1 for temperature and power consumption in on-line
phase are 59.7% and 52.8%, respectively.

Figure 8 illustrates temperature and power consumption data. They appear different from
the previous financial time series datasets. They exhibit seasonality, but minimal trend, where the
frequency of power consumption data is higher than that of temperature data. Therefore, the algorithms
should adapt to these characteristics of time series data during the on-line phase. We did not use
tricks such as removing or reflecting seasonality when training the models during the off-line phase.
The experimental results of the datasets are provided in the following section.

(a) Temperature (b) Power consumption
Figure 8. Temperature and power consumption.

https://www.kaggle.com/grubenm/austin-weather
https://www.kaggle.com/robikscube/hourly-energy-consumption
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4.4.2. Results

We tested the capability of our algorithm in predicting the direction of time series data. Figure 9
presents the comparison of prediction performance using accuracy and AUC. Figure 9a,c presents
the accuracy scores of the temperature and power consumption datasets, respectively. Figure 9b,d
corresponds to their AUC scores over time. As shown in Figure 9a,b, our algorithm was slightly better
than the other algorithms for temperature data, even if the difference was minimal. In the case of
power consumption data, our algorithm substantially outperformed the other algorithms, as shown in
Figure 9b,d. Figure 8 depicts that power consumption data are volatile compared with temperature
data. Thus, training the models to adapt well to a slow change in time series was easier than training
the models for volatile time series during the off-line phase. The initial accuracies of temperature data
were higher than the initial accuracies of power consumption data. In addition, deep learning-based
models were better at predicting complex data compared with tree-based ensemble models.

(a) Temperature: Accuracy (b) Temperature: AUC

(c) Power: Accuracy (d) Power: AUC

Figure 9. Performance measures of non-financial time series data.

We visualize the change in ensemble weight over time in Figure 10 to examine the adaptiveness
of our algorithm during the on-line phase. Figure 10a,b shows the ensemble weight of temperature
data, and Figure 10b,d shows the ensemble weight of power consumption data. The distribution of
the ensemble weight changed over time in both cases. The changes were helpful for adapting to the
change in the characteristic of time series data without using other techniques.

(a) Temperature: Change of weight distribution (b) Temperature: Stack graph of weights over time

(c) Power: Change of weight distribution (d) Power: Stack graph of weights over time

Figure 10. The change of the distribution of the ensemble weight for non-financial time series data
(temperature and power consumption).
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5. Discussion

As shown in Section 4, we verified our algorithm for real time series data with different properties,
such as trend, seasonality, and sudden drift, by comparing it with other ensemble methods. In this
section, we discuss the effectiveness of our algorithm by assuming specific useful scenarios. As
mentioned in Section 3, our algorithm can be robust to intentional attacks and sustainable in data
distribution change. We examined these properties of our algorithm through two illustrative examples.

5.1. Robustness for the Intentional Attacks

Many researchers have conducted studies in recent years on developing a system that is robust to
external malicious attacks, which cause artificial intelligence to fail in machine learning applications.
An adversarial attack is a representative study related to addressing the problem of fragile artificial
intelligence with slight noises in an off-line environment. However, our study focused on developing
a robust system when several classifiers are attacked during the on-line phase. This study can be
important to applying deep learning system to real world applications that deal with time series
or continuously incoming data. Therefore, we tested the robustness of the proposed model against
malicious attacks when several base classifiers were attacked during the on-line phase. We used the
sine example presented in Section 4.2 for verification. We postulated that the prediction of the attacked
classifier was reversed to simplify the attacking scenario.

Figure 11 shows the effect of the number of attacked classifiers on the accuracy of the proposed
model. The number of base deep learning models was 12, and we increased the number of the
attacked models from 0 to 11 when the attack started in the 50th epoch. Until two attacked models,
the accuracies of the ensemble model were maintained without significant degradation, while the
accuracies decreased only slightly to five attacked models. The performance of the ensemble model
sharply decreased when the number of attacked models reached six. Although performance initially
dropped, accuracies recovered to a certain extent at eight attacked models. These results show that our
algorithm could prevent the ensemble model from being deteriorated by attacked models during the
on-line phase.

Figure 11. Accuracy depending on the number of attacked classifier.

Figure 12 illustrates the change in the distribution of ensemble weights over time, where
Figure 12a–d presents zero, three, six and nine attacked classifiers, respectively. The intentional
attacks resulted in a drastic change in weight distribution. The weights of the attacked models
disappeared immediately after the attack in all cases because our attack scenario was strong. Our
ensemble model could exclude the attacked classifiers, thus the on-line system could remain robust.
This property can be helpful in detecting attacked models, and it can be reflected in the subsequent
off-line phase.
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(a) No classifier attacked (b) Three classifiers attacked at 50th batch

(c) Six classifiers attacked at 50th batch (d) Nine classifiers attacked at 50th batch

Figure 12. Accuracy and change of weight distribution of attacking scenario.

5.2. Sustainability for the Change of Target Distribution

In the previous experiments, we explored the effectiveness of our algorithm when the distribution
of input variable changes over time. However, in an on-line scenario, a change in the distribution of the
target variable is an important problem in addition to the change in input distribution. This problem is
typically addressed using transfer learning methods, but our on-line approach can cope with it to a
certain extent. Thus, we designed an experiment to verify the sustainability for the change in target
distribution. We used the bankruptcy data explained in Table 1. The financial statement data of the
Korean Savings Bank were obtained from the Korean Financial Supervisory Service (KFSS). The data
of 133 Korean savings banks were collected from June 2004 to September 2016. In total, 38 variables
were collected based on the work in [36] and used as input variables that reflect the various financial
statuses of savings banks. The 38 variables were divided into seven categories: stability, profitability,
growth, productivity, capital adequacy, liquidity, and asset quality. We attempted to estimate the
default risk of savings banks through these variables because they are considered appropriate variables
for learners to learn the default risk of a savings bank. This is because the aforementioned variables,
as classified into seven categories, can represent the default risk of savings banks by reflecting their
financial soundness and various statuses. We constructed the target variable with whether a savings
bank breaks down after three steps. The data for the target class y = 1 (bankruptcy) was oversampled:
the ratio of y = 1 data instances to the total data is 20%, 30%, 40%, and 50%. Data augmentation was
performed with SMOTE [37].

In the previous experiments, we qualitatively verified that our algorithm can adapt to a change in
data distribution by analyzing the change of the ensemble weights. From these results, a question arises:
Can the proposed model remain sustainable in target distribution change? In this experiment, we
proved this feature by artificially changing the target distribution of bankruptcy data. The experimental
design is as follows. The target variable is binary; hence, we adjusted the imbalance degree the of target
variable to 20%, 30%, 40%, and 50%. During the on-line phase, we changed the target distribution by
changing the degree of data imbalance. We postulated that the base classifiers of the ensemble model
are diverse, similar to other ensemble methods. During the off-line phase, four classifiers were learned
by training data with different distributions that have imbalance levels of 20%, 30%, 40% and 50%.
During the on-line phase, the transition of target distribution was 20%, 30%, 40%, and 50% imbalanced.
We found that, when the weight of the classifier corresponding to the imbalance level increased and
the others decreased, the imbalance level changed in an on-line manner.

Figure 13a illustrates that the weight of a classifier at 20% level increased first from the initial equal
weight. Then, the weight of the 30% level classifier increased, and the weight of the 40% level classifier
also increased. Finally, the weight of the classifier at 50% level increased. In Figure 13b, the weight of
the 20% level classifier gradually decreased with time. By contrast, the weight of the classifier at the
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50% level increased over time. Consequently, when distribution changed, the weight assigned to each
classifier in the ensemble model was appropriately adjusted. Therefore, the proposed model could
make an accurate prediction. Figure 13c shows the change in the accuracy of the proposed model and
the baseline. This result indicates that imbalance level changed over time. Although the accuracy of
the proposed method was lower than the accuracy of the baseline for the first 20% level, its accuracy
was higher than the accuracy of the baseline in other levels. Therefore, even when the distribution
or pattern of data inherent in the time series data changed with time, the proposed ensemble model
could determine the changed distribution and assign appropriate weights to the classifiers for the
entire ensemble model to achieve sustainability in data distribution change. Accordingly, our on-line
ensemble algorithm could reflect the change in data distribution to the ensemble model when base
classifiers are diverse. This result also implies the importance of the composition of base deep
learning models.

(a) Change of weight of imbalance scenario

(b) Stack graph of weight of imbalance scenario

(c) Accuracy of imbalance scenario
Figure 13. Performance measure of imbalance scenario.

6. Conclusions

In this paper, we propose an on-line ensemble learning algorithm that changes the weight
distribution of the ensemble model on the basis of loss value to adapt to a change in the properties
of incoming instances. Our algorithm can be used as a general framework for aggregating deep
learning models to analyze time series data because it is applicable to all cases that learn a model
by minimizing the loss function. We selected deep learning models as base classifiers because they
minimize the loss function without constraints but with a regularizer in the loss function. We developed
our algorithm with motivation from on-line learning, devised a new regret measure based on the
adversarial assumption for our algorithm, and proved that our algorithm can make the distribution of
ensemble weight converge to the limiting vector that minimizes total loss. In addition, we suggest
an overall framework to apply our algorithm to real-world systems to analyze time series data.
This framework enables systems to remain sustainable with continuously incoming big data. In the
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experiment, we demonstrated the effectiveness of our algorithm by focusing on the on-line phase.
We applied our algorithm to the simulated data, financial time series data, and non-financial time
series data, which exhibit various characteristics, such as high volatility, periodicity, trend, and sudden
drift. The ensemble method based on deep learning models outperformed other models in most
cases, and the visualization of the weight distribution illustrated how our algorithm works. We also
discussed the effect of our algorithm on special scenarios related to the robustness and sustainability
of the algorithm for extreme cases. The adjustment of ensemble weight on the basis of the loss function
can detect and address the degradation problem to a certain extent.

We conducted experiments for classification tasks, but our algorithm can be extended to regression
problems when using deep learning models with appropriate loss functions. We used simple multilayer
perceptrons as base classifiers, but deep learning models that consider the sequence of instances, such
as RNNs, can improve the prediction performance of our algorithm. Moreover, the use of RNNs
would enable expanding our method to apply to time series classification problems that predict the
target class using sequences of instances as inputs. In the future, we aim to extend our algorithm to
unsupervised problems, such as anomaly detection, by constructing the appropriate loss functions.
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Appendix A. Predictive Variables

Table A1 provides the detailed explanations for predictive variables used in the multivariate time
series. Thirteen variables were used in the S&P 500, gold, and sugar datasets, as shown in Table A2,
and nine variables were used in Nasdaq dataset, as shown in Table A3. Tables A2 and A3 not only
present the detailed description of predictive variables but also the formula used to obtain the variables.
These variables are based on the work in [34,35]. In the Bitcoin example, 17 variables, including the
blockchain variable, were used. The savings bank and temperature datasets have 38 and 18 predictive
variables, respectively, among which the variables appropriate for a given task were considered.
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Table A1. The detailed explanation of predictive variables.

Data Predictors

S&P 500,
gold, sugar

Open price, Low price, High price, Close price, Volume,
RDP (−5), MA (5), MA (10), EMA (5), OSCP, EOSCP, DISP (5), EDISP (5)

Nasdaq OBV, MA (5), BIAS (6), PSY (12), ASY (5), ASY (4), ASY (3), ASY (2), ASY (1)

cryptocurrency—
Bitcoin

Crude oil, SSE, Gold, VIX, FTSE100,USD/CNY, USD/JPY, USD/CHF,
Historical value of target variable, Trading volume, Average block size,

Median confirmation time, Hash rate, Miners revenue, Cost per transaction,
Confirmed transactions per day, The number of transaction excluding popular addresses

Savings
bank data

Total credit, Total credit growth rate, Loan growth rate, Allowance for loan losses,
Total subordinated loans to total loans, Allowance for bad debts to subordinated loans,

Net non-performing loans ratio, Overdue ratio, Petty overdue ratio,
Non-performing loans, Loan deposit ratio, Net loans to total assets,

Net loans against liquid liabilities, Available funds ratio, Operating expenses to operating income,
Operating return on assets, Current account ratio, BIS capital adequacy ratio, Net loan-to-equity,

BIS simple capital adequacy ratio, Tangible common equity ratio, Total investment efficiency,
Labor income share, Total asset growth rate, Tangible asset growth rate, Net income growth rate,

Equity capital growth rate, Total net income, Return on assets, Return on equity,
Interest coverage ratio, Capital ratio, Debt ratio, Liquidity ratio, Quick ratio,

Payables dependency, Total assets, Debt repayment coefficient

Temperature

High temperature, Average temperature, Low temperature,
Highest wind speed gust, High dew point, Low visibility,

High wind speed, Average wind speed, Low sea level pressure,
High visibility, Average visibility, Average dew point,

Low dew point, High humidity, High sea level pressure,
Low humidity, Average sea level pressure,Average humidity

Table A2. The detailed description and formula of financial examples except for Nasdaq.

Variables Description Formula

RDP (−k) Relative difference prices between
k times before and now in percentage.

p(t)−p(t−k)
p(t−k) × 100

MA (k) Moving average of k times. ∑k−1
i=0 p(t−i)

k

EMA (k) Exponential moving of k times. α ∑k
i=0(1− α)i p(t− i) where α = 2

k+1

DISP (k)
k-time disparity: the relative difference
in percentage between k-time moving

average and the current price.

p(t)−MA(k)
MA(k) × 100

EDISP (k) ]@c@k-time disparity with exponential
moving average and the current price.

p(t)−EMA(k)
EMA(k) × 100

OSCP
Price oscillator: the relative

difference between 5-time moving average
and 10-time moving average.

MA(5)−MA(10)
MA(5)

EOSCP

Price oscillator with exponential moving
average: the difference between 5-time

exponential moving average and 10-time
exponential moving average.

EMA(5)−EMA(10)
EMA(5)

RSI (k) Relative strength index for k-times

1− 1
1+∑k−1

i=0
u(t−i)

k ∑k−1
i=0

d(t−i)
k

where u(t) is 1 if

there is upward-price change at time t and is
0 otherwise, and d(t) is 1 if there is downward

-price change at time t and is 0 otherwise.
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Table A3. The detailed description and formula of Nasdaq.

Variables Description Formula

OBV On Balance Volume. Vt is volume at time t OBVt = OBVt−1 + θ ·Vt

MA5 Moving average of 5 times. MA5 = ∑5
i=1 Ct−i+1

5

BIAS6 Ct is close price at time t BIAS6 = Ct−MA6
MA6

· 100%

PSY12
The ratio of the number of rising periods over the n day.
A is the number of rising days in the last n days. PSY12 = A

12 · 100%

ASY5
The average return in the last 5 days.
SYt is log return ASY5 = ∑5

i=1 SYt−i+1
5

ASY4 The average return in the last 4 days. ASY4 = ∑4
i=1 SYt−i+1

4

ASY3 The average return in the last 3 days. ASY3 = ∑3
i=1 SYt−i+1

3

ASY2 The average return in the last 2 days. ASY2 = ∑2
i=1 SYt−i+1

2

ASY1 The average return in the last 1 days. ASY1 = SYt−1
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Appendix B. Additional Figures

(a) S&P 500: Accuracy

(b) Nasdaq: Accuracy

(c) Bitcoin: Accuracy

Figure A1. Accuracy of S&P500, Nasdaq, and Bitcoin.
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