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ABSTRACT
In this work, we compare the resistive switching characteristics between Ti/ZrOX/TiN and Ti/ZrOX/HfAlOX/TiN. The bilayer structure of the
ZrOX-based device enables power consumption reduction owing to a lower forming voltage and compliance current. Moreover, the on/off
ratio of the Ti/ZrOX/HfAlOX/TiN device (>102) is higher than that of the Ti/ZrOX/TiN device (>10). We use the 1/f noise measurement
technique to clarify the transport mechanism of the Ti/ZrOX/HfAlOX/TiN device; consequently, ohmic conduction and Schottky emission
are confirmed in the low- and high-resistance states, respectively. In addition, the multilevel cell, potentiation, and depression characteristics
of the Ti/ZrOX/HfOX/TiN device are considered to assess its suitability as a neuromorphic device. Accordingly, a modified National Institute
of Standards and Technology database simulation is conducted using Python to test the pattern recognition accuracy.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0175587

I. INTRODUCTION

The explosive growth of data in recent years has resulted in
numerous challenges for traditional computing systems that are
based on the von Neumann architecture.1 These systems rely on a
centralized processing unit to execute instructions and access data
stored in the memory. However, as the amount of data continues
to increase, this approach has become a bottleneck as it requires
a significant amount of time and energy to move data between
the processing unit and memory.2 This challenge has motivated
the development of novel computing architectures that can over-
come these limitations. In this context, neuromorphic computing
has emerged as a promising alternative, inspired by the architecture
and functionality of the human brain.3 Neuromorphic computing
systems are designed to mimic the parallel processing and dis-
tributed memory capabilities of the human brain, enabling them to

perform tasks such as pattern recognition and decision-making with
remarkable efficiency. In recent years, numerous emerging memory
technologies have been investigated for their potential in neuromor-
phic applications, including phase-change random-access memory
(PRAM), ferroelectric random-access memory (FRAM), magnetic
random-access memory (MRAM), and spin-transfer torque MRAM
(STT-MRAM).4–7 PRAM stores data by changing the phase of a
chalcogenide material using heat, while FRAM uses a ferroelec-
tric material to store data through polarization. MRAM and STT-
MRAM rely on magneto-resistive effects to store data by chang-
ing the magnetic orientation of a thin-film element. Among the
emerging memory technologies, resistive random-access memory
(RRAM) is a promising candidate for neuromorphic applications
owing to its properties of high speed, low power consumption, and
high scalability. Because of its straightforward design and CMOS
process compatibility, RRAM is also easily scalable and simple to
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integrate with existing electronic systems.8 RRAM is a non-volatile
memory device that utilizes metal oxide layers to store informa-
tion. Among the various metal oxide materials, TiOX, TaOX, NiOX,
ZnO, AlOX, ZrOX, and HfOX have extensively been studied for their
RRAM applications.9–15 When metal oxides are used as insulators,
resistive switching (RS) can occur owing to the presence of oxy-
gen vacancies, which can form conducting filaments (CFs). These
filaments can be broken by binding with oxygen ions, resulting in
resistive switching. Therefore, the distribution of oxygen vacancies
and ions significantly affects RS.16

Utilizing a bilayer structure in RRAM devices has been demon-
strated to enhance RS properties because of regulated oxygen
vacancy movements from the bilayer interface. This reduces the
variability in resistivity, leading to more stable performance overall.
Moreover, the bilayer configuration improves durability and relia-
bility by enhancing information retention.17 Ye et al. revealed that
the multilevel RS behaviors of HfO2/TiO2 bilayer structures exhibit
excellent uniformity, high durability, and exceptional mechanical
flexibility.18 Lee et al. found that ZrOX/HfOX bilayer-structured
devices display great data retention at 85 ○C, uniform distribu-
tion of the switching characteristics, strong switching endurance
up to 105 cycles, and lower reset currents.19 Previous research has
shown that HfAlOX-based RRAM devices demonstrate superior
properties, such as large windows for resistance states, unifor-
mity, and endurance, making them promising options for synaptic
devices. Sokolov et al. reported that Ti/HfAlOX/Pt RRAM devices
achieve uniform and higher self-compliant RS behaviors.20 Ryu et al.
reported a Pt/HfAlOX/TiN memristor device design with voltage-
controlled synaptic behaviors and current sweeping mode for neu-
romorphic applications.21 Lin et al. reported that abundant oxygen
vacancy exists in the ZrOx layer and that it has a hysteresis curve.22

Surazhevsky et al. reported that Au/ZrO2/TiN devices have large
on/off ratios and stable switching. In addition, it was found to be a
suitable device for learning using spike-timing-dependent plasticity
(STDP).23

In the present study, a bilayer device was manufactured by
atomic layer deposition (ALD) with 1.5 nm thick HfAlOX at the
ZrOX/TiN interface. The bilayer device was operated with a lower
compliance current (Icc) than the single-layer device, allowing better
control over the formation of CFs. This resulted in a lower con-
ductance value for the bilayer device, which is beneficial in terms
of power consumption. The RS mechanism was confirmed through
the oxygen vacancy scheme. To clarify the transport mechanism in
the RRAM device, we adopted a diagnosis tool involving 1/f noise
measurement. The 1/f noise degrades the performance and stabil-
ity of circuit systems and is one of the most critical limiting factors
in circuit design. However, interestingly, 1/f noise analysis is a fast,
repeatable, and nondestructive electrical characterization technique
that analyzes the characteristics of devices such as working princi-
ple, transport mechanism, and trap analysis.24–27 The compliance
current and reset voltage were modulated to produce the multilevel
RS characteristics. Furthermore, long-term potentiation and depres-
sion were attained both consistently and repeatedly. Accordingly, a
modified National Institute of Standards and Technology (MNIST)
database simulation was conducted using Python to test the pattern
recognition accuracy.

II. EXPERIMENTS
A. Device fabrication

The RRAM devices were fabricated as follows: First, a 100
nm-thick TiN layer was deposited on a SiO2/Si substrate wafer
via reactive sputtering in the presence of gaseous N2 and Ar.
In the Ti/ZrOX/HfAlOX/TiN device, a 1.5 nm HfAlOX layer was
deposited by ALD technology using tetrakis (ethylmethylamido)
hafnium (TEMAHf) and trimethyl aluminum (TMA) as Hf and Al
precursors, respectively, and ozone (O3) was used as an oxidant.
ZrOX switching layers were subsequently deposited to a thickness
of 20 nm using reactive sputtering at room temperature. Then, a
20 nm-thick Ti top electrode was deposited on the ZrOX/TiN and
ZrOX/HfAlOX/TiN substrates by DC magnetron sputtering. Finally,
a Pt capping layer was deposited to prevent the oxidation of Ti when
in contact with air.

B. Electrical measurement
The I–V and transient curves of the RRAM cells were obtained

by measurements using a semiconductor parameter analyzer (Keith-
ley 4200-SCS and 4225-PMU ultrafast current–voltage modules,
Keithley Instruments, Cleveland, OH, USA). A bias was applied to
the Ti top electrode, and the TiN bottom electrode was grounded.
The 1/f noise characteristics were analyzed using a low-noise
current amplifier (SR570) and a signal analyzer (35670A). The
schematic diagram of the 1/f noise measurement system is shown in
Fig. S1 (the supplementary material). The voltage applied to the
top electrode was supplied by a semiconductor parameter analyzer
(B1500A). The output current of the RRAM device was connected
to the SR570 to convert the current fluctuations into voltage fluc-
tuations. The 35670A then converted the dynamic signal from
the SR570 into a power spectral density. The noise floor of our
measurement system is ∼10−24 A2/Hz, significantly lower than the
device noise. This ensures that the noise power spectral density
measured in this study is not affected by the measurement system
noise floor.

III. RESULTS AND DISCUSSION
A. Material characterization and surface analysis

The Ti/ZrOX/HfAlOX/TiN RRAM device stack is shown
schematically in Fig. 1(a) and matches the transmission electron
microscopy (TEM) image in Fig. 1(b). The amorphous ZrOX layer is
around 20 nm thick, and a clear interface is visible between the TiOX
and Ti/ZrOX layers because the Ti top electrode is partially oxidized
during deposition, creating a 7 nm-thick TiOX layer. In addition,
a 1.5 nm-thin HfAlOX layer was applied by ALD at the TiN/ZrOX
interface. The chemical composition analysis of ZrOX and HfAlOX
was meticulously performed using x-ray photoelectron spectroscopy
(XPS) with a Nexsa G2 surface analysis system fromThermo Fisher
Scientific. The detected peak positions were calibrated by perform-
ing Shirley background subtraction using the photoemission signal
of the C 1s (284.6 eV). Subsequently, 5% Gaussian–Lorentzian
functions were utilized to fit the XPS spectra. The high-resolution
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FIG. 1. (a) Schematic illustration of Ti/TiOX/ZrOX/HfAlOX/TiN. (b) Cross-sectional TEM view of the Ti/TiOX/ZrOX/HfAlOX/TiN RRAM device. X-ray photoelectron spectroscopy
results of (c) Zr 3d, (d) O 1s at ZrOX, (e) Hf 4f, (f) Al 2p, and (g) O 1s at HfAlOX.

spectrum of the ZrOX layer was presented in Fig. 1(c), and it was
observed that the Zr 3d doublet could be divided into two groups of
peaks corresponding to Zr in the metallic state (Zr0) at 178.7 eV and
to a sub-oxide (Zr1+) located at 179.8 eV binding energy.28 The XPS
analysis showed that doublets observed at higher binding energies
(182.2/184.63 eV) were attributed to Zr3+ cations. Figure 1(e) shows
that the Hf 4f spectrum of the HfAlOX layer can be deconvoluted
into two groups of peaks. Peak positions of Hf 4f7/2 and Hf 4f5/2 are
at 17.4 and 18.4 eV, respectively. In addition, Fig. 1(f) shows that
the Al 2p spectrum of the HfAlOX layer can be deconvoluted into
one peak. The peak position of Al 2p is at 74.0 eV. Figures 1(d) and
1(g) show the XPS plots of the O 1s peak spectra of the ZrOX and
HfAlOX layers. Furthermore, the O 1s peak indicates the presence
of different oxygen species in each layer of the memristor. The O 1s
peak can be broken down into two components, designated OL and
OV, respectively. The OL and OV peaks are related to lattice oxy-
gen and non-lattice oxygen (oxygen vacancies). The concentration
of OL and OV was calculated as the total area of both peaks divided
by a single peak.29 Based on the simulated spectra, the percentage of
oxygen vacancies was calculated to be 16% in the top HfAlOX layer,
whereas it was 26% in the ZrOX layer. The XPS analysis confirmed
that the HfAlOX layer had a lower concentration of oxygen vacan-
cies. The XPS analysis confirmed that the HfAlOX layer exhibited a
lower concentration of oxygen vacancies.

B. Resistive switching characteristics
The RS properties of ZrOX-based RRAMs rely on the elec-

troforming process, which triggers the movement of oxygen ions

and the creation of oxygen vacancies.30 Figures S2(a) and S2(b)
(the supplementary material) illustrate the typical I–V curves for
the forming processes of 30 randomly selected cells. The Icc values
of 10 and 1 mA were set for the single-layer and bilayer devices,
respectively. It should be noted that the single-layer memory devices
exhibited gradual increases from the high-resistance state (HRS)
to the low-resistance state (LRS) and required much higher volt-
ages than the bilayer memory devices. On the other hand, when
the HfAlOX layer was inserted, a low initial current was confirmed
because the additional HfAlOX layer acted as a series resistance. The
bilayer device also transitioned from the HRS to the intermediate
resistive state (IRS) at a lower voltage and then changed abruptly to
the LRS. As illustrated in Fig. S2(c) (the supplementary material), a
higher forming voltage distribution of the single-layer ZrOX-based
device is observed in the range from 12.0 to 16.0 V. In contrast, the
bilayer ZrOX-based device exhibits a low forming voltage distribu-
tion in the range of 6.0 to 13.0 V. From the results of the forming
I–V curves, as described previously in Fig. S2 (the supplementary
material), the bilayer structure of the ZrOX-based device allows
lower power consumption due to the lower forming voltage and Icc,
which are crucial for RRAM device applications. Figure 2(a) illus-
trates the typical I–V curves of the single-layer Ti/ZrOX/TiN and
bilayer Ti/ZrOX/HfAlOX/TiN devices. The voltage sweep direction
is clockwise, and both devices exhibit bipolar RS characteristics. Fifty
consecutive DC switching cycles were applied using negative set and
positive reset voltages of −2.0 and 2.8 V without Icc, respectively. In
addition, Fig. S3 (the supplementary material) shows the results of
250 DC cycles and the conductance distributions of eight randomly
selected memory cells during the cycling test of the double-layer
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FIG. 2. (a) I−V curves of ZrOX and ZrOX/HfAlOX-based devices for 50 cycles showing the self-compliance characteristic. (b) DC endurance and (c) retention performance.

RRAM device. It is very important for RRAM devices to operate
reproducibly. To confirm that the bilayer device in this paper oper-
ates reproducibly, AC pulse endurance was additionally measured
in addition to the existing DC 250 cycles. Based on the I–V curve of
the device to be measured, the pulse scheme, as shown in Fig. S3(c)
(the supplementary material), consisted of a set pulse (−1.0 V), a
read pulse (0.2 V), a reset pulse (2.0 V), and a read pulse (0.2 V) in
one cycle. As it proceeded for a total of 103 times, the result is shown
in the following figure: As shown in Fig. S3(d) (the supplementary
material), the HRS was found to be worse than the initial state as
it went on, but it was found to operate normally even after 103

attempts. In the SET process, both single-layer and bilayer devices
are abruptly SET below −1.2 V, demonstrating self-compliant char-
acteristics. In the RESET process, both devices are abruptly RESET
below −2.0 V. The initial current in the bilayer device is lower than
that in the single-layer device owing to the presence of the HfAlOX
layer, which acts as a series resistance. Therefore, the bilayer device
exhibits stronger RESET behavior than the single-layer device. In
both the single-layer and bilayer devices, the self-compliance behav-
iors during the set transitions are attributed to the TiOX layer
acting as an oxygen-ion reservoir that prevents current overshoot.31

A DC endurance test and retention test were conducted to assess
the device’s performance. The endurance tests were carried out for

both the Ti/ZrOX/TiN and Ti/ZrOX/HfAlOX/TiN devices at −0.2 V
(Vread), as shown in Fig. 2(b). The HRS and LRS were maintained
stably for 100 DC cycles, indicating excellent endurance characteris-
tics for both devices. The on/off ratio for the Ti/ZrOX/HfAlOX/TiN
device (>102) was higher than that of the Ti/ZrOX/TiN device (>10).
Retention tests were also performed to confirm the performances
of the single-layer and bilayer devices, as shown in Fig. 2(c); both
devices exhibited no degradation over 104 s. The bilayer device
had a larger window than the single-layer device, similar to the
endurance test results. The on/off ratio was significantly improved
by the insertion of the HfAlOX layer without any degradation in
retention.

Figure 3 shows the schematics of the CFs for the single-layer
Ti/ZrOX/TiN and bilayer Ti/ZrOX/HfAlOX/TiN structures based on
the forming process and I–V curve results. According to Gibbs’s
free energy theory, the RS mechanism of the ZrOX-based RRAM
devices can be explained by the exchange of oxygen between the
HfO2, ZrO2, and TiO2 layers. The Gibbs free energy values for oxide
formation in ZrO2, HfO2, and TiO2 are ΔGo = −1100.0 kJ/mol,
ΔGo = −1010.8 kJ/mol, and ΔGo = −888.0 kJ/mol, respectively.32

The lower Gibbs free energy value for ZrO2 formation implies that
it has more oxygen vacancies (Vos) than HfO2 and TiO2.33 Based
on the XPS result as shown in Figs. 1(d) and 1(g), the ZrOX layer

FIG. 3. Schematics of the RS mechanisms of the Ti/ZrOX/TiN device for (a) LRS and (b) HRS, as well as the Ti/ZrOX/HfAlOX/TiN device for (c) LRS and (d) HRS.
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contains a larger number of Vos than the TiOX and HfAlOX lay-
ers. In addition, according to a prior study, the size of the CF was
larger in an oxygen-deficient layer than in an oxygen-rich layer.
When a high current is applied, the narrowest portion of the filament
(in this study, the TiOX/ZrOX and ZrOX/HfAlOX interface) heats
up, allowing the migrated oxygen ions to reduce with the Joule heat-
ing effect and change LRS to HRS.34,35 Given the above analysis, the
SET process of the Ti/ZrOX/TiN device is shown in Fig. 3(a). This
process involves applying a negative voltage to the Ti top electrode,
which causes oxygen ions to move toward the bottom electrode and
undergo reduction reactions, turning them into oxygen. This reac-
tion causes the oxygen vacancies to gain two electrons and become
neutral, creating CFs and putting the device in its LRS. Applying a
positive voltage to the Ti top electrode during the RESET process
makes it easy for the migrated oxygen ions to recombine (oxidize)
with the oxygen vacancies at the TiOX layer. This leads to the rup-
ture of the CFs at the top interface region, as shown in Fig. 3(b).
The formation of CFs in the bilayer structure is similar to that in
the single-layer structure. However, the bilayer structure with addi-
tional HfAlOX shows a larger memory window than the single-layer
structure, indicating that the HfAlOX layer is also involved in the
formation of CFs. As depicted in Fig. 3(c), when a negative volt-
age is applied to the Ti top electrode, the oxygen ions migrate
toward the TiN bottom electrode, leaving behind oxygen vacan-
cies. This leads to the formation of CFs from the bottom to the
top electrodes, resulting in device switching from the HRS to the

LRS. As depicted in Fig. 3(d), when the TE is applied to oppos-
ing voltages during the RESET procedure, the CFs in the TiOX
and HfAlOX layers are ruptured, changing the device from HRS
to LRS.

C. 1/f noise characteristics and transport mechanism
To investigate the current transport mechanism of the

Ti/ZrOX/HfAlOX/TiN RRAM device, we adopted a diagnosis tool
using the 1/f noise measurement, which has been widely used
as an assistive technique to analyze the transport mechanisms
of RRAMs in previous studies.36–38 Figure 4(a) shows the nor-
malized noise power spectral density (SI/I2) for several devices
for both the HRS and LRS of the Ti/ZrOX/HfAlOX/TiN RRAM
device. The SI/I2 is proportional to 1/f γ, with γ ∼ 1 for both states
except for the cell exhibiting random telegraph noise (RTN), which
represents that low-frequency noise (LFN) characteristics in the
Ti/ZrOX/HfAlOX/TiN RRAM device also obey the classical 1/f noise
theory. In the HRS of RRAM devices, the RTN is often observed.39,40

RTN refers to the random fluctuation of the current level in the cell
state. To ensure accurate analysis, cells that exhibit RTN during mea-
surement were excluded from the interpretation of the experimental
results. This exclusion helps to eliminate the influence of RTN on
the observed data, allowing for a more reliable analysis of the experi-
mental results. The noise power measured in the HRS is one order of
magnitude higher than that in the LRS, as shown in Fig. 4(a). From

FIG. 4. (a) The SI /I2 for several devices for both the HRS and LRS of the Ti/ZrOX/HfAlOX/TiN RRAM device. Note that the cell where RTN is observed does not follow the 1/f
noise characteristic. (b) The I–V curve of the LRS on a double-logarithmic scale, which fits well to a straight line of slope 1. (c) The SI /I2 measured at biases of 0.05–0.7 V in
the LRS. (d) The voltage dependences of SI /I2 at frequencies of 20, 80, and 100 Hz in the LRS.
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the comparison of the 1/f noise according to the resistance state, we
estimate the localized conductive path in the RS layer. In the LRS,
only the noise component associated with the localized path formed
in the metal oxide exists, as depicted in Fig. 3(c). In contrast, in the
HRS, the noise components resulting from various current paths
within the broken gap are included, as shown in Fig. 3(d). There-
fore, the noise level in the HRS is higher than that in the LRS.41–43

The I–V fitting method is the most commonly used approach to
determine the transport mechanism of a device. Therefore, an ini-
tial step is to confirm the transport mechanism of the device via the
I–V fitting method. Figure 4(b) shows the I–V curve of the LRS
on a double-logarithmic scale, which fits well to a straight line of
slope 1. This result shows that the dominant transport mechanism in
the LRS is ohmic conduction, which is attributed to the percolation
path formed in the forming and SET processes. Figure 4(c) shows
the SI/I2 measured at biases of 0.05–0.7 V in the LRS. If the trans-
port mechanism is ohmic, Hooge’s empirical 1/f noise model can be
applied.39 This model is a universal empirical relation derived from
noise measurements of different metal and semiconductor materials.
The SI/I2 is defined as44

SI

I2 =
αH

f N
, (1)

where f is the frequency, αH is the Hooge parameter, and N is
the number of charge carriers. The bias dependence of SI/I2 can

be used to confirm the current transport mechanism from Eq. (1).
Figure 4(d) shows the voltage dependences of SI/I2 at frequencies
of 20, 80, and 100 Hz in the LRS. The measured SI/I2 is nearly
constant according to the voltage, which follows Hooge’s empir-
ical 1/f noise model. Therefore, the transport mechanism in the
LRS is well supported by the noise measurement results. Figure 5(a)
shows the fitting results for the Schottky (left) and Poole–Frenkel
(PF) emission (right) models in the HRS. Schottky and PF emis-
sion are characterized by the semi-logarithmic plots of I–V1/2 and
I/V vs V1/2, respectively.45 Although the linearity is weak in the
low voltage range, the straight lines in Fig. 5(a) suggest the possibil-
ity that the dominant transport mechanism in the HRS is Schottky
or PF emission. Fig. S4 (the supplementary material) demonstrates
the temperature-dependent proportional relationship between cur-
rent density and voltage in HRS. Figure S4(a) (the supplementary
material) corresponds to Schottky emission, while Fig. S4(b)
(the supplementary material) corresponds to PF emission. The
results obtained from temperature measurements also indicate the
possibility of both emission mechanisms. Therefore, we reconfirmed
the transport mechanism in the HRS with LFN measurements for
accurate analysis. Figure 5(b) shows the SI measured at biases of
0.1–1.0 V in the HRS. The noise model for Schottky emission can
be expressed asfollows:46

SI = k∗

f A exp(−qVbi/kBT) I2, (2)

FIG. 5. (a) The fitting results for the Schottky (left) and Poole–Frenkel (PF) emission (right) models in the HRS. (b) The SI measured at biases of 0.1–1.0 V in the HRS. The
fitting results for (c) Schottky and (d) PF emission.
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where Vbi is the built-in potential of the Schottky contact and k∗ is
the fitting parameter that considers surface recombination velocity.
The noise model of PF emission is given as follows:47

E × SI = β2NDq2A
ε2WL f

I2, (3)

where ND is the trap density, ε is the permittivity, β is the PF fitting
parameter, and A is the ratio of the trap’s time constants, which in
practical cases has the value of 0.1.48 To confirm the bias dependence
of the noise power, the SI according to current is plotted on a double-
logarithmic scale at frequencies of 20, 80, and 100 Hz, as shown in
Fig. 5(c). The slope extracted from the linear fitting is 2.28, and the
R-square value is 0.99. Hence, the SI is approximately proportional
to I2 in all current ranges, which is in agreement with the 1/f noise
model for Schottky emission.46 Figure 5(d) shows the fitting results
for PF emissions. According to the 1/f noise model for PF emission,
the slope for the plot of V × SI vs I on a double-log scale should
be 2.47 The slope extracted from the linear fitting is 2.83, and the
R-square value is 0.99. Consequently, we conclude that the dominant
transport mechanism in the HRS is Schottky emission from the I–V
fitting and noise measurements.

D. Feasibility of the multi-level cell (MLC) operation
From a practical standpoint, the concept of multilevel memory

is a fabulous approach to overcoming low-density memory limita-
tions and creating connections between the memory and neuromor-
phic synapses.49 In general, the multi-level cell (MLC) operation of
the memristor can be obtained by adjusting the reset voltage, or
Icc. By adjusting the reset voltage, it is possible to control the gap
between the electrode and the residual filament in the switching
material. Otherwise, the lateral volume of the filament is controlled
by changing the Icc.50 Due to the abrupt reset characteristics of the
fabricated device, the MLC operation seems easier in the Icc control
mode. Figure 6(a) shows the I–V curves measured by adjusting Icc
from 500 μA to 6 mA during the SET process. Representative I–V
curves for each Icc are highlighted in color. As shown in Fig. 6(b),
an MLC endurance test was conducted to confirm the possibility
of multi-bit operation. Although there are overlapping parts among
the seven cell states, a 2 bit operation (four-levels) was successfully
achieved without any overlap. To examine the stability of each cell

state, MLC retention characteristics were measured for up to 104 s.
As shown in Fig. 6(c), the cell states were maintained without any
noticeable degradation.

E. Synaptic functionality
For the implementation of neuromorphic systems, it is essen-

tial to effectively mimic the function of biological synapses using
artificial synapses. Among the various devices being studied, mem-
ristors, which are two-terminal devices, are structurally the most
similar to biological synapses, and it has been proven that various
functions can be imitated.51 As shown in Fig. 7(a), in a biological
neural system, presynaptic and postsynaptic neurons are connected
through synapses. To transmit information from presynaptic neu-
rons to postsynaptic neurons, presynaptic neurons first fire ions,
which control the synaptic weight between neurons. When an action
potential reaches a presynaptic neuron, the neurotransmitters are
released into the synapse gap by diffusion of Ca2+ ions and are
received by neuroreceptors on postsynaptic neurons.52 In this pro-
cess of nervous system interaction, synapses are where neurons
are functionally connected and are a key component of informa-
tion transmission. This phenomenon can be modeled with a two-
terminal memristor, and top/bottom electrodes, pulse input signals
applied to the electrode, and conductance changes of the switch-
ing material according to pulse stimulation are counterparts of each
element of the biological synapse, as shown in Fig. 7(b).51 In neu-
roscience, synaptic plasticity is attributed to the ability to change
the strength and weight of connections between neurons, and this
comes in different forms depending on the shape and timing of
external stimuli.53 Different types of plasticity are well described in
Hebbian theory,54,55 and representative synaptic behaviors include
paired-pulse facilitation/depression, short- and long-term potenti-
ation/depression, spike-number-dependent plasticity (SNDP), and
spike-timing-dependent plasticity (STDP). Of these, STDP is con-
sidered the most central learning mechanism in Hebbian theory
and plays an important role in information coding, learning, and
memory.56

STDP is a synaptic learning rule in the human brain that adjusts
the connection strength between neurons based on whether spikes
occur simultaneously or at regular time intervals.57,58 Figure S5(a)
(the supplementary material) shows the schematic of spike pulses.

FIG. 6. Multilevel RS characteristics of the Ti/ZrOX/HfAlOX/TiN memristor: (a) I–V curves for different values of Icc. (b) MLC endurance performance. 2 bit operations (four
levels) are possible without any overlap. (c) MLC retention characteristics. The cell states were maintained without any noticeable degradation.
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FIG. 7. Comparison of biological and artificial synapse. (a) The biological nervous system consists of pre- and post-synaptic neurons interconnected through synapses.
(b) The memristor, which can mimic the function of the biological synapse. (c) The classical STDP curve originally described by Bi and Poo. (d) Measured conductance
change as a function of the spike delay Δt, indicating potentiation for Δt > 0 and depression for Δt < 0.

In STDP, the change in synaptic weight is the function of relative
neuron spike timing ∆t (∆t = tpost − tpre), where tpre is the time
when the presynaptic neuron spike arrives and tpost is the time when
the postsynaptic neuron spike arrives. If the postsynaptic neuron
spike arrives after the presynaptic neuron spike (∆t > 0), the synaptic
weight increases, while if Δt is negative, i.e., the pre-spike follows the
post-spike, then the synaptic weight decreases. The classical STDP
curve originally described by Bi and Poo is depicted in Fig. 7(c).59 In
an artificial synapse based on a memristor, electrical pulse signals
(spikes) can be applied to the memristor through the two elec-
trodes and cause a modulation of the conductance of the memristor
depending on the amplitude and relative timing of the pulses. That
is, it is possible to realize the STDP function similar to the biologi-
cal synapse systems. To provide an apparent demonstration of this
phenomenon within our device, we executed a precisely calibrated
application of a designed pulse stimulus to both the pre-synaptic and
post-synaptic terminals of the Ti/ZrOX/HfAlOX/TiN device. Figure
S5(b) (the supplementary material) shows the pulse schemes applied
to our memristor. As shown in Fig. 7(d), when Δt > 0, the conduc-
tance (G) of the device gradually increases. On the other hand, when
Δt < 0, the G value of the device gradually decreases. This tendency
of synaptic weight change (∆W) measured in our memristor is in
good agreement with that of biological synapses, which confirms the
feasibility of our device for neuromorphic computing applications.
STDP data points (five cycles) in Fig. 7(d) have a remarkable statis-
tical scatter, which has also been observed in the biological synapses.
Herein, the ∆W is defined by ∆W = (Gafter − Gbefore)/Gmin (after
or before) × 100%, where Gafter and Gbefore are conductances in the

memristor before and after presynaptic and postsynaptic pulses are
applied.60

To further evaluate the suitability of the Ti/ZrOX/HfAlOX/TiN
device as a neuromorphic system, the potentiation and depres-
sion characteristics were examined. Potentiation and depression
are dynamic states that manifest as alterations in synaptic poten-
tial in response to synaptic spikes. Potentiation corresponds to the
strengthening of synaptic connectivity, promoting enhanced sig-
nal transmission. Conversely, depression represents the weakening
of synaptic connectivity, leading to diminished signal transmission.
These principles find application in the field of neuromorphic com-
puting, where they serve as critical technologies to augment the
learning and reasoning capabilities of artificial neural networks.47,61

As depicted in Fig. S6(a) (the supplementary material), the potentia-
tion was achieved by applying 50 identical pulses with an amplitude
of −1.0 V and a width of 1 μs. Conversely, the depression was
induced by applying 50 identical pulses with an amplitude of 1.2 V
and a width of 1 μs. To ensure that the conductance was not affected
during the read process, a low read pulse of 0.1 V was used dur-
ing both potentiation and depression. Given that the conductance
changes dramatically during the DC I–V sweep, a sharp change
in conductance can be seen after applying the first pulse for both
potentiation and depression, as shown in Fig. 8(a). In applying 50
repetitive potentiation and depression pulses for ten cycles, con-
stant HRS and LRS conductance values are maintained without any
degradation over these ten cycles. However, the abrupt conductance
changes in the identical pulses are not suitable for neuromorphic
systems that require high accuracy for pattern recognition.62,63 To
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FIG. 8. Results of potentiation and depression measured in the bilayer device for ten pulse cycles using (a) an identical pulse and (b) an incremental pulse. (c) Non-linear
conductance modulation curve with typical potentiation (red)/depression (blue) curves and normalized conductance as the Y-axis. The linear dashed line is an ideal case.
(d) The comparison of nonlinearity for ninth potentiation/depression synaptic plasticity [gray part in Figs. 7(a) and 7(b)] with identical (open symbol) and incremental (solid
symbol) pulses.

achieve linear and symmetric weights, an incremental pulse was con-
structed to achieve multiple weights. This pulse involves gradually
ramping up the pulse conditions, thereby controlling the abrupt
conductance changes in the identical pulses by gradually forming
a filament and inducing a rupture. An incremental pulse scheme is
shown in Fig. S6(b) (the supplementary material), where both poten-
tiation and depression use a fixed pulse width of 1 μs. The amplitude
was divided into 50 pulses for potentiation with a decline of 8.33 mV
from −0.8 to −1.2 V and for depression with an increment of 8.33
mV from 1.0 to 1.4 V. Figure 8(b) shows the results of potentiation
and depression for ten cycles when incremental pulses were applied.
Compared to the result of applying identical pulses, the nonlinearity
(NL) and symmetric conductance changes were greatly improved,
and almost linear behavior was obtained. To evaluate the degree
of improvement more quantitatively, we extracted the NL factor.
The NL value can be expressed as the maximum value of the differ-
ence in conductance values normalized to the total plasticity during
potentiation and depression, as shown in Fig. 8(c). The concept of
NL proposed by Wang et al. is given as follows:64

NL = max∣GP(n) −GD(n)∣, n = 1, 2, 3, . . . , N, (4)

where GP(n) and GD(n) are the normalized conductance values,
which are from 0 to 1, and n is the pulse number. By definition, it
is most desirable for NL to be zero, as shown in the linear dashed

line of Fig. 8(c), because linear weight update is the most ideal
in hardware-based neuromorphic system development. Figure 8(d)
shows the normalized conductance vs pulse number during potenti-
ation (black) and depression (red) for the ninth cycle with identical
(open symbol) and incremental (solid symbol) pulses applied. From
Eq. (4), NL values of 0.81 and 0.1 were extracted for identical and
incremental pulses, respectively. That is, linearity and symmetry are
greatly improved with amplitude modulation. Referring to the DC
I–V curves, it becomes evident that abrupt switching behavior is
present. To suppress this behavior and prevent sudden changes in
conductance, it is advised to initiate the process with a small voltage,
reducing the NL.

Moreover, based on the result of 50 repetitive potentiation and
depression pulses for ten cycles, incremental pulses were possible to
regulate the sudden changes in conductance observed for the iden-
tical pulses; this was achieved by gradually developing a filament
and causing a rupture in the system. To test the accuracy of pat-
tern recognition, we conducted an MNIST simulation using Python.
As shown in Fig. 9(a), our assumption was that the pixel values of a
28 × 28 image would change based on the results of potentiation
and depression. The normalization equation can be expressed as
follows:

ω = G −Gmin

Gmax −Gmin
(5)
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FIG. 9. (a) Neural network framework for MNIST pattern recognition simulation. (b) The accuracy of pattern recognition over ten consecutive epochs at an incremental and
identical pulse.

with Gmax and Gmin representing the maximum and minimum con-
ductivity in each graph, respectively.65,66 As the potentiation and
depression pulses are applied, the conductance value according to
each pulse appears. At this time, normalization was performed on
the conductance value G, and MNIST simulation was performed on
the synaptic weight (ω) value. Synaptic weights are matched for each
layer, and the weight values are adjusted as the MINST simulation
progresses to reduce the error between input and output.67 The rea-
son for normalization is that neural networks often use activation
functions [e.g., sigmoid and rectified linear unit (ReLU)] that are
sensitive to the input range. Normalizing the conductance values
can prevent issues such as vanishing gradients or exploding gradi-
ents during backpropagation, which can occur when the input values
are too large or too small. Currently, the equation for normalization
is the same as Eq. (5), where G means the conductance for one pulse
number, Gmax means the maximum conductance in the graph, and
Gmin means the minimum conductance in the graph. When the pixel
value of the next image needed to increase, we followed the poten-
tiation graph, and in the opposite case, we followed the depression
graph. This resulted in fewer image modifications when the poten-
tiation and depression graphs were symmetrical and linear. Image
training was conducted 60 000 times using 784 input neurons and
systematically hidden layers. Hidden layers were used in the dense
neural network (DNN) method. Hidden layers consist of three lay-
ers: the first layer consists of 128 neurons, the second layer consists
of 64 neurons, and the third layer consists of 32 neurons. Each layer
uses ReLU as an activation function. After passing through three
hidden layers, the result of each output layer from 0 to 9 is expressed
as a probability using the softmax function. By repeatedly perform-
ing this process, MNIST accuracy values are obtained based on the
modifications of each potentiation and depression. Finally, we con-
firmed the results with ten output neurons. In Fig. 9(b), we used 10
000 ideal images that had not been modified as test images and per-
formed ten epochs, achieving an accuracy of 93.00% for identical
pulses and 94.96% for incremental pulses.

IV. CONCLUSION
This study compares the resistance and synaptic properties of

Ti/ZrOX/TiN and Ti/ZrOX/HfAlOX/TiN RRAM devices. In the case
of the Ti/ZrOX/HfAlOX/TiN device, the thin HfAlOX layer acts as a
series resistance that reduces the operating current. Therefore, it has
advantages in terms of accuracy in distinguishing the on/off state
and power consumption by having a lower operating current. We
also clarify the transport mechanism in the Ti/ZrOX/HfAlOX/TiN
device by LFN measurements. Furthermore, the MLC characteris-
tics, potentiation, and depression were examined. An incremental
pulse was used to adjust numerous synaptic weights to improve
the precision of an artificial neural network. Finally, we evaluated
the capability of the Ti/ZrOX/HfAlOX/TiN device to function as a
neuromorphic device by examining its pattern recognition accuracy
using MNIST results.

SUPPLEMENTARY MATERIAL

The supplementary material includes the distribution of elec-
trical characteristics, the results of temperature measurements, and
the pulse schemes for measurements of synaptic functions.
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