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Abstract: In this research, nano-wedge resistive switching random-access memory (ReRAM) based
on a Si3N4 switching layer and silicon bottom electrode was fabricated, and its multilevel switching
characteristics were investigated. The wedge bottom electrode was formed by a tetramethyl
ammonium hydroxide (TMAH) wet-etching process. The nano-wedge ReRAM was demonstrated
to have different reset current levels by varying the compliance currents. To explain the effect
of modulating the compliance currents, the switching characteristics of both the SET and RESET
behaviors were shown. After measuring the device under four different compliance currents, it was
proved to have different current levels due to an inhibited resistive state after a SET switching
process. Furthermore, SPICE circuit simulation was carried out to show the effect of line resistance on
current summation for the array sizes of 8 × 8 and 16 × 16. These results indicate the importance of
minimizing the line resistance for successful implementation as a hardware-based neural network.

Keywords: nano-wedge; resistive switching random-access memory; switching layer; TMAH;
switching process; array; neural network

1. Introduction

In the last decades, a rapid change has been detected in digital systems based on CMOS technology
and nonvolatile memory devices [1]. Among the most notable, NAND flash memories are the most
widely used memory devices in existing von Neumann computing architecture. Yet, their storage
capability is encountering limitations due to increasing amounts of data and scaling issues. As a
result, next-generation memories are widely sought. Magnetic random-access memory (MRAM),
ferroelectric random-access memory (FRAM), and resistive switching random-access memory (ReRAM)
have received much attention as replacements for the current non-volatile memory devices [2].
Yet, the reliability of these “emerging” next-generation memories is not promising enough for their
commercialization in the market [3]. Among these “emerging” memories, ReRAM is regarded as a
highly promising candidate due to its simple structure and fabrication process [4–10]. On the other
hand, ReRAM as a synaptic device is also receiving tremendous attention for hardware-implemented
neural network processing due to the limitations of existing von Neumann computing architecture [11].
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The essential requirements for neural networks include multilevel conductance states and minimized
line resistance of the cross-point array [12]. In this paper, nano-wedge resistive random-access memory
was fabricated, and its multilevel switching characteristics were investigated to prove the wedge
ReRAM′s multibit storage capability. The compliance current, which usually aims to inhibit current
overshoot within the memory device, was modulated from 100 µA to 600 µA to control the current flow
into the ReRAM. Traps within the SiNx switching layer form a conductive filament, through which
the current will flow when the memory device′s state is transformed to a low-resistance state (LRS).
The RESET switching characteristics were explored to examine the effect of the compliance currents on
the device. SmartSpice circuit simulation was carried out to show the effect of line resistance on the
current summation on array sizes of 8 × 8 and 16 × 16.

2. Materials and Methods

A schematic of a cross section of the nano-wedge ReRAM is illustrated in Figure 1a. Figure 1b
is a SEM image of the fabricated nano-wedge ReRAM. A pattern of width 500 nm was lithographed
using a photo process, followed by dry-etching of the pattern to form the fin structure. The wedge
structure was formed by an anisotropic wet-etching process using tetramethyl ammonium hydroxide
(TMAH) solution. Since the silicon is direction-dependent when it is dipped into the TMAH solution
with etch rates in the <100> and <110> directions that are 37 times and 68 times faster, respectively,
with respect to <111>, the pointed structure could be formed. The detailed anisotropic wet-etching
process is shown in Figure 2. In order to activate the bottom electrode (BE), high doping implantation
(BF2

+, energy = 40 keV, dose = 5 × 1015 cm−2) was carried out at the Si bottom electrode. The bottom
electrode was isolated using a TEOS (Tetra-Ethyl-Ortho-Silicate) layer to expose a tip of the wedge.
Exposure of the tip was done through a CMP and dHF wet-etching process. The 5 nm Si3N4 switching
layer was deposited on top of the bottom electrode by low-pressure chemical vapor deposition (LPCVD).
A top electrode was formed using an Endura sputter system through depositing Ti with a thickness of
100 nm. Contact holes were formed to deposit pad metals. The length of the fabricated nano-wedge
ReRAM device was 500 nm, while the width (of the nano-wedge) was 5 nm and the depth (of the
switching layer, Si3N4) was 5 nm.
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Figure 1. Cross section of the nano-wedge resistive switching random-access memory (ReRAM) (a) and
a SEM image of the fabricated nano-wedge ReRAM (b) A p-type dopant was implanted into the Si
bottom electrode, and the Si3N4 is only 5 nm thick, so it is not visible in the taken image.
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Figure 2. The anisotropic wet-etching process (left) and formation of the wedge structure from the fin
depending on the direction of Si (right).

3. Results and Discussion

All electrical characteristics were obtained in DC mode to examine the multilevel
switching characteristics of the fabricated wedge ReRAM. The compliance currents used were
100 µA/200 µA/400 µA/600 µA. The bipolar DC characteristics of the memory device with four different
compliance currents are shown in Figure 3.
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Figure 3. Bipolar DC characteristics of the fabricated wedge ReRAM under compliance current (Icc) in
the range from 100 µA to 600 µA.

At the initial state, voltage was applied to form the conductive filament within the switching layer
of the device. At 4.5 V, SET switching occurred as the current level abruptly increased to the limit of the
compliance current (Icc) at 100 µA. The actual current may flow more than the compliance current, but it
inhibits the maximum current level flowing through the wedge ReRAM. Correspondingly, the RESET
voltage was applied to rupture the filament to transform it to a high-resistance state (HRS), which was
proved by abrupt dropping of the current level at −2.6 V and −3.3 V with Icc values of 100 µA and
600 µA, respectively.

In Figure 4a, an R–V curve of the RESET process is shown. It is noted that the resistances and
currents during the RESET process are shown as absolute values. As the negative voltage increased,
there were moments of abrupt resistance change under the four different Icc. It can be seen that the
levels of LRS increased as the compliance currents decreased. This indicates that less current flows
through the nano-wedge ReRAM as the level of Icc decreases, leading to suppressed LRS. This results
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in effective control of OFF currents (after transition to the HRS), as seen from Figure 4b. The current
levels in Figure 4b are different depending on different Icc. Furthermore, under a compliance current
of 100 µA, the current level is clearly differentiated from the rest of the Icc, showing more suppressed
LRS under this Icc.
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Figure 4. (a) Resistance–voltage (R–V) curves of the wedge ReRAM device during the RESET process
and (b) I–V curves of read currents after transition to the high-resistance state (HRS) under four different
compliance currents (Icc).

The reset switching process in ReRAM is known to be associated with Joule heating [13,14].
The flow of current causes a reduction of oxygen vacancies within the switching layer, resulting in
rupture of the conductive filament [15]. In order to investigate the effect of the compliance current
on reset switching characteristics, the distribution of reset voltages and currents for 50 nano-wedge
ReRAM cells was characterized as shown in Figure 5. As can be seen from Figure 5a, the average
reset voltages tend to increase as the compliance current increases. This implies a thicker conductive
filament where the number of electrons flowing also rises. As a result, higher voltages are required
to rupture the number of defects that contribute to current flows. As the radius of the conductive
filament becomes wider, the reset current that functions to dismantle the filament also increases,
as demonstrated in Figure 5b.

Electronics 2020, 9, x FOR PEER REVIEW 2 of 3 

 

 

 
 

(a) (b) 

Figure 5. Effect of compliance current on (a) reset voltages and (b) reset current when reset switching 
occurs. 

  

(a) (b) 

  

(c) (d) 

Figure 8. Simulated I–V curves for read operations of 8 × 8 and 16 × 16 arrays: read currents of 
individual cells in a single bit line (a) and simultaneous read of the single bit line (b) of a 16 × 16 array; 
individual (c) and simultaneous (d) reads of an 8 × 8 array. 

100 200 400 600

-3.5

-3.0

-2.5

-2.0

 Compliance Current (μA)

R
es

et
 V

ol
ta

ge
 (V

)

0.00 0.05 0.10 0.15 0.20

0

1

2

3

C
ur

re
nt

 (μ
A

)

Voltage (V)

 #1  #9
 #2  #10
 #3  #11
 #4  #12
 #5  #13
 #6  #14
 #7  #15
 #8  #16

0.00 0.05 0.10 0.15 0.20

0

2

4

6

C
ur

re
nt

 (μ
A

)

Voltage (V)

0.00 0.05 0.10 0.15 0.20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
ur

re
nt

 (μ
A

)

Voltage (V)

 #1
 #2
 #3
 #4
 #5
 #6
 #7
 #8

0.00 0.05 0.10 0.15 0.20

0

1

2

3

4

5

C
ur

re
nt

 (μ
A

)

Voltage (V)

Figure 5. Effect of compliance current on (a) reset voltages and (b) reset current when reset switching occurs.
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Next, the effect of line resistance and array size on current summation was analyzed using SPICE
simulation. The purpose of this simulation is important for applications in hardware-implemented
neural network processing that require a minimized error rate to maximize the recognition accuracy [16].
In this simulation, array sizes of 8 × 8 and 16 × 16 were used. Table 1 lists the parameters used
in the SPICE simulation. RInter-node, BE and RTE represent the resistance of the bottom and top
electrodes. Since the resistance of the silicon bottom electrode may vary depending on the size of
the cross-point array, unit resistance defined as the inter-node resistance was used as described in
Figure 6. The resistance RTE was 42 Ω, which is the commonly known resistance of titanium [17].
In order to measure the current of ReRAM cells, the load resistance was added at the end of the bit
line with resistance 100 Ω. Low and high resistances were set as 300 kΩ and 3 MΩ, respectively.
The cross-point array structure was simulated based on the connection of resistors as shown in Figure 7.
After switching the initial state of ReRAM cells into the low-resistive states, as depicted in red color
in Figure 7, a read voltage of 0.2 V was applied to read a single cell. The remaining bit/word lines
were grounded while reading every single cell in a bit line, preventing the flow of reverse leakage
current through nearby array cells. Equation (1) is the equation explaining the definition of current
loss: the difference of the summation of individual array cells and the simultaneous word line access.
The larger the difference, the larger the resistance of the bit line where larger voltage drop occurred.

Current loss [%] =

∑
Ieach cell read −

∑
Isimultaneous read∑

Ieach cell read
(1)

Table 1. Parameters used in SPICE circuit simulation.

Parameter Value

Inter-node resistance of bottom electrode
(RInter-node, BE

1) 1.2 kΩ

Top electrode resistance (RTE) 42 Ω
Load resistance (RL) 100 Ω

LRS 300 kΩ
HRS 3 MΩ

1 Size-dependent parameter.
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Equation (1). Definition of current loss: difference between the summation of individual ReRAM
cell and simultaneous reads.

After reading every ReRAM cell in the array, an I–V curve reading up to 0.2 V was plotted in
Figure 8. The range of the read current from the 8 × 8 array in Figure 8a is from 1.1 µA to 3 µA.
The current difference from Figure 9a is attributed to the location of array cells with respect to the
ground of the bit line. Due to the existence of bit line resistance, the voltage drop in the bit line becomes
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larger as the array cell is located farther away from the ground. Figure 8b represents the read current
of simultaneous access to the array. Due to the existence of line resistance in the bit line, the simulated
current is only 5.55 µA, which is a loss of 62.3% from the summation of individual currents (14.7 µA)
in Figure 8a. The results of individual and simultaneous access to the 16 × 16 array cell are shown in
Figure 8c,d. Similar to the previous case, the current simulated by simultaneous word line access is
4.2 µA, with the current loss reaching up to 80.7% compared to the summation of individual ReRAM
cells (21.9 µA) in the 16 × 16 array. The magnitude of the current loss becomes larger as the array size
increases, meaning larger voltage drops in the bit line, causing the loss of ReRAM cell current at the
output node.
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Figure 8. Simulated I–V curves for read operations of 8 × 8 and 16 × 16 arrays: read currents of
individual cells in a single bit line (a) and simultaneous read of the single bit line (b) of a 16 × 16 array;
individual (c) and simultaneous (d) reads of an 8 × 8 array.
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For an in-depth analysis of the effect of bit line (BL) resistance on the read current of individual
array cells, a simulation was carried out to demonstrate the loss of cell current, as depicted in Figure 9.
In Figure 9a, the simulated current value ranges from 3.91 µA to 3.99 µA for bit line resistance ranging
from 10 Ω to 1 kΩ. However, the current drops to 2.89 µA as the resistance rises to 10 kΩ. At bit
line (BL) resistance of 240 kΩ, the simulated current of the ReRAM array cell is only 689 nA, which
is approximately an 82.7% loss compared to the current of BL resistance within the range of 10 Ω–1
kΩ. These results indicate that the effect of BL resistance on the current flow of ReRAM array cells is
significant, especially when the resistance increases. Current loss becomes more critical as the array
size expands from 2 × 2 to 64 × 64, as illustrated in Figure 9b. For the array size of 2 × 2, the current
loss is only 0.43%, while the loss rises to 74.61% as the array size increases to 64 × 64. This aggravation
effect is mainly attributed to the larger array having greater resistance in its bit lines, where larger
voltage drops occur. Through circuit simulation, it is essential to reduce the line resistance in both
bit and word lines to accurately measure the array cell current, which is critical to determining the
accuracy of neural networks [18].Electronics 2020, 9, x FOR PEER REVIEW 3 of 3 
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4. Conclusions

In this paper, we investigated the switching properties of a Si3N4-based nano-wedge ReRAM
device and simulation results for large-sized cross-point arrays. The formation of the wedge structure
using TMAH anisotropic wet-etching solution and the effect of variation of the compliance current on
the current level were demonstrated. Furthermore, SPICE simulation was carried out to determine the
effect of line resistance and array size on the current loss, which is a critical parameter to maximize the
accuracy of in-memory computing of neural networks. This research showed that the requirement of a
successful neural network depends on minimizing the effect of line resistance, even when the array
size increases.
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