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Abstract

This letter presents dual functions including selector and memory switching in a V/SiOx/AlOy/p
++Si resistive memory

device by simply controlling compliance current limit (CCL). Unidirectional threshold switching is observed after a
positive forming with low CCL of 1 μA. The shifts to the V-electrode side of the oxygen form the VOx layer, where the
threshold switching can be explained by the metal-insulation-transition phenomenon. For higher CCL (30 μA) applied
to the device, a bipolar memory switching is obtained, which is attributed to formation and rupture of the conducting
filament in SiOy layer. 1.5-nm-thick AlOy layer with high thermal conductivity plays an important role in lowering the
off-current for memory and threshold switching. Through the temperature dependence, high-energy barrier (0.463 eV)
in the LRS is confirmed, which can cause nonlinearity in a low-resistance state. The smaller the CCL, the higher the
nonlinearity, which provides a larger array size in the cross-point array. The coexistence of memory and threshold
switching in accordance with the CCL provides the flexibility to control the device for its intended use.

Keywords: Resistive switching, Selector, Memory, Nonlinearity, Silicon oxide, Vanadium

Background
Resistive random-access memory (RRAM) is one of the
promising candidates for the next-generation non-volatile
memory technology due to its fast switching speed [1, 2],
low-power consumption [3–8], multilevel capability
[9–15], high scalability [16–20], and 3D stacking abil-
ity [21–25]. These properties are especially suitable
for storage class memory (SCM) which can fill the per-
formance gap between dynamic random-access memory
(DRAM) as a main memory and solid-state-drive (SSD) as
a storage memory. Even though RRAM device has made
much progress in the past years [1–25], there remains,
however, a major disadvantage: sneak current through
neighboring cells occurs in a high-density cross-point
array [26]. The memory device with the selector compo-
nent should provide nonlinear current–voltage (I–V)
characteristics to overcome this problem [26–35]. Until
now, various devices with nonlinear concepts such as
complementary resistive switching (CRS) [26], tunnel

barrier [27–33], Ag-based threshold switching [34],
diode-type selector [35, 36], ovonic threshold switching
(OTS) [37, 38], and metal-insulator-transition (MIT) [39–
43] have been reported. VOx as one of the typical MIT ma-
terials could be widely used in potential applications as op-
tical and electrical switching component [40–42]. SiO2 is
widely used as a passivation layer in the semiconductor in-
dustry. Moreover, Si-rich SiOx (x < 2) can be used as a re-
sistance change layer in RRAM [44–55]. SiOx can be
preferred over many other materials in terms of compatibil-
ity with CMOS processes and low cost. SiOx-based RRAM
devices have been reported to act as a mediator of the role
of conducting bridges simply by using electrodes such as
Cu and Ag with high diffusivity [44–47]. In another case,
memory switching is induced by the valence change effect
inside the SiOx layer, which can be explained by generation
of oxygen vacancies or proton exchange model [48–55]. In
the unipolar switching where a set operation precedes a re-
set, it is sensitive to the ambient atmosphere. The switching
performance in the air is significantly degraded [48–53].
On the other hand, filamentary switching without
backward-scan effects shows typical unipolar and bipolar
switching in various SiOx-based RRAM devices [52–54].

* Correspondence: u9120009@gmail.com; bgpark@snu.ac.kr
5Intel Corporation, Hillsboro, USA
3Department of Electrical and Computer Engineering, Inter-University
Semiconductor Research Center (ISRC), Seoul National University, Seoul
08826, South Korea
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Kim et al. Nanoscale Research Letters  (2018) 13:252 
https://doi.org/10.1186/s11671-018-2660-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-018-2660-9&domain=pdf
http://orcid.org/0000-0002-9873-2474
mailto:u9120009@gmail.com
mailto:bgpark@snu.ac.kr
http://creativecommons.org/licenses/by/4.0/


Here, we present the coexistence of threshold switch-
ing and memory switching in V/SiOx/AlOy/p

++Si device
depending on compliance current limit (CCL). The de-
vice with silicon bottom electrode (BE) has several ad-
vantages compared to the conventional metal electrode.
The RRAM device with memory or threshold switching
is directly connected to the source or drain side in a
transistor, which is a potential application for embedded
memory and steep slope device. The overshoot current
could be reduced due to the series resistance of Si BE.
Moreover, nano-tip of silicon BE through wet etching
and the adjustment of the doping concentration in sili-
con surface can improve switching performance. The
AlOy layer, which is a large band gap with an insulated
property, helps to lower the operating current during
threshold and memory switching. The SiOx layer acts as
memory switching layer at a high CCL, while it serves to
supply oxygen to V TE at low CCL, which provides
threshold switching.

Methods
V/SiOx/AlOy/p

++Si device was fabricated as follows:
Firstly, BF2 ions were implanted with an acceleration en-
ergy of 40 keV and a dose of 5 × 1015 cm−2 into a Si sub-
strate to heavily doped Si BE. The lattice damage was
cured by the annealing process at 1050 °C for 10 min.
Heavily doped Si BE had sheet resistance of 30.4 Ω/□.
Next, a 1.5-nm-thick AlOy layer was deposited by an
atomic layer deposition (ALD) system using H2O and Al
(CH3)3 and a 5.5-nm-thick SiOx layer underwent
plasma-enhanced chemical vapor deposition (PECVD)
by reacting 5% SiH4/N2 (160 sccm), N2O (1300 sccm),
and N2 (240 sccm) at 300 °C. Subsequently, a
50-nm-thick vanadium (V) top electrode (TE) with a
diameter of 100 μm was deposited by DC sputtering a V
target with Ar gas (30 sccm). Finally, a 50-nm-thick Al
as a protective layer was deposited by DC sputtering to
prevent further oxidation of V TE. All electrical proper-
ties were characterized via the DC voltage sweep and
pulse modes using a Keithley 4200-SCS semiconductor
parameter analyzer (SPA) and a 4225-PMU ultra-fast
current–voltage (I–V) module at room temperature,
respectively. For device operation, the TiN BE was
grounded and the Ni TE bias was controlled.

Results and Discussion
Figure 1a shows the schematic structure of V/SiOx/
AlOy/p

++Si device. Three amorphous V, SiOx, and AlOy

layers and single-crystalline Si layer are observed by a
transmission electron microscopy (TEM) cross-sectional
image as shown in Fig. 1b. The thicknesses of the SiOx

and AlOy layers are 5.5 and 1.5 nm, respectively. To
confirm the composition ratio of two dielectric films,
XPS analysis was conducted (Additional file 1). The x

value of SiOx and the y value of AlOy are 0.88 and 1.33,
respectively. Our SiOx film using PECVD compared to
SiO2 deposited using dry oxidation is deposited at a
much lower temperature and has much more defects,
making them suitable for resistive switching at relatively
lower voltages. Figure 2a shows typical threshold switch-
ing of V/SiOx/AlOy/p

++Si device. The initial switching
with a positive forming process requires higher voltage
than subsequent threshold switching since the dielectric
layers have initially smaller defects. A CCL of 1 μA is
applied to the device to avoid the formation of excessive
conducting filaments in the SiOx layer. The leakage
current is very low (100 pA at 1 V) compared with
previously reported threshold switching of VOx. This
advantage is attributed to the Al2O3 with higher permit-
tivity and thermal conductivity compared to the SiO2.
Off-state has the insulating property because the
filaments are easily ruptured and then there are no
remaining filaments. A possible mechanism for thresh-
old switching is the oxidation of the V TE from the oxy-
gen supplied from the SiOx layer during the positive
forming process as shown in Fig. 2b. The electrical prop-
erty of VOx between V TE and SiOx layer may change
from insulating state to metallic state, causing a sudden
change in resistance. A low CCL of 1 μA is not sufficient
to cause efficient conducting filaments inside the SiOx

film. Therefore, SiOx with insulating properties can be
another cause to reduce the off-current. For a negative
forming process of V/SiOx/AlOy/p

++Si device, a thresh-
old switching is not observed (see Additional file 1).
When the negative bias is applied to the V TE, the
movement of the oxide moves toward the Si BE, so that
the V TE can no longer participate in the threshold
switching as VOx. Inset of Fig. 2a exhibits the threshold
voltage (Vth) and hold voltage (Vhold) during the 100 -
cycles. The Vth where the current sharply increases with
nearly infinite slope is between 1.08 and 1.82 V, and Vhold

at which point the current return to a high-resistance state
is between 0.12 and 0.54 V. Figure 2c shows the I–V char-
acteristics in the on-current at different temperatures. At

a b

Fig. 1 Device configuration of V/SiOx/AlOy/p
++Si. a Schematic

drawing and b TEM image
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25 °C and 55 °C, they show almost similar threshold
switching, but I–V curve at a higher temperature of 85 °C
loses the threshold switching property. It is well known
that VOx loses its MIT at high temperatures. Thus, this
result is another proof that VOx is the main cause of the
threshold switching. Figure 2d shows the transient charac-
teristics for threshold switching. The pulse with the ampli-
tude of 1 V monitored the read current before and after
writing pulse with width of 1 μs. The high current was
monitored while the pulse with high amplitude is applied
to the device, and then, the V/SiOx/AlOy/p

++Si device
turned off the current immediately after the writing pulse
was removed. The selector properties analyzed above can
be used when combined with operation of memory ele-
ments below 1 μA [55, 56].
Figure 3a shows the bipolar resistive switching of V/

SiOx/AlOy/p
++Si device after a positive forming with

CCL of 100 μA. Then, the reset process with a rapid
increase in resistance is performed by sweeping the
negative voltage, and the device is switched to a
high-resistance state (HRS). The set process with a rapid
decrease in resistance then occurs at a positive bias

voltage, causing the device to turn back to a low-resist-
ance state (LRS). In order to understand the properties
of the conducting filament, we observe the normalized
conductance and the temperature dependence. The con-
duction in the LRS is an important guideline to indir-
ectly inform the properties of the conducting filament.
Figure 3b shows the normalized conductance (GN)
which is defined as the dynamic conductance (Gd) divide
by static conductance (G0) for I–V curves of V/SiOx/
AlOy/p

++Si device in the LRS with different tempera-
tures. Regardless of the temperature, the GN value con-
verges to 1 when the voltage is zero. This allows us to
rule out the well-known conduction mechanism such as
Schottky emission, Fowler-Nordheim tunneling, and
Child’s law (I~V2) in space-charge-limited current
(SCLC). Metallic ohmic conduction can also be excluded
considering temperature dependence as shown in Fig. 3c.
The decrease in resistance with increasing the
temperature suggests that the conducting filament has a
semiconducting property. Thus, we can exclude the pene-
tration of V into the SiOx layer for the main conducting
filament of V/SiOx/AlOy/p

++Si device in LRS. Therefore,

a b

dc

Fig. 2 Unidirectional threshold switching of V/SiOx/AlOy/p
++Si when a positive forming with CCL of 1 μA is applied. a Typical I–V curves.

b Schematic drawing of forming process. c I–V characteristics by temperature dependence. d Transient characteristics
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the bipolar memory operation of the V/SiOx/AlOy/p
++Si

device is dominated by intrinsic switching of SiOx. It is
also confirmed that the positive and negative currents are
not that much different suggesting that rather than an
interface-type such as Schottky emission, it is dominated
by bulk conduction. Taking into account the abovemen-
tioned normalized conductance, there are two possible
bulk dominant conduction mechanisms. The first one is
hopping conduction following the formula:

J ¼ qnavoe
−qØT=kT eqaV=2dkT

where q, n, a, øT, vo, and d are the electric charge, con-
centration of space charge, mean of hopping distance,
electron barrier height for hopping, intrinsic vibration
frequency, and the thickness of dielectric film, respect-
ively. The øT calculated from the slope of a linear plot of
ln (I) versus 1000/T is 0.463 eV as shown in Fig. 3c. A

value calculated from the relationship between Ea and V
is 5.17 nm, indicating the conducting filament formed in
the SiOx is not strong and is close to the HRS state. The
other conduction mechanism, the Poole-Frenkel (P-F)
emission, was covered in Additional file 1. Based on the
above results, the conducting filament model in the
memory operation of V/SiOx/AlOy/p

++Si device is
depicted in Fig. 3d. In the positive forming process, the
oxidation process proceeded on the V TE side, but due
to the high CCL, a conductive filament can be formed
inside the SiOx and AlOy due to the movement of the
oxygen vacancies. During the reset process, the electric
field opposite to the forming and set induces oxygen and
recombination with the oxygen vacancy, resulting in the
rupture of the conductive filament. It is noted that the
selector and memory operations are observed in the
same cell. Memory operation is possible after the thresh-
old operation has occurred and then the switch is com-
pletely turned off. However, the reverse direction is not

a b

c d

Fig. 3 Memory switching of V/SiOx/AlOy/p
++Si when a positive forming with CCL of 30 μA is applied. a Typical I–V curves. b Normalized

conductance. c In (I) versus 1000/T. d Schematic drawing of forming process
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possible because the reset switching of the memory op-
eration is not completely turned off.
Figure 4a shows normalized I–V curves in the LRS of

V/SiOx/AlOy/p
++Si device at low-voltage regime (0~1 V)

for different CCL conditions (5 μA, 30 μA, and 1 mA).
Here, the normalized I–V curve is defined as the current
at each voltage divided by the current at 1 V. Since the
levels of the LRS current depending on the CCL are var-
ied, we set the current value at 1 V to easily compare
the nonlinearity. It can be observed that as the CCL de-
creases, the current is suppressed at lower voltage re-
gime. In order to derive a more quantitative relation,
nonlinearity is defined as the ratio of the current at
VREAD to that at the half of VREAD. Figure 4b shows the
read current at 1 V and nonlinearity as a function of
CCL for V/SiOx/AlOy/p

++Si device. The decrease in read
current due to CCL reduction suggests that the conduct-
ing filament is becoming finer and then the nonlinearity
increases. The intrinsic silicon oxide film exhibits high
nonlinearity even in a single layer. The intrinsic nonlin-
ear property is due to the bulk nature of the silicon

oxide rather than the interface of the silicon. The
smaller the CCL is, the less the degradation is generated
in the SiOx, so the lowering of the trap energy level in
the LRS compared to that in the HRS can be minimized.
Therefore, the higher energy barrier can maximize non-
linearity in the LRS state when lower CCL is applied to
the device. Similarly, the conduction described by the
P-F emission in the TaOx/TiOy stack ensures high non-
linearity [57]. Another possibility is that because the di-
electric constant of the oxide is smaller, more passes are
made to the oxide film due to the concentration of the
field. This can lead to the lowering of the trap energy
level of the oxide layer, which can be expected to serve
as a tunnel barrier for Al2O3. To obtain to the read mar-
gin (ΔV) in n × n cross-point array, we use the simpli-
fied equivalent circuit as shown in Fig. 4c. Considering
the worst case, the adjacent cells are set to the LRS and
the load resistance (RL) to the LRS resistance. The ΔV
was calculated from difference between VOUT at LRS
and VOUT at HRS. Figure 4d shows the ΔV as a function
of number of word lines (n) for V/SiOx/AlOy/p

++Si

a b

d
c

Fig. 4 Nonlinear characteristics of V/SiOx/AlOy/p
++Si for memory switching. a I–V curves with different CCLs. b Read current and nonlinearity as

functions of CCL. c Equivalent circuits of cross-point array. d Read margin as a function of word line number for different CCLs and read voltage
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device. The smaller the CCL, the higher the ΔV because
the nonlinearity increases. When 10% read margin is se-
cured, the array can be expanded to about more than
10 × 10 for CCL of 5 μA and to 5 × 5 for CCL of 1 mA.
The array size to withstand the sneak current is not suf-
ficient, but it will help expand the array size when the
device with selector function is connected in a V/SiOx/
AlOy/p

++Si device. Compared to 0.5-V read in all CCLs,
it has higher nonlinearity with read at 1 V. Although low
VREAD leads to low static power in the read operation,
the value of nonlinearity becomes smaller, which is due
to the fact that the electric field is less on the SiOx/AlOy

layer in smaller VREAD.

Conclusions
In this work, a V/SiOx/AlOy/p

++Si device having both a
selector and a memory function by simply controlling
CCL is investigated. When a CCL of 1 μA or less is ap-
plied, unidirectional threshold switching is observed for
selector application. Positive forming oxidizes the V
electrode and the MIT phenomenon of VOx can induce
threshold switching. The AlOy layer is able to achieve a
high selectivity of 104 by lowering the off-current. On
the other hand, when a CCL of 5 μA or more is applied,
memory switching is observed as effective conducting
filaments are formed on the SiOx layer. The lower the
CCL, the greater the nonlinearity, which helps to in-
crease the size of the cross-point array.

Additional File

Additional file 1: Supporting information. (DOCX 81 kb)
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