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ABSTRACT

Memory T cells that mediate fast and effective protection against reinfections are usually 
generated upon recognition on foreign Ags. However, a “memory-like” T-cell population, 
termed virtual memory T (TVM) cells that acquire a memory phenotype in the absence of 
foreign Ag, has been reported. Although, like innate cells, TVM cells reportedly play a role 
in first-line defense to bacterial or viral infections, their protective or pathological roles 
in immune-related diseases are largely unknown. In this review, we discuss the current 
understanding of TVM cells, focusing on their distinct characteristics, immunological 
properties, and roles in various immune-related diseases, such as infections and cancers.
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INTRODUCTION

Classically, it was believed that CD8+ T cells comprise populations of naive CD8+ T (TN) cells, 
effector T (TEFF) cells, and memory T (TMEM) cells, which remain quiescent while awaiting Ag-
specific activation (1). A recent report described a CD8+ T-cell population in unmanipulated 
mice, which could rapidly respond to innate or TCR-mediated stimuli, and showed similar 
immunological characteristics with conventional TMEM cells (2). Remarkably, these cells 
achieved “memory-like” phenotype, and responded rapidly as TMEM cells, without activation 
by previously encountered Ags (3). Based on these characteristics, this subset of CD8+ T cells 
is considered “memory-like” and has been termed virtual memory (TVM) cells (4). It was 
considered that microbiota-derived Ags might be responsible for TVM-cell development, but 
this theory was disproved by the finding that TVM cells exist at equal frequency in secondary 
lymphoid organs from both germ-free and feral mice (4,5).

TVM cells express high levels of CD44, CD122, and Eomesodermin (Eomes), which are known 
to regulate the fate and function of CD8+ TEFF and TMEM cells (6) (Fig. 1). For many years, TVM 
cells were misclassified as central memory T (TCM) cells due to their high CD44 and CD62L 
expression levels, and the absence of specific markers to distinguish TVM cells from TMEM 
cells (7). TVM cells rarely express CD49d, which is only upregulated in TMEM cells after TCR 
stimulation by its cognate Ag (4). TCM and TVM can be distinguished based on CD49 level. 
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Previous publications have described these memory-like cells using a variety of names—
most commonly TVM cells, memory precursor T (TMP) cells, and innate memory T (TIM) cells 
(2). Among them, TIM cells develop from naïve CD8+ T cells in the thymus, abundant with 
IL-4 secreted by PLZF+ cells including αβ iNKT cells and γδ NKT cells (8-10). TVM cells that 
originated from specific precursors in the thymus develop in the periphery and appear in 
mice shortly after birth (11). Since TIM, TVM, and TMP cell populations cannot be separated 
phenotypically in the periphery, they are currently referred to as “virtual memory” cells from 
a functional point of view (3).

In this review, we present the recent knowledge regarding TVM-cell populations, and discuss 
their distinct characteristics, immunological properties, and roles in various immune-related 
diseases.

CHARACTERISTICS OF TVM CELLS

In mice, depending on the strain, different cytokines play crucial roles in the generation 
of TVM cells. In BALB/c background mice, TVM-cell development is absolutely dependent on 
IL-4, as shown by the finding that helminth infection does not induce an increase of TVM 
cells in IL-4 knockout (KO) or IL-4R KO mice (12,13). On the other hand, helminth infection 
could increase the frequency of TVM cells in C57BL/6 mice lacking IL-4 or IL-4R (12,14). It 
was demonstrated that TVM-cell expansion during helminth infection in C57BL/6 mice was 
dependent on IL-15, and concluded that IL-4 was not a direct driver of TVM cell proliferation in 
C57BL/6 mice with helminth infection (15). Unexpectedly, IL-4 exposure during development 
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Figure 1. Characteristics of TVM cells. TVM cells originate from either IL-4 dependent TIM cells or CD5hiCD8+ T cells. TVM cells maintain their population dependent 
on IL-15. With the high expression level of Eomes at the transcriptome level, TVM cells highly express CD44, CD122, and CD5. However, CD49d, a marker for 
cognate Ag experience, is downregulated in TVM cells. TVM cells have various cytokine responsiveness. For example, IL-12/18 stimulates TVM cells and triggers the 
production of proinflammatory cytokines including IFN-γ production, and IL-15 induce NKG2D-dependent innate-like cytotoxicity. T-bet and NKG2D levels varies 
between TIM and TVM. 
DC, dendritic cell.
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and homeostasis reduces CD8+ T cells inherent ability of CD8+ T cells to generate IFN-γ 
rapidly but increase a potent proliferative response to lymphocytic choriomeningitis virus 
(LCMV) infection in BALB/c mice (16). These findings imply that immune response to LCMV 
is induced by IL-4 conditioning, which also enhances the quantity but not the quality of 
memory-like CD8+ T cells (16).

Furthermore, the TCR repertoire of TVM cells reveals a TCR bias (11,17,18). Supporting the 
notion that TVM differentiation is TCR-dependent, TVM cells reportedly exhibit elevated 
amounts of Nur 77 in humans and CD5 in mice, which are surrogate markers of TCR signal 
intensity and indicators of increased TCR self-reactivity (19,20). It is believed that high self-
peptide reactivity during TVM cell growth is responsible for the elevated cytokine sensitivity of 
TVM cells in the blood, which is at least partly due to the expression of Eomes (3). A previous 
study demonstrated that increased TCR responsiveness to self-ligands leads to Eomes 
upregulation in TVM cells during thymic maturation (11). Additionally, it has been shown that 
Eomes binds to the il2rb promoter, thereby activating it and increasing CD122 expression 
(21). Therefore, it appears that the elevated reactivity of self-peptide MHC in TVM cells leads 
to upregulation of Eomes, which causes increased CD122 expression, driving the IL-15 
sensitivity and dependency of TVM cells. Type I IFN signaling also reportedly increases Eomes 
expression in TVM cells (22). In fact, IFN signaling led to Eomes-dependent increases of both 
peripheral TVM cells and thymic TIM cells, while IFNAR−/− mice exhibited drastically decreased 
TVM cells (22).

TVM cells are sensitive to cytokines including IL-12, IL15, and IL-18 (23,24) (Fig. 1). Previous 
reports showed that stimulation of TVM cells with IL-12 and IL-18 can lead to IFN-γ production 
in an Ag-independent manner (23,25). As previously mentioned before, TVM cells induce 
bystander activation in a manner dependent on IL-15 (23,26). When Ag-irrelevant TVM cells 
having TCRs specific to irrelevant Ag were adoptively transferred into IL-15 KO mice and 
then challenged with ovalbumin-expressing Listeria monocytogenes (LM-OVA), the transferred 
TVM cells displayed significantly lower expression levels of NKG2D, granzyme B, and IFN-γ, 
compared to the wild-type (WT) mice transferred with same cells (23).

TVM cells express NK cell receptors (NKRs), and seem to constitute a cell subset that is 
functionally different from the CD8+ T cells that display NK cell markers with aging and 
during infection (23,27,28). Compared to NKR−CD8+ T cells, human CD8+ T cells that 
express NKRs (e.g., NKG2A, KIR2DL, and KIR3DL) produce lower effector cytokine levels 
in response to TCR-mediated stimulation (29). However, KIR/NKG2A+ CD8+ T cells can 
recognize MHC class I-deficient target cells, and trigger TCR-independent cytotoxicity via 
CD16 ligation and increased degranulation (30). Consequently, KIR/NKG2A+ T cells seem to 
exhibit decreased TCR-mediated responses, together with increased innate responsiveness on 
a functional level. Although NKG2D activity on TMEM and TVM cells is a sign of senescence and 
TCR-mediated malfunction, it paradoxically promotes improved innate response. Increased 
granzyme and perforin production following NKG2D interaction on memory phenotypic 
CD8+ T cells has been used to detect TCR-independent cytotoxicity (31,32). In cases where 
inhibitory Ly49 is expressed on memory phenotype T cells, this molecule reduces TCR-
mediated T-cell activation without reducing responsiveness to IL-15 (33). Collectively, these 
results illustrate the reciprocal TCR-mediated and innate-like functionality of T cells.
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ROLE OF TVM CELLS IN AGING

Unlike TN cells, TVM cells in young mice have the ability to produce cytokines and proliferate 
rapidly upon TCR stimulation or cytokine stimulations (27). However, the proportion of 
dysfunctional TVM cells increases with age (27). A study in young and aged germ-free C57BL/6 and 
BALB/c mice revealed that the frequency of peripheral TVM cells increases with age, regardless of 
genetic background (5). Moreover, it has been suggested that various hygienic conditions, such 
as cohousing laboratory mice and feral mice, showed minimal effects on the TVM cell numbers in 
the blood (5). These results imply that there is a common homeostatic mechanism exists during 
aging, which is independent of genetic background and commensal microbiota.

The long-term maintenance of TVM cell function in aged nonimmunized mice is of interest 
to understand the characteristics of TVM cells. A previous study demonstrated that TVM cells 
from aged OT-I or WT mice exhibited a number of characteristics not seen in younger mice 
(34). Aged TVM cells showed a robust response to homeostatic cytokines, but also a selective 
reduction of their ability to replicate in response to TCR signals. Notably, this impairment 
was found to be associated with increased apoptosis in response to peptide stimulation, but 
decreased apoptosis in response to homeostatic cytokines in aged TVM cells compared to aged 
TN cells (34). Interestingly, in contrast to the response in young mice, among aged mice, the 
de novo response to influenza virus was dominated by TVM cells, consistent with the age-related 
increase of TVM cells (35). Aging-related changes in TVM-cell function and frequency may also be 
explained by increases of cytokine levels (including IL-6, IL-15, and IL-18) with age (36,37).

According to a previous study, helminth infection does not stimulate the proliferation of aged 
TVM cells, which is likely at least partly because aged mice exhibit an impaired Th2-related 
immune response to helminth infection (38). They also showed that TVM cells from aged mice 
display an intrinsic defect in cytokine sensing. These findings indicate that the absence of 
TVM cell expansion following helminth infection is explained by defective intrinsic TVM-cell 
cytokine responsiveness, in conjunction with dysregulated helminth infection responses in 
aged mice. Furthermore, it was discovered that while young TN and TVM cells showed extensive 
proliferation, aged TVM cells, not aged TN cells, showed a severely diminished proliferative 
capacity primarily due to decreased cell division upon CD3 stimulation (27). Upon evaluating 
the proliferation of young and aged TN and TVM cells in response to IL-15 stimulation, they 
observed vigorous proliferation of only the young and aged TVM cells (27). This indicated the 
independent regulation of TCR- and cytokine-dependent proliferation responses in TVM cells. 
Further experiments involving adoptive transfer in mice revealed that young TN and TVM cells 
transferred to an aged environment acquired a proliferative defect and reduced functionality. 
Moreover, when aged TN and TVM cells were transferred to a young environment, more TVM cells 
were recovered than TN cells (27). This suggests that aged TVM cells exhibit enhanced survival, 
possibly due to increased expression of receptors for homeostatic cytokines and integrins (23). 
Evaluation of exhaustion-related signatures revealed that age-related changes in TVM cells were 
indicative of immune senescence, not indicative of T-cell exhaustion (27), which suggest that 
the inflammaging features of elderly individuals permits TVM cells to survive relatively well, 
because TVM cells respond better to cytokines than to TCR-mediated stimulation.

Collectively, the accumulated evidence regarding TVM cells in the aging process suggests that 
these cells are highly dependent on innate-like immune responses, which continue to act 
efficiently via cytokines, rather than on Ag-specific responses, which become impaired.
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ROLE OF TVM CELLS IN INFECTION

Like innate cells, TVM cells reportedly play a protective role in first-line defense to viral, 
bacterial, and parasitic infections (12,13,35,39) (Fig. 2). In the past, NK and NKT cells had 
been thought to be the major IFN-γ producers by pathogen-derived inflammatory triggers 
(40). However, a previous study identified a population of IFN-γ–secreting CD8+ T cells in the 
spleen and lymph nodes of LPS-injected mice, indicating that other immune cells are capable 
of early IFN-γ production (41). Moreover, it was shown that IFN-γ production by this CD8+ 
T-cell population was restricted to CD44hi cells, which was independent of MHC class I (41). 
Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns 
(DAMPs) can stimulate inflammatory cytokine production by various innate immune cells, 
including macrophages and dendritic cells that can produce IL-12 and IL-18 during the early 
phase of an infection. IFNα/β, IL-12, and IL-18 derived from macrophage and dendritic cells 
can indirectly stimulate Ag-independent IFN-γ production by memory-like CD8+ T cells 
(4,41,42). TVM cells constitutively express both IL-12 and IL-18 receptors (23), suggesting a 
mechanism through which TVM cells can respond quickly to IFN-γ production in the early 
stages of infection. Moreover, a recent study revealed that in vitro stimulation with IL-12 and 
IL-18a yielded a higher frequency of IFN-γ–producing TVM cells in C57BL/6 mice compared to 
BALB/c mice, due to the greater IL-18 receptor expression in TVM cells of C57BL/6 mice (5).

Lee et al. (43) demonstrated that in the case of viral infection, IL-4 induced a large number 
of innate CD8+ T cells that produced high levels of both IFN-γ and TNF. Upon LCMV Clone 
13 infection, these innate CD8+ T cells completely controlled the viremia and were dependent 
on IL-4, as IL-4 KO mice were incapable of clearing the virus (43). TVM cells also play a role in 
bacterial infections, such as LM, and Yersinia pseudotuberculosis (12). Additionally, during the 
acute parasitic infection with Trypanosoma cruzi, thymic cells enriched with TIM cells exhibit 
a substantial capacity to produce IFN-γ in response to stimulation with IL-12 and IL-18, and 
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adoptive transfer of these cells can protect T. cruzi-infected mice (39). Hussain et al. (15) 
demonstrated that IL-15 is critical for the helminth-induced induction of TVM cells in C57BL/6 
mice, which was solely driven by proliferation of existing TVM cells, with minimal contribution 
from naive cell differentiation. Moreover, compared with other CD8+ T cells, the TVM-cell 
population proliferated the most in response to helminth infection and IL-15 (15). However, 
it has also been reported that the high CD5 expression of TN cells with IL-15 stimulation and 
helminth infections can convert TN cells into TVM cells in BALB/c mice (13). Therefore, the 
possibility of a species-specific effect must be considered.

As previously stated, TVM cells tend to respond to cytokines during infections. Nonetheless, 
these cells possess a fully functional TCR repertoire. It was demonstrated that OTI TVM cells 
can protect against LM-OVA infection by decreasing bacterial colony-forming units in the 
spleen (23). Moreover, a comparable protection level was observed in a TCR transgenic 
mouse model that does not recognize bacteria in an Ag-specific manner, indicating that TVM 
cells can mediate immune-protection against bacterial infection, regardless of the presence 
of their cognate Ag (23). In the Ag-independent context, the effector function of TVM cells is 
largely dependent on IL-15. In IL-15−/− mice as recipients, only Ag-specific TVM cells conferred 
a protective activity, whereas Ag-nonspecific TVM cells exhibited compromised functional 
capacity (23). Taken together, these findings suggest that TVM cells can rapidly respond in an 
Ag-specific or Ag-nonspecific manner in inducing immune response.

Quinn et al. (27) demonstrated that TVM cells can give rise to TEFF cells in response to TCR 
stimulation. However, TVM-derived TEFF cells produced predominantly IFN-γ, whereas TN-
derived TEFF cells were more multifunctional by producing a broader spectrum of cytokines 
(27). Furthermore, TVM-cell-derived TEFF cells become short-lived effector cells, while TEFF 
cells derived from TN cells are more likely to be differentiated into stable TMEM cells (25,44). 
When a previous report evaluated the secondary immune responses by Ag-specific TMEM and 
TVM cells, both subsets expanded equally, but TVM cells produced significantly more TCM cells 
than TMEM cells (25). In addition, Hou et al. (45) demonstrated that CCR2+ TVM cells played a 
dominant role in providing early protection, while CCR2− TVM cells had a greater capacity to 
produce resident memory T (TRM) cells. These findings indicate that TVM cells can respond 
in a TCR-specific or non-specific manner in inducing effector functions such as rapid 
IFN-γ production during the early phase of infections, and can also respond to a secondary 
challenge by predominant differentiation into TCM or TRM cell populations.

ROLE OF TVM CELLS IN CANCER

In recent years, there has been growing interest in cellular immunotherapy as a means 
of harnessing the immune system to fight cancers, and in the production and anticancer 
effect of cancer Ag-specific T cells (46-48). However, cancers can evade these cells by 
downregulating or losing MHC I Ag presentation, making them less stimulating or even 
invisible to CD8+ T cells, without impairing their growth or metastatic potential (49). 
Therefore, we need to focus on the anticancer activities of non-cancer-specific T cells. It have 
been shown that TVM-like cells exhibit increased production of inflammatory cytokines in the 
absence of Ag immunization (31,50). However, these studies could not determine whether 
these cells were indeed TVM cells, because of not using the phenotypic markers that currently 
define TVM cells.
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Since defining TVM-cell propulsion, researchers have recently examined its role in cancer 
immunology (Fig. 2). Miller et al. (11) examined the presence of TVM clones in tumors and 
draining lymph nodes of prostate adenocarcinoma-bearing mice. After co-transfecting 
these mice with polyclonal TVM and TN cells for 4 months, the author discovered that TVM 
cells constituted a substantial proportion of the CD8+ T cells that infiltrated the tumors. The 
TCR repertoire of TVM cells was significantly distinct from that of TN cells, and was highly 
conserved among cancer-bearing mice. They further demonstrated that prostate cancers 
drove the recurrent enrichment of tumor-associated TVM clones, which were uncommon 
in the periphery, but selectively enriched in prostate tumors. This means that TVM cells 
quantifiably contribute to the immune infiltration of tumors.

Wang et al. (51) demonstrated that chemotherapy resulted in a large increase of TVM cells in 
tumors. In vitro treatment of tumor cells with cytarabine or doxorubicin activated TVM cells, 
causing them to produce large amounts of granzyme B, which killed target cells. It was also 
shown that treating tumors with chemotherapy activated TVM cells in a humanized mouse 
model, in a manner that did not involve MHC class I in the tumors (Fig. 2).

TVM CELLS IN HUMANS

As specific markers of Human TVM cells, KIRs and/or NKG2A surface markers with effector 
memory T cells re-expressing CD45RA phenotypes and Eomes expression have been 
suggested, which were identified in cord blood and peripheral blood (30). TVM cells have high 
cytotoxic potential due to their high perforin and granzyme B content, and the innate-like 
effector function of TVM cells in cord blood has been demonstrated by their IFN-γ secretion 
in response to IL-12 and IL-18 (30). Similar to in the mouse model, that express Eomes and 
CD122 tend to be affected by cytokines such as IL-4, IL-15, and type I interferon in terms of 
homeostasis and development of human TVM cells (52).

Recent studies have examined the phenotype of human TVM cells in detail. A RNA-seq analysis 
of CD8+CD45RA+NKG2A+ cells and CD8+CD45RA+pan-KIR2D+KIR3DL1/DL2+ cells revealed 
that these 2 cell populations have distinct characteristics (28). In particular, CD8+KIR+ cells 
have been shown to share characteristics with regulatory CD8+ T cells, including higher 
CD122 expression (53). Similarly, another RNA-seq analysis of CD8+KIR+ T cells confirmed 
that KIR+CD8+ T cells are the functional equivalent of mouse Ly49+CD8+ T cells, and play a 
regulatory role in autoimmune disorders (54). Schattgen et al. (55) reported that, compared 
to KIR2D−NKG2C−CD8+ T cells, a significant portion of KIR2D+NKG2C+/−CD8+ cells are 
Helios+ cells, supporting the demonstration that KIR+ TVM cells have a regulatory function.

Confirming the function of KIR/NKG2A+Eomes+ TVM cells, when chemotherapy-treated 
human lymphoma cells were co-cultured with CD8+ T cells from healthy donors, granzyme B 
increased along with the proportion of KIR/NKG2A+ Eomes+ TVM cells (51). Additionally, KIR/
NKG2A+Eomes+ TVM cells have been discovered in solid tumors, such as ovarian and breast 
cancer (52). Jin et al. (56) found that KIR/NKG2A+Eomes+ TVM cells were also increased in HIV 
patients receiving antiretroviral therapy, and exerted suppressive action in a KIR receptors 
dependent manner. These findings show that human TVM cells play roles in various disease 
conditions.
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CONCLUDING REMARKS

TVM cells have long been confounded with TCM cells, such that their function within the immune 
system has not been fully understood. Over recent years, there has been growing interest in 
the discovery of human TVM cells with features resembling mouse TVM cells. Important new 
challenges are to learn to distinguish between the roles of TVM cells and Ag-specific cells, and to 
understand the significance of the TVM-cell population in various disease processes.
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