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BACKGROUND: The food system accounts for ∼ 40% of human-generated greenhouse gas (GHG) emissions. Meanwhile, daily diet selection also
impacts human nutrition status and health.
OBJECTIVES: This study aimed to use the alternate Mediterranean Diet (aMED) score to evaluate the quality of a low-GHG emission diet and the
association with risk of developing metabolic syndrome (MetS).

METHODS: A total of 41,659 healthy participants without MetS 40 y of age or older were selected from the Health Examinees Study, an ongoing
cohort study in South Korea from 2004. A dietary GHG emissions database was compiled following a national project and literature review. MetS
was defined according to the Adult Treatment Panel III criteria of the National Cholesterol Education Program. The participants were grouped into
quintiles based on 2,000 kcal–standardized daily diet-GHG emissions (Q1: the lowest energy-adjusted diet-GHG emissions). A multivariable logistic
regression model was used to analyze the risk for MetS at follow-up. The aMED score was used to assess the diet quality of the different diet-related
GHG emission groups.

RESULTS: Females with lower energy-adjusted diet-related GHG emissions had significantly lower risks of developing MetS (p=0:0043) than those with
the highest energy-adjusted diet-related GHG emissions. In addition, the Q1 group, in comparison with the other groups, had a higher aMED score (3.02
formales and 3.00 for females), which indicated that the participants in this group had a diet that more closely matched theMediterranean diet.
DISCUSSION: These findings provide a reference for dietary guidance and other policies aimed toward improving dietary intake and reducing diet-
related GHG emissions in South Korea and worldwide. https://doi.org/10.1289/EHP12727

Introduction
The food system is one of the most important factors leading to cli-
mate change.1 Greenhouse gases (GHG) from the food system are
generated primarily through three pathways: crop and livestock
production, land-use change, and food-related activities beyond
the farm gate.2 GHG produced by the food system accounted for
approximately one-third of the total GHG emissions in 2015.1

Among the GHG emissions, which include carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O),3,4 the production of CO2
from land use is the largest,5 andCH4 andN2O emissions dominate
the dietary GHG emissions6 are a main cause of global warming.
The Copenhagen Accord in 2009 proposed that limiting the rise in
global surface temperatures could reduce the risk of adverse effects
associatedwith climate change.7

Climate change interacts with the food environment and nutri-
tion status and can impact the occurrence of chronic noncommu-
nicable diseases, such as cardiovascular and kidney diseases.8,9

Notably, it has recently been demonstrated that dietary change by
consumers, primarily regarding food-related activities beyond the
farm gate, could deliver substantive environmental impacts on a
scale comparable to that of the food producers.2,10

Accordingly, the concept of climate-friendly diets that benefit both
human health and the environment is attracting considerable research
attention.11–13 The production of meat products has been found to
have a disproportionately negative effect on GHG emissions,14 and
plant-based foods have been proposed as an alternative main food

source.15 In addition, vegetarianism is promoted by numerous
researchers and organizations (such as the Vegetarian Society in the
United Kingdom).16,17 However, other studies have reported that
reducing meat consumption threatens nutrition absorption and can
cause deficiencies in key nutrients, such as iron and zinc.18,19 A bal-
anced diet that is neither only vegetarian nor only meat-dominant
(such as the EAT-Lancet diet proposed at the Lancet Commissions,
which aimed to use the best available evidence to propose a universal
reference diet for the health of humans and the planet20) is particu-
larly important and prominent for public health and the environment
worldwide.21 A global analysis has investigated the effects of healthy
diet patterns on improving health and preventing the incidence of
chronic diseases and found that optimumdiets not onlyminimize the
environmental impact but also have a positive influence on human
health.22

Metabolic syndrome (MetS) and its components (abdominal
obesity, elevated triglycerides, decreased blood high-density lipo-
protein cholesterol, elevated fasting blood glucose, and elevated
blood pressure) constitute some of the main risk factors for devel-
oping cardiovascular disease, diabetes, and stroke. The preva-
lence of MetS has increased rapidly in Korea, has affected over
30% of the population in 2007,23 and subsequently remains at a
high level.24 Although the management of MetS includes per-
forming sufficient exercise and attaining sufficient hours of sleep,
it is also necessary to maintain a diet that is nutritionally balanced
and includes plants and animal products.25

This study was conducted to determine whether an association
exists between eating a healthier and climate-friendly diet and
reducing the incidence of MetS in the South Korean population.
Specifically, this study aimed to a) construct a food carbon foot-
print database based on the representative food consumed by the
general population of South Korea, b) examine the association
between diet-related GHG emissions and the incidence of MetS
and its five components, and c) identify the diet combination that
was associated with low diet-related GHG emissions rather than
one certain food group using the alternate Mediterranean Diet
(aMED) Score. The results of this studywill serve as a useful foun-
dation to inform policies aimed at improving diets to alleviate the
urgent concern of the increasingMetS incidence while minimizing
the environmental impact in SouthKorea andworldwide.
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Materials and Methods

Study Population
The Health Examinees (HEXA) study was a large-scale genomic
cohort study conducted among the general population of South
Korea that investigated epidemiological characteristics, genomic
features, and gene–environment interactions associated with major
chronic diseases.26 The HEXA study was approved by the Ethics
Committee of the Korean Health and Genomic Study of the Korean
National Institute of Health and the institutional review boards of all
participating hospitals (IRB No. E-1503-103-657). All participants
provided informedwritten consent prior to participating in the study.

The ongoing HEXA studywas initiated in 2004 and included the
general population 40 y of age and older at 38 sites across South
Korea. Participants who were seen at the baseline (2004–2013) and
the first follow-up (2012–2016) HEXA studies were included in this
study (n=65,642; female= 43,343, male= 22,299). Participants
with the following missing data were excluded from this study: bio-
marker values, food frequency questionnaire (FFQ) data, age infor-
mation, and bodymass index (BMI) values. Implausible total energy
intake values (<800 and more than 4,000 kcal per day for males and
<500 and more than 3,500 kcal per day for females)27 were also
excluded. To better assess the risk for the development of MetS, this
study only included participants withoutMetS at baseline. In particu-
lar, participants with associated diseases, including hyperlipidemia,
diabetes, stroke, transient ischemic attacks, angina pectoris, and
myocardial infarction, were all excluded. A detailed flowchart show-
ing the selection process is provided in Figure S1. In total, 41,659
participants (12,846 males and 28,813 females) were selected for
inclusion in the current study.

Dietary Data
All participants completed an externally validated 106-item FFQ at
the baseline and follow-up surveys.28 The reproducibility and valid-
ity of the FFQ have been assessed using diet recollection over four
seasonal 3-d, 24-h periods.28 The questionnaire addressed the types
of food consumed in the year preceding the baseline survey and the
associated ingestion frequencies, portion sizes, and preparation
methods involved.26 Considering the interaction with outcome, we
used the baseline FFQ information as the participants’ daily dietary
intake. With respect to GHG emissions related to daily food intake,
this study focused on the amount of GHG emissions per unit of
energy provided by the food rather than the GHG emissions per unit
of the food weight. GHG emissions related to the individual diets
were calculated according to a kilogram of CO2 equivalents (kg CO2
eq) per 1,000 kcal. The total energy intake was calculated using the
Korean Standard Food Composition Table (ninth revision).29 The
HEXA FFQ data obtained were also linked with the Dietary
Reference Intakes for Koreans (KDRIs; 2015) to minimize any cal-
culation biases when calculating portion sizes (mainly with respect
to vegetables, meat, dairy products, and fruit) of the 106 food types.

Furthermore, because the Mediterranean diet is believed to play a
role in lowering the risk for several chronic diseases, a modified alter-
native Mediterranean Diet Score (aMED), developed using a semi-
FFQ to quantify the diet, was adopted in this analysis to evaluate the
diet quality and health benefit of a climate-friendly diet (low dietary
GHG emissions). Trichopoulou et al.30 developed the Mediterranean
diet score, and Fung et al.31 modified it to the aMED. Based on the
aMED, the 106 food items of the HEXA FFQ data were classified
into seven food groups (whole grain, vegetables, fruits, legumes, red
and processed meat, fish, and alcohol), and information on the ratio
of monounsaturated to saturated fat was added by linking the HEXA
FFQ data and the Korean Standard Food Composition Table (ninth
revision). The participants were assigned one point if they consumed
greater than the median intake of each food group, excluding the

“red and processed meats” and “alcohol” groups. Conversely, if
they consumed less than the median values, they received zero
points. The participants were assigned 1 point if they consumed less
than the median intake of “red and processed meats.” The partici-
pants received 1 point if they consumed between 5 and 15 g=d of
ethanol. The total aMED score ranged from 0 to 8.

Considering the difference in food culture between the
Mediterranean diet, which is abundant in MUFA from nuts and
olive oils, and the Korean diet, which is abundant in carbohydrate
and micronutrients from grains and vegetables, an additional associ-
ation analysis between dietary GHG emissions and the Korean
Food Balance Wheel (KFBW) was performed as proposed in the
Korean Dietary Guidelines.32 The KFBWmainly classifies the daily
diet components into five groups (cereals, dairy products, fruits,
vegetables, and meat/eggs/legumes). In the current study, first, the
intake units of the 106 food items from the HEXA FFQ data were
converted from grams per day to servings per day, and the 106 food
items were assigned into the five KFBW groups. Then we could
assess the consumption and GHG emission of the five KFBW
groups from self-selected diet according to GHG emissions quintiles
(GHG emissions of 106 food items are described in Tables S1 in
detail, and GHG emissions of five KFBW groups consumed by par-
ticipants from each quintile group are shown in Table S2).

Environmental Impacts and Links to Dietary Data
The GHG emissions were assessed using a life cycle assessment
(LCA) method,11 which is a comprehensive method that systemati-
cally and quantitatively describes various resources, energy con-
sumption, and environmental emissions during the product’s life
cycle and evaluates their environmental impact.33 Dietary GHG
emissions accounted for all the GHG emissions from input to out-
put that are involved in the food production chain.13 However, at
present, there are no comprehensive LCA databases available for
Korean foods. Hence, an extensive review of the LCA literature
was conducted at the beginning of this study to develop a food-
related environmental impact database that focused on the diet-
related GHG emissions for Korean foods. The viability of the
LCAs was assessed as per the International Organization for
Standardization (ISO 14040:2006/AMD 1:2020).

The GHG emission values were recorded in kilograms of CO2
eq per kilogram of food3 and were converted to kilograms of CO2
eq per kilocalorie of food by linking the Korean Standard Food
Composition Table (ninth revision). Carbon footprint data associ-
atedwith themain food typeswere obtained from project reports of
the Korea Ministry of Environment,34–36 and the food items for
which no carbon footprint data were available in Korea were pref-
erentially searched and matched using data from neighboring
countries, such as Japan.37 Although Western countries have con-
ducted more research in this area, data matching different produc-
tion means with living habits has not been prioritized. For food
items relating to the same product, such as apples and apple juice,
the weighted values from the HEXA items were adopted. With
respect to the food items for which no associated LCA study was
found, data relating to a similar food item or an alternative food
item were used; for example, data associated with carrots were
used for deodeok (Codonopsis lanceolata). In addition, food items
were excluded from the study if consumed infrequently (average
intake <1 g=d ). The average dietary GHG emissions per person
per day were then calculated in kilograms of CO2 eq after being
standardized by 2,000 kcal according to the HEXAFFQdata.

Definition of MetS
According to the Adult Treatment Panel (ATP) III criteria of the
National Cholesterol Education Program, MetS is diagnosed
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when three or more of the following five traits are identified: a) a
waist circumference (WC) of ≥90 cm in males and ≥80 cm in
females; b) serum triglycerides (TG) ≥150 mg=dL; c) serum high-
density lipoprotein cholesterol (HDL-C) <40 mg=dL in males
and <50 mg=dL in females; d) systolic blood pressure (SBP)
≥130mmHg or diastolic blood pressure (DBP) ≥85mmHg;
and e) fasting plasma glucose ≥100 mg=dL.24 All participants in
the present study underwent anthropometric measurements (WC),
clinical measurements (blood pressure), and fasting blood tests
(lipid profiles and fasting blood glucose) at the baseline and follow-
up HEXA surveys.38 According to the results of the baseline meas-
urements, participants were excluded from the current study if they
met three or more of the ATP III criteria, and the participants who
met three or more of the ATP III criteria according to the results of
the follow-up biochemical analysis were grouped into the MetS
group.

Additional Covariates
In the current analysis, all covariates, including anthropometric
measurements, demographics, smoking and drinking statuses, life-
styles, and physical activity, were collected at the HEXA baseline
survey. These covariates have been previously reported as potential
confounders in epidemiological studies.39 To diminish the potential
for bias, we adjusted for these covariates in analytical models. The
anthropometric measurements and questionnaires were collected
and administered by well-trained and skilled staffs using consistent
and standardized methods.38 Height was measured to the nearest
0:1 cm and weight to the nearest 0:1 kg. BMI was calculated by
dividing an individual’s weight (kg) by the square of their height in
meters (m2). The BMI groups were then categorized as follows:
low weight <18:5 kg=m2, normal weight 18:5–25:0 kg=m2, over-
weight 25:0–30:0 kg=m2, and obese ≥30:0 kg=m2. Self-reported
age was used to classify the age group as “40–49 years,” “50–59
years,” “60–69 years,” and “70–79 years.” Participants were
queried whether they drink alcohol and, if so, were defined as a
“current drinker” and were then asked questions on the types
(objective question with eight options: soju, beer, wine, makgeolli,
sake, hard liquor, fruit wine, and others), frequencies (objective
question with eight options: none or rarely, once per month, two or
three times per month, once per week, two or three times per week,
four to six times per week, once per day, and at least two times per
day), and amounts (subjective question, amount in cups) of alcohol
consumption. The ethanol contents were defined as 21%, 4.5%, 6%,
15%, 13%, 40%, 14%, and 18% for soju, beer, wine, makgeolli,
sake, hard liquor, fruit wine, and others, respectively. The frequen-
cies, amounts, and ethanol contents of each alcohol type were mul-
tiplied to calculate the total daily ethanol intake. Participants also
answered the objective question, “Have you smoked more than 20
packs (400 cigarettes) in total so far?” and three options were
listed: “No, never smoked,” “Yes, but not now,” or “Yes, still
now.” Corresponding to the answers, they were grouped into three
smoking status groups: “never,” “past smokers,” or “current smok-
ers,” respectively. Physical activity was assessed based on ques-
tions regarding the duration (minutes or hours) and frequency
(times per week or day) of exercise with sweat. “Physically active”
was defined as performing more than 30 min of exercise with sweat
more than twice a week.40 Information about education was col-
lected with the question “How long did you go to school?” with nine
options: “never,” “dropped out of elementary school,” “graduated
from elementary school or dropped out of middle school,” “grad-
uated from middle school or dropped out of high school,” “graduated
from high school,” “graduated from college,” “dropped out of uni-
versity,” “graduated from university,” and “graduated from graduate
school.” Educational levels attained were then categorized: “below
middle school,” “high school,” or “college or above.” The missing

values for the categorical covariates were grouped separately, and
the missing values for continuous covariates were replaced with the
median values.

Statistical Analyses
Considering the differences in dietary habits and sex hormone, all
the analyses conducted in the current study were stratified accord-
ing to sex. Participants were grouped according to the quintiles of
the 2,000 kcal–standardized diet-related GHG emissions. The
continuous variables (age, BMI, and total energy intake) were
expressed as the mean± standard error (SE), and the categorical
variables (educational level, drinking status, smoking status, and
physical activity) were presented as frequencies with percentages.
The differences were tested by a chi-square test among the cate-
gorical variables and a generalized linear model for the continu-
ous variables. A post hoc test for the continuous variables was
performed using a Duncan test. The main analysis relating to the
health effect of the energy-adjusted diet-related GHG emissions
was conducted using a multivariable logistic regression model.
The odds ratios (ORs) and 95% confidence intervals (CIs) for
MetS in accordance with the quintiles of the energy-adjusted
diet-related GHG emissions were estimated after adjusting for
potential confounders, which included the three continuous and
four categorical variables. All statistical analyses were conducted
using SAS (version 9.4; SAS Institute Inc.). A p-value of 0.05
was used to determine statistical significance, with the highest
GHG emissions quintile (Q5) as the reference group.

Results
Figure 1 shows the GHG emissions of several commonly con-
sumed representative Korean food items obtained from the
HEXA FFQ data; the GHG emissions of all 106 food items are
listed in Table S1. With respect to the per unit of weight, the
GHG emissions of meat (such as beef and pork) are greater than
those of vegetables and fruit; however, in relation to the per unit
of energy released, the amounts of GHGs emitted from meat are
not always higher than those from vegetables and fruits. For
example, with respect to the per unit weight, the GHG emissions
of pork and onion are 4.25 and 0:38 kg of CO2 eq=kg, respec-
tively, whereas for the per unit of energy released, the GHG
emissions are 1.00 and 1:40 kg CO2 of eq=1,000 kcal.

The general characteristics of the individual participants in the
baseline study are summarized in Table 1 according to the quintiles
of the amount of daily energy-adjusted diet-related GHG emis-
sions. This study included a total of 41,659 participants, of whom
30.84% were males (n=12,846). High energy-adjusted diet-related
GHG emissions were associated with younger participants among
both sexes, those who had a higher educational level, and those
who were current smokers and drinkers (all p<0:05). Notably, the
effects of BMI levels differed between females and males: for
males, a rise in energy-adjusted diet-related GHG emissions was
associated with being overweight or obese (p=0:0094), whereas
the opposite trend appeared for females (p<0:0001).

The dietary compositions of each of the energy-adjusted
GHG emissions groups according to sex are shown in Table 2.
Of all the participants, the Q1 group consumed the most carbohy-
drates and the lowest amounts of protein and fat. In addition, the
carbohydrate intake (∼ 78% of the daily intake in the male and
female Q1 groups) was higher than the KDRIs32 (55%–65%), and
the fat intake (∼ 10% in the male and female Q1 groups) was
lower (15%–30%). Meanwhile, the Q1 group had a higher aMED
score (3.02 for males and 3.00 for females) than the other quintile
groups. Figure S2 (Table S2) shows the percentages of daily diet-
GHG emissions from each food group according to the KFBW,
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and the corresponding serving portions are shown in Figure S3
(Table S3). Notably, the main differences between the GHG
emission quintiles were also found to be related to cereal and
meat (beef and pork in particular) consumption. Meats like fish
and poultry contributed lower proportions of GHG emissions in
Q5 than in Q1, even though the percentage consumed was higher
in Q5.

The associations betweenMetS and its components and dietary
GHG emissions in the current study are shown in Table 3. The av-
erage follow-up period was 5.01 y (interquartile range: 3.9–6.1 y).
Of the 12,846 male participants, 1,968 MetS cases developed dur-
ing the follow-up period. However, no significant correlations
between MetS and diet-related GHG emissions among males were
found. A total of 3,628 MetS cases were identified among the
female participants (n=28,813). In addition, the female Q1 group
had significantly lower ORs forMetS (OR=0:824; 95%CI: 0.732,
0.928), elevated TG levels (OR=0:895; 95% CI: 0.804, 0.996),
elevated WC levels (OR=0:868; 95% CI: 0.789, 0.954), and ele-
vated blood pressure (OR=0:900; 95% CI: 0.824, 0.983) in com-
parison with the female Q5 group.

Discussion
This study was conducted to assess the energy-adjusted GHG
emissions associated with the self-selected diets of Korean adults
(in accordance with information obtained from FFQs completed
during the HEXA study). A low energy-adjusted GHG emission
diet had a higher aMED score, which indicated a higher diet qual-
ity. In addition, the lower risk for MetS in the low energy-
adjusted diet-related GHG emissions group among the female
participants indicated its health benefits to some extent.

We developed a GHG emissions (CO2 emissions) database
related to the representative Korean foods that were included in
HEXA FFQ data by matching the results obtained from several
LCA databases obtained from previous research primarily related
to Korean foods.12,34,35,41 Although the precision of some of the
data requires improvement, Table S1 shows that the ranking of

GHG emissions associated with every individual food item is
generally consistent with that obtained using data from other
studies.3,42,43 For the purposes of the present study, the ranking
of data was more important than its precise value and aimed to
obtain a general awareness of the approximate GHG emissions.

Our study shows that the constituents of daily diets with a
lower climate impact in terms of GHG emissions after being
standardized by 2,000 kcal had a higher modified aMED score.
This finding was consistent with the findings of some previous
review studies, which reported that the Mediterranean diet exhib-
ited relatively low environmental effects.20,44,45 Another previous
cohort study has illustrated the potential co-benefits that can be
obtained for health and climate if the population shifts to a low-
meat diet after comparing six different diet patterns among
French participants, from lactovegetarians to diets with high meat
content.46 They defined a low-meat diet as a diet with a total meat
intake of <50 g=d .46 In the current study, the serving size of red
meat was 150 g, and the serving size of fish was 40 g per the
KDRIs. The distribution of meat and fish intake in Table 2 indi-
cates that participants in Q1 could also be classified as having a
low-meat diet, which is nutritionally adequate and climate-
friendly. A previous cross-sectional epidemiological study focused
on self-selected diets also demonstrated that diets with a higher
U.S. Healthy Eating Index (rather thanMed) score had lower GHG
emissions per 1,000 kcal and contained more fiber, poultry, plant
protein foods, and lessmeat.47

In the present study, although there was little difference in the
absolute consumption of fish and poultry among different quin-
tiles, the area distribution of the pie chart (Figure S2) suggested
that fish and poultry charged more in the total meat consumption
in Q1 group. It meant that participants who recorded an increase
in the meat consumption percentage of fish and poultry were
found to have a lower risk of developing MetS (Figure S2; Table 3),
and the production of such food items involved lower GHG
emissions. In addition, diets rich in fish and poultry were
found to be associated with lower or equivalent GHG emission

Figure 1. GHG emissions of Korea’s representative food types according to the HEXA FFQ data. See Table S1 for detailed information regarding the complete
HEXA diet-related GHG emissions. Note: CO2 eq, carbon dioxide equivalents; FFQ, food frequency questionnaire; GHG emissions, greenhouse gas emissions;
HEXA, Health Examinees study.
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Table 1. Baseline general characteristics of the study participants from the Health Examinees study according to the quintiles of the energy-adjusted diet-
related GHG emissions (n=41,659).

Energy-adjusted dietary GHG emissions

p-ValueaQ1 Q2 Q3 Q4 Q5
Males
n=12,846 2,569 2,569 2,570 2,569 2,569 —
GHG emissions (kg of CO2 eq/d) 1:74± 0:01a 2:23± 0:01b 2:67± 0:02c 3:26± 0:02d 4:81± 0:04e <0:0001
Age (y) 55:28± 0:16a 55:09± 0:17a 54:26± 0:17b 53:68± 0:17c 53:59± 0:17c <0:0001
BMI (kg/m2) 23:66± 0:05b 23:79± 0:05a,b 23:75± 0:05a,b 23:88± 0:05a 23:86± 0:05a 0.0094
<18:5 57 (2.22%) 34 (1.32%) 40 (1.56%) 38 (1.48%) 44 (1.72%) 0.0008
≥18:5 and <25 1,743 (67.87%) 1,771 (68.94%) 1,752 (68.17%) 1,687 (65.67%) 1,677 (65.41%) —
≥25 and <30 740 (28.82%) 723 (28.14%) 762 (29.65%) 815 (31.72%) 802 (31.28%) —
≥30 28 (1.09%) 41 (1.60%) 16 (0.62%) 29 (1.13%) 41 (1.60%) —

Smoking status [n (%)] — — — — — <0:0001
Never 926 (36.05%) 873 (33.98%) 823 (32.02%) 791 (30.79%) 811 (31.57%) —
Past smokers 1,058 (41.18%) 1,069 (41.61%) 1,075 (41.83%) 1,064 (41.42%) 974 (37.91%) —
Current smokers 578 (22.50%) 619 (24.09%) 660 (25.68%) 705 (27.44%) 776 (30.21%) —
Missing 7 (0.27%) 8 (0.31%) 12 (0.47%) 9 (0.35%) 8 (0.31%) —

Drinking status [n (%)] — — — — — <0:0001
Never an alcohol drinker 891 (34.68%) 773 (30.09%) 664 (25.84%) 603 (23.47%) 589 (22.93%) —
Current alcohol drinker 1,671 (65.04%) 1,789 (69.64%) 1,899 (73.89%) 1,956 (76.14%) 1,972 (76.76%) —
Missing 7 (0.27%) 7 (0.27%) 7 (0.27%) 10 (0.39%) 8 (0.31%) —

Educational level [n (%)] — — — — — <0:0001
Under middle school 669 (26.04%) 602 (23.43%) 452 (17.59%) 476 (18.53%) 464 (18.06%) —
High school 998 (38.85%) 1,003 (39.04%) 1,072 (41.71%) 986 (38.38%) 990 (38.54%) —
College or above 873 (33.98%) 938 (36.51%) 1,014 (39.46%) 1,086 (42.27%) 1,090 (42.43%) —
Missing 29 (1.13%) 26 (1.01%) 32 (1.25%) 21 (0.82%) 25 (0.97%) —

Physical activity level [n (%)] — — — — — 0.0003
Inactive 2,015 (78.44%) 1,975 (76.88%) 1,946 (75.72%) 1,971 (76.72%) 2,004 (78.01%) —
Active 500 (19.46%) 533 (20.75%) 535 (20.82%) 508 (19.77%) 464 (18.06%) —
Missing 54 (2.10%) 61 (2.37%) 89 (3.46%) 90 (3.50%) 101 (3.93%) —

MetS biomarkers
TG (mg/dL) 118:01± 1:45b 121:20± 1:54b 121:50± 1:35b 121:83± 1:42b 126:26± 1:55a 0.0028
WC (cm) 83:42± 0:13b 83:70± 0:13b 83:66± 0:13b 83:82± 0:13a,b 84:11± 0:14a 0.0063
HDL-C (mg/dL) 50:98± 0:23b,c 50:81± 0:22c 51:38± 0:22b,c 51:62± 0:22a,b 52:23± 0:23a <0:0001
FPG (mg/dL) 93:19± 0:28a 92:41± 0:26b 92:49± 0:25a,b 92:38± 0:24b 92:72± 0:23a,b 0.1354
DBP (mmHg) 77:68± 0:18a 77:00± 0:18b 77:10± 0:18b 77:10± 0:18b 77:13± 0:18b 0.0654
SBP (mmHg) 123:71± 0:28a 122:99± 0:27a,b 122:90± 0:26b 122:57± 0:26b 122:70± 0:26b 0.0266

Females
n=28,813 5,762 5,763 5,763 5,763 5,762 —
GHG emission (kg of CO2 eq/d) 1:64± 0:01a 2:08± 0:01b 2:43± 0:01c 2:92± 0:01d 4:21± 0:02e <0:0001
Age (y) 52:61± 0:10a 51:85± 0:10b 51:32± 0:10c 50:85± 0:10d 50:49± 0:10e <0:0001
BMI (kg/m2) 23:11± 0:03a 23:06± 0:03a,b 23:01± 0:03b,c 22:94± 0:03c 22:81± 0:03d <0:0001
<18:5 151 (2.62%) 158 (2.74%) 149 (2.59%) 140 (2.43%) 173 (3.00%) 0.0113
≥18:5 and <25 4,239 (73.62%) 4,301 (74.66%) 4,338 (75.30%) 4,370 (75.84%) 4,381 (76.06%) —
≥25 and <30 1,261 (21.90%) 1,201 (20.85%) 1,187 (20.60%) 1,140 (19.78%) 1,131 (19.64%) —
≥30 107 (1.86%) 101 (1.75%) 87 (1.51%) 112 (1.94%) 75 (1.30%) —

Smoking status [n (%)] — — — — — 0.0003
Never 5,601 (97.21%) 5,605 (97.26%) 5,604 (97.24%) 5,610 (97.35%) 5,526 (95.90%) —
Past smokers 50 (0.87%) 50 (0.87%) 52 (0.90%) 46 (0.80%) 78 (1.35%) —
Current smokers 84 (1.46%) 77 (1.34%) 78 (1.35%) 83 (1.44%) 130 (2.26%) —
Missing 27 (0.47%) 31 (0.54%) 29 (0.50%) 24 (0.42%) 28 (0.49%) —

Drinking status [n (%)] — — — — — <0:0001
Never an alcohol drinker 4,228 (73.38%) 4,025 (69.84%) 3,838 (66.60%) 3,784 (65.66%) 3,598 (62.44%) —
Current alcohol drinker 1,504 (26.10%) 1,712 (29.71%) 1,896 (32.90%) 1,954 (33.91%) 2,136 (37.07%) —
Missing 30 (0.52%) 26 (0.45%) 29 (0.50%) 25 (0.43%) 28 (0.49%) —

Educational level [n (%)] — — — — — <0:0001
Under middle school 2,427 (42.12%) 1,908 (33.11%) 1,679 (29.13%) 1,470 (25.51%) 1,317 (22.86%) —
High school 2,326 (40.37%) 2,685 (46.59%) 2,731 (47.39%) 2,773 (48.12%) 2,811 (48.79%) —
College or above 943 (16.37%) 1,103 (19.14%) 1,293 (22.44%) 1,459 (25.32%) 1,585 (27.51%) —
Missing 66 (1.15%) 67 (1.16%) 60 (1.04%) 61 (1.06%) 49 (0.85%) —

Physical activity level [n (%)] — — — — — 0.0005
Inactive 4,677 (81.17%) 4,565 (79.21%) 4,613 (80.05%) 4,539 (78.76%) 4,557 (79.09%) —
Active 982 (17.04%) 1,067 (18.51%) 1,010 (17.53%) 1,062 (18.43%) 1,034 (17.95%) —
Missing 103 (1.79%) 131 (2.27%) 140 (2.43%) 162 (2.81%) 171 (2.97%) —

MetS biomarkers
TG (mg/dL) 93:86± 0:61a 94:01± 0:63a 93:15± 0:66a 92:62± 0:63a 93:04± 0:67a 0.5028
WC (cm) 76:66± 0:10a 76:43± 0:10a 76:46± 0:10a 75:98± 0:10b 75:86± 0:10b <0:0001
HDL-C (mg/dL) 57:62± 0:16d 58:20± 0:16c 58:63± 0:16b,c 58:92± 0:16a,b 59:15± 0:17a <0:0001
FPG (mg/dL) 88:61± 0:14a 88:57± 0:13a 88:67± 0:14a 88:33± 0:13a 88:44± 0:12a 0.3624
DBP (mmHg) 73:84± 0:12a 73:24± 0:12b 72:88± 0:12c 72:75± 0:12c,d 72:49± 0:12d <0:0001
SBP (mmHg) 118:94± 0:19a 118:05± 0:18b 117:28± 0:18c 116:84± 0:18c 116:28± 0:17d <0:0001

Note: —, no data; BMI, body mass index; DBP, diastolic blood pressure; eq, equivalent; FPG, fasting plasma glucose; GHG, greenhouse gas; HDL-C, high-density lipoprotein choles-
terol; MetS, metabolic syndrome; Q, quintile; SBP, systolic blood pressure; TG, triglycerides; WC, waist circumference.
ap-Values comparing continuous variables (presented as the mean± standard error) were calculated using generalized linear models, and the p-values for categorical variables pre-
sented as n (%) were calculated using a chi-square test. A post hoc test was performed by a Duncan test, and the mean values with the same letters (shown as ‘a’, ‘b’, ‘c’, ‘d ’, or ‘e’) in
each row were not significantly different.
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percentages than diets in which fish and poultry were not con-
sumed in large quantities (Figure S2). We noted this consistency
between our result and previous review research findings.48
Therefore, fish and poultry could be considered climate-friendly
food items when assuming that the total energy intake was stand-
ardized. We also found that increased vegetable intake provided
an energy equivalent to that of fish or poultry but was associated
with higher dietary GHG emissions. This finding differs from that
of a previous cohort3 or survey studies,14,22 which indicates that
restricting or excluding animal-based foods results in much lower
GHG emissions. It is considered that the differences are mainly
related to discrepancies between the primary measures of emis-
sions in each case because the current study mainly focused on
energy-adjusted diet-related GHG emissions and prior studies esti-
mated absolute GHG emissions without considering the energy
intake imbalance which could impact the health outcome.
Although the present study found that the GHG emissions associ-
ated with beef were relatively higher than those of other foods, the
method used to cook the beef (Table S1) and its origin (from
abroad or local) can have an effect on the GHG emissions.48
Therefore, changes to the cooking method and origin (imported
beef or local beef) selection should be considered to improve the
associated nutritional intake and diet-related effects on GHG
emissions.

In the current analysis, the low energy-adjusted diet-related
GHG emissions group (Q1 or Q2) exhibited a lower OR for MetS
or its five components compared with the Q5 group. Moreover,
these groups had a higher aMED score. Consistent with this, a pre-
vious cross-sectional study49 and meta-analyses50 have reported
that adhering to a Mediterranean diet (higher MED score) reduced
the risk for MetS and its components. In the current study, the opti-
mal diet pattern included higher carbohydrates, lower fat contents,
and more fish consumption, which is rich in polyunsaturated fatty
acids (PUFAs; i.e., omega-3 fatty acids), than red meat. This pat-
tern is also consistent with a previous clinical intervention study
that indicated that a high-carbohydrate, low-fat diet supplemented
with omega-3 PUFA was negatively correlated with MetS,51 with
the associated mechanism being considered to mainly resulting
from the types of carbohydrates and unsaturated fatty acids
ingested.52 Overall, energy-restricted diets have generally been
considered an effective strategy to manage MetS.53–55 Our results
also support this approach because the Q1 and Q2 groups had
lower total energy intakes and exhibited lower risks for MetS and
its components (Table 3).

The Mediterranean diet is a high-quality dietary regimen that
has become well-known owing to its optimal nutrient profile.56
The results of our analysis revealed that higher aMED scores
were associated with significantly lower intakes of red and

Table 2. Distribution of macronutrients and aMED components of daily diets at baseline according to the energy-adjusted GHG emissions among 41,659 par-
ticipants in the Health Examinees study, South Korea.

Energy-adjusted diet-related GHG emissions

Q1 Q2 Q3 Q4 Q5 p-Value

Males (n=12,846) 2,569 2,569 2,570 2,569 2,569 —
Total energy (kcal/d) 1,587:14± 7:31e 1,746:57± 8:09d 1,825:53± 8:41c 1,903:35± 9:07b 2,028:44± 10:38a <0:0001
Protein (g/d) 46:57± 0:27e 54:82± 0:31d 60:14± 0:33c 66:47± 0:37b 80:20± 0:50a <0:0001
Energy percentage (%) 11:68± 0:04e 12:53± 0:04d 13:16± 0:04c 13:96± 0:04b 15:77± 0:05a <0:0001

Fat (g/d) 18:43± 0:18e 24:31± 0:21d 28:14± 0:22c 33:22± 0:25b 43:76± 0:34a <0:0001
Energy percentage (%) 10:20± 0:07e 12:32± 0:07d 13:72± 0:07c 15:54± 0:07b 19:21± 0:09a <0:0001

Carbohydrate (g/d) 308:75± 1:37c 327:12± 1:48b 332:92± 1:52a 334:62± 1:57a 328:45± 1:69b <0:0001
Energy percentage (%) 78:12± 0:10a 75:15± 0:10b 73:13± 0:10c 70:50± 0:10d 65:02± 0:13e <0:0001

aMED 3:02± 0:03a 2:84± 0:03b 2:91± 0:03b 2:89± 0:03b 3:00± 0:03a <0:0001
Vegetables (servings/d) 2:40± 0:04e 3:12± 0:04d 3:59± 0:05c 4:03± 0:05b 4:60± 0:06a <0:0001
Legumes (servings/d) 1:02± 0:02c 1:19± 0:02b 1:22± 0:02a,b 1:25± 0:02a,b 1:28± 0:02a <0:0001
Fruits (servings/d) 0:93± 0:02d 1:19± 0:02c 1:27± 0:02b 1:35± 0:02a 1:38± 0:02a <0:0001
Whole grain (servings/d) 3:10± 0:02a 3:02± 0:02b 2:95± 0:02c 2:82± 0:02d 2:63± 0:02e <0:0001
Red and processed meat (servings/d) 0:16± 0:00e 0:27± 0:00d 0:40± 0:01c 0:60± 0:01b 1:24± 0:02a <0:0001
Fish (servings/d) 0:60± 0:01e 0:75± 0:01d 0:83± 0:01c 0:92± 0:01b 1:08± 0:02a <0:0001
Monounsaturated fatty
acids/saturated fatty acids

0:79± 0:00d 0:78± 0:00d 0:80± 0:00c 0:83± 0:00b 0:89± 0:00a <0:0001

Alcohol (g/d) 19:10± 0:63c,d 18:65± 0:58d 20:51± 0:63b,c 21:36± 0:56b 24:51± 0:69a <0:0001
Females (n=28,813) 5,762 5,763 5,763 5,763 5,762 —
Total energy (kcal/d) 1,503:51± 5:32e 1,641:09± 5:76d 1,690:44± 6:14c 1,740:04± 6:68b 1,813:49± 7:37a <0:0001
Protein (g/d) 44:29± 0:19e 52:08± 0:21d 56:49± 0:24c 61:85± 0:28b 71:72± 0:34a <0:0001
Energy percentage (%) 11:77± 0:03e 12:70± 0:03d 13:35± 0:03c 14:19± 0:03b 15:81± 0:03a <0:0001

Fat (g/d) 16:79± 0:13e 22:35± 0:14d 25:81± 0:16c 29:99± 0:17b 38:06± 0:22a <0:0001
Energy percentage (%) 9:81± 0:05e 12:10± 0:05d 13:57± 0:05c 15:35± 0:05b 18:76± 0:07a <0:0001

Carbohydrate (g/d) 293:80± 1:02b 307:91± 1:08a 308:04± 1:11a 305:69± 1:17a 296:01± 1:23b <0:0001
Energy percentage (%) 78:42± 0:07a 75:20± 0:07b 73:07± 0:07c 70:45± 0:07d 65:42± 0:09e <0:0001

aMED 3:00± 0:02d 2:79± 0:02b 3:00± 0:02a 3:00± 0:02a 2:95± 0:02c <0:0001
Vegetables (servings/d) 2:83± 0:03e 3:61± 0:03d 4:15± 0:04c 4:75± 0:04b 5:34± 0:05a <0:0001
Legumes (servings/d) 1:01± 0:01c 1:23± 0:02b 1:27± 0:02a,b 1:30± 0:02a 1:25± 0:02b <0:0001
Fruits (servings/d) 1:36± 0:02d 1:66± 0:02c 1:77± 0:02b 1:87± 0:02a 1:82± 0:02a,b <0:0001
Whole grain (servings/d) 2:80± 0:01a 2:66± 0:01b 2:52± 0:01c 2:35± 0:01d 2:14± 0:01e <0:0001
Red and processed meat (servings/d) 0:12± 0:00e 0:20± 0:00d 0:30± 0:00c 0:45± 0:00b 0:90± 0:01a <0:0001
Fish (servings/d) 0:65± 0:01e 0:82± 0:01d 0:90± 0:01c 1:02± 0:01b 1:14± 0:01a <0:0001
Monounsaturated fatty
acids/saturated fatty acids

0:79± 0:00c 0:78± 0:00d 0:79± 0:00c,d 0:81± 0:00b 0:87± 0:00a <0:0001

Alcohol (g/d) 5:02± 0:25b 4:80± 0:21b 4:85± 0:18b 5:46± 0:24b 6:47± 0:25a <0:0001

Note: —, no data; aMED, alternative Mediterranean Diet score; eq, equivalent; GHG emissions, greenhouse gas emissions; KDRI, Korea Dietary Recommendation Index; Q,
quintile.
ap-Values comparing continuous variables (presented as the mean± standard error) were calculated using generalized linear models, and the p-values for categorical variables pre-
sented as n (%) were calculated using a chi-square test. A post hoc test was performed by a Duncan test, and the mean values with the same letters (shown as ‘a’, ‘b’, ‘c’, ‘d ’, or ‘e’) in
each row were not significantly different.
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processed meat in comparison with the lower aMED scoring
group. Specifically, higher aMED scores reflect higher intakes of
vegetables, legumes, fruits, whole grains, and fish; lower intakes
of red and processed meat; and moderate intakes of alcohol.
Among these, fish constitutes a good source of PUFAs, and vege-
tables and fruits are abundant in antioxidants and bioactive com-
pounds, with whole grains, vegetables, and legumes being
primarily low-fat, high-fiber foods.

Furthermore, our results show that the low-GHG emission
group with higher aMED scores had a lower risk for increased
WC, elevated blood pressure, and elevated TG levels among
females. The mechanism by which the Mediterranean diet pro-
tects against increased WC may involve the ability of its high die-
tary fiber content to induce satiety and lower energy intake.57 In
addition, the whole grains and legumes in the Mediterranean diet
constitute good sources of low glycemic index carbohydrates,58

which are useful in lowering postprandial plasma glucose excur-
sions.59 Low-fat diets or diets enriched with monounsaturated
fatty acids and PUFAs have also been proposed as a beneficial
method to improve serum TG levels based on the results of a
randomized controlled study.60

However, the present study has several limitations. First, the
diet-related GHG emission database was established based on a
review of previous literature, and the contents may not be entirely
accurate because no correspondence existed between the different
studies for all the data on the individual food items. Nevertheless,
the database is considered sufficient because the approximate val-
ues of the food-group levelGHGemissions agreewith those of pre-
vious epidemiological studies.12,43 Second, unlike analyses of all-

cause mortality, the exact time of MetS onset is unknown, so this
study could not consider the time effect and perform a sensitive
analysis by excluding participants who met the MetS criteria
shortly after the baseline survey. Further limitations result from a
reliance on the results of the FFQs, which may contain biases,
because these may be over- or under-reported. However, the reli-
ability and validity of this study have been determined by means of
a 24-h recall by other research,28 and the missing data have been
accommodated by the HEXA study group using an imputation
method. The dietary data from the HEXA Study are suitable for
analysis in a nutritional epidemiological study. In addition, the sur-
vey focused on middle-age and elderly participants, whose dietary
activity was not readily changed except for purposes of disease
control. Finally, the study only focused on GHG emissions,
whereas it is recognized that additional aspects contribute to the
food environmental impact, including water eutrophication. In par-
ticular, owing to the inclusion of increased amounts of seafood in
the Mediterranean diet, the issue of water eutrophication was more
serious than that observed with a solely vegetarian diet.61 Thus,
caution should be observed when making dietary suggestions. In
our adjusted model, we replaced the missing covariates by using
some methods that have been commonly accepted in epidemio-
logical studies, but the bias still could appear under some situa-
tions. However, because the number of participants with missing
covariates is 1,634 (3.9% of participants), we believe that any
bias due to the missingness would not be enough to impact the
association between exposure and outcome.62,63 Despite these
limitations, we believe that this study provides novel and impor-
tant results because it quantitatively examines the environmental

Table 3. Adjusted ORs for MetS and its components at follow-up, according to the baseline daily energy-adjusted diet-related GHG emissions among 41,659
participants in the Health Examinees study, South Korea.

Energy-adjusted diet-related GHG emissions
p-Value
for trendQ1 Q2 Q3 Q4 Q5

Males (n=12,846)
n/person-years 2,569/13,385.1 2,569/12,815.8 2,570/12,716.2 2,569/12,405.1 2,569/12,280.9 —
MetS 378 (14.71%) 402 (15.65%) 390 (15.18%) 392 (15.26%) 406 (15.80%) 0.8349

0.984 (0.832, 1.165) 1.035 (0.880, 1.216) 1.005 (0.857, 1.180) 0.954 (0.814, 1.119) Ref 0.8528
TG ≥150 mg=dL 605 (23.55%) 610 (23.74%) 644 (25.06%) 622 (24.21%) 699 (27.21%) 0.0156

0.903 (0.788, 1.034) 0.889 (0.779, 1.015) 0.937 (0.823, 1.066) 0.851 (0.748, 0.969) Ref 0.1573
HDL-C <40 mg=dL 285 (11.09%) 283 (11.02%) 230 (8.95%) 228 (8.88%) 237 (9.23%) 0.0055

1.160 (0.956, 1.408) 1.184 (0.981, 1.428) 0.974 (0.802, 1.182) 0.958 (0.790, 1.162) Ref 0.0470
WC ≥90 cm 491 (19.11%) 512 (19.93%) 512 (19.92%) 558 (21.72%) 552 (21.49%) 0.0937

0.907 (0.766, 1.074) 0.931 (0.791, 1.096) 0.971 (0.827, 1.139) 1.022 (0.873, 1.196) Ref 0.1878
FPG ≥100 mg=dL 1,020 (39.70%) 972 (37.84%) 1,015 (39.49%) 997 (38.81%) 1,010 (39.31%) 0.6620

1.022 (0.907, 1.152) 0.938 (0.835, 1.054) 1.007 (0.898, 1.130) 0.973 (0.868, 1.090) Ref 0.9616
BP
≥130=85mmHg

1,012 (39.39%) 1,022 (39.78%) 1,010 (39.30%) 976 (37.99%) 1,001 (38.96%) 0.7390
0.991 (0.878, 1.117) 1.004 (0.894, 1.128) 1.000 (0.891, 1.122) 0.947 (0.844, 1.062) Ref 0.8818

Females (n=28,813)
n/person-years 5,762/30,272.6 5,763/29,340.8 5,763/28,851.1 5,763/28,798.2 5,762/27,696.6
MetS 737 (12.79%) 757 (13.14%) 724 (12.56%) 702 (12.18%) 708 (12.29%) 0.5367

0.824 (0.732, 0.928) 0.920 (0.819, 1.033) 0.919 (0.818, 1.032) 0.916 (0.815, 1.029) Ref 0.0043
TG ≥150 mg=dL 844 (14.65%) 809 (14.04%) 866 (15.03%) 864 (14.99%) 850 (14.75%) 0.5707

0.895 (0.804, 0.996) 0.880 (0.791, 0.978) 0.976 (0.880, 1.083) 0.992 (0.895, 1.100) Ref 0.0094
HDL-C <50 mg=dL 1,108 (19.23%) 1,064 (18.46%) 1,012 (17.56%) 996 (17.28%) 994 (17.25%) 0.0199

1.047 (0.949, 1.155) 1.024 (0.930, 1.128) 0.983 (0.892, 1.083) 0.978 (0.888, 1.078) Ref 0.3191
WC ≥80 cm 2,132 (37.00%) 2,124 (36.86%) 2,128 (36.93%) 2,017 (35.00%) 1,999 (34.69%) 0.0107

0.868 (0.789, 0.954) 0.933 (0.850, 1.024) 1.001 (0.913, 1.098) 0.939 (0.856, 1.031) Ref 0.0115
FPG ≥100 mg=dL 1,297 (22.51%) 1,261 (21.88%) 1,237 (21.46%) 1,203 (20.87%) 1,237 (21.47%) 0.2911

0.925 (0.844, 1.015) 0.933 (0.852, 1.022) 0.937 (0.856, 1.026) 0.926 (0.846, 1.015) Ref 0.1012
BP
≥130=85mmHg

1,543 (26.78%) 1,560 (27.07%) 1,489 (25.84%) 1,437 (24.93%) 1,458 (25.30%) 0.0376
0.900 (0.824, 0.983) 0.971 (0.891, 1.059) 0.948 (0.869, 1.033) 0.932 (0.855, 1.016) Ref 0.0712

Note: Cases and incidences are presented by n (%). p-Values were calculated using a chi-square test. The adjusted ORs are presented as OR (95% CI) and were calculated using a mul-
tivariate logistic regression model by adjusting for age, educational level, drinking status, smoking status, physical activity, BMI, and total energy intake. The p-value for trend was
based on a linear regression with a median value of diet-related GHG emissions in each quintile treated as a group linear variable. Among males, the ranges of energy-adjusted GHG
emission were 0.66–2.15, 2.15–2.55, 2.55–2.97, 2.97–3.61, and 3:61–11:05 kg of CO2 eq=d=2,000 kcal, respectively. Among females, these ranges were 0.66–2.14, 2.14–2.53, 2.53–
2.93, 2.93–3.54, and 3.54–17.44, respectively. MetS cases were those that met three or more of the ATP III criteria. —, no data; BMI, body mass index; BP, blood pressure; CI, confi-
dence interval; eq, equivalent; FPG, fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; MetS, metabolic syndrome; OR, odds ratio; Ref, reference; TG, triglyceride;
WC, waist circumference.
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and health implications of daily diet patterns in Korea by linking
food-level variables with a large population sample.

Conclusions
The results, based on energy-adjusted GHG emissions, indicate
that self-selected diets with low energy-adjusted GHG emissions
have higher aMED scores and lower risks for MetS. In addition,
consuming diets in accordance with the guidelines from the aMED
or the Korean Food BalanceWheel is beneficial for an individual’s
health and the environment. Future associated research should con-
sider other environmental indexes, like water footprint or land use,
and assess them usingmore appropriate tools.
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