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A B S T R A C T   

The distribution characteristics of lipophilic marine biotoxins (LMTs), such as yessotoxins (YTXs) and pecteno
toxins (PTXs) in phytoplankton, mussels, and commercial seafood were determined for the southern coast of 
South Korea. Gonyaulax spinifera and Dinophysis acuminata, which are the causative microalgae of YTXs and 
PTXs, were recorded during summer. Homo-YTX and PTX-2 were predominantly detected in phytoplankton 
(max: 5.7 μg g− 1 ww), whereas only YTXs were detected in mussels (max: 1.1 μg g− 1 ww). LMT concentrations in 
mussels were positively correlated with those in phytoplankton. However, there was a 1-month time gap in 
maximum LMT concentrations between mussels and phytoplankton. Homo-YTX was detected in commercial 
seafood, including red scallop and comb pen shell. However, homo-YTX concentrations in shellfish were below 
the recommended value of the European Food Safety Authority (3.75 mg YTX equivalents kg− 1); thus, the 
consumption of this seafood was not considered to be a significant risk for human health.   

Harmful algal blooms (HABs), which can adversely affect marine 
ecosystems, occur globally, and are increasing in frequency, associated 
with climate change (Gobler et al., 2017), eutrophication, and expan
sion of coastal aquaculture (Hallegraeff et al., 2021). Some harmful 
microalgae naturally produce marine biotoxins that accumulate in filter- 
feeding organisms, such as bivalves (Liu et al., 2019; Reguera et al., 
2012). Marine biotoxins can be transformed to produce many toxic 
metabolites in bivalves (Yasumoto, 2005), which threaten human health 
when contaminated shellfish are consumed. 

Marine biotoxins are generally classified into hydrophilic and lipo
philic biotoxins according to their chemical properties, such as polarity 
(Chen et al., 2017). More than 200 marine biotoxins have been identi
fied so far (Gerssen et al., 2011), and more than 90% of marine biotoxins 
belong to lipophilic marine biotoxins (LMTs) (Wang et al., 2015). 
Representative LMTs include okadaic acid (OA), dinophysistoxins 
(DTXs), yessotoxins (YTXs), pectenotoxins (PTXs), brevetoxins (BTXs), 
and azaspiracids (AZAs). Hydrophilic marine biotoxins include domoic 
acid (DA) and saxitoxin (STX). LMT poisoning of shellfish has been 

reported in the coastal areas of various countries, including China, Italy, 
and Norway (Draisci et al., 1999; Liu et al., 2019; MacKenzie et al., 
2002; Ramstad et al., 2001). Cases of LMTs contamination in shellfish 
are continuously increasing, with areas of biotoxin contamination 
gradually expanding (Hallegraeff et al., 2021). Consequently, the risk of 
seafood to human health following consumption is of great concern. 

Along the southern coast of Korea, HABs have been reported over the 
last four decades (Baek et al., 2020; Kim et al., 2019). HABs are caused 
by Prorocentrum spp., Gyrodinium spp., Gymnodinium spp., Heterocapsa 
spp., Karenia spp., Pseudo-nitzschia spp., Thalassionema spp., and Cryp
tomonas spp. (Baek et al., 2020; Kim et al., 2019). In the South Sea, 
cultured shellfish frequently die due to high seawater temperature and 
hypoxic conditions. The growth of shellfish is inhibited by changes to 
the species composition of phytoplankton, resulting in the number of 
individuals declining (Lee et al., 2019). The South Sea accounts for 95% 
of shellfish culture production in South Korea, including scallops, oys
ters, cockles, and mussels (Lee et al., 2019). Monitoring is regularly 
performed for certain shellfish toxins, including paralytic shellfish 
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poisoning (PSP), diarrhetic shellfish poisoning (DSP), and amnesic 
shellfish poisoning (ASP) (MFDS, 2009). There have been investigations 
on the contamination status of unmanaged biotoxins in domestic sea
food, but cases of seafood contamination from these toxins have not yet 
been reported on the southern coast of Korea. 

YTXs and PTXs are well-known LMTs. The causative microalgae of 
YTXs are Gonyaulax spinifera, Protoceratium reticulatum, and Lingulodi
nium polyedrum (Paz et al., 2007; Satake et al., 1999; Suzuki et al., 2007). 
In comparison, PTXs are mainly produced by Dinophysis fortii, 
D. acuminata, and D. caudata (Li et al., 2017; Pizarro et al., 2008; Reg
uera et al., 2014). YTXs were previously included in the DSP group (Paz 
et al., 2008); however, recent studies reported that YTXs do not cause 
diarrhea, but do affect the myocardium (Ferreiro et al., 2016; Paz et al., 
2008). PTXs are also hepatotoxins rather than causing diarrhea (Terao 
et al., 1993). The European Food Safety Authority (EFSA) recommended 
setting minimum thresholds for YTXs and PTXs, to prevent accidents 
caused by the ingestion of shellfish contaminated with them (EFSA, 
2008, 2009); however, regulations on these toxins have not yet been 
established in South Korea. At present, as the sea surface temperature 
increases due to global climate change, the distribution range of sub
tropical harmful microalgae is extending (Gobler et al., 2017). Conse
quently, exotic microalgae might appear in Korean coastal waters, and 
unmanaged shellfish toxins could occur. However, to date, LMTs (such 
as YTXs and PTXs) are rarely monitored in Korea. As a result, their 
distribution characteristics are largely unknown. 

In the present study, we investigated the spatiotemporal distribu
tions of YTXs and PTXs along the southern coast of South Korea. The 
specific objectives were to: i) identify the causative microalgae from 
summer to winter, ii) determine concentrations of YTXs and PTXs in 
phytoplankton and field mussels, iii) investigate YTXs and PTXs 
contamination of various commercial shellfish, and iv) assess the po
tential risk of YTXs and PTXs to human health through seafood 
consumption. 

The field investigation and sampling were conducted monthly at 13 
sites (Group 1: S1–S7; Group 2: S8–S13) along the southern coast of 

Korea from June to December 2020 (Fig. 1). Water quality parameters 
were measured in situ using a multi-sensor (YSI 6600v2, YSI Inc., Yellow 
Springs, OH), and included water temperature (WT), salinity, pH, and 
dissolved oxygen (DO). Dissolved inorganic nutrients (NO2

− , NO3
− , NH4

+, 
PO4

3− , and SiO2) were analyzed using an automatic nutrient analyzer 
(LACHAT Quikchem 8000, Hach Company, Loveland, CO). The con
centration was quantified using reference materials for nutrients in 
seawater (KANSO Technos Co., Osaka, Japan). Chlorophyll-a (Chl.a) 
was extracted with 90% acetone in the dark for 24 h, and was measured 
using a Turner-designed fluorometer (Turner BioSystems, Sunnyvale, 
CA) (Lim et al., 2019). 

To analyze the density and species composition of phytoplankton, 
500 mL of surface seawater was collected and immediately fixed with 
Lugol solution (final concentration 3%). The fixed sample in the labo
ratory was concentrated to 50 mL, transferred to the Sedgewick-Rafter 
Chamber, and allowed to settle for 10 min. Phytoplankton species 
were identified using a light microscope. Morphologically distinct spe
cies were identified at the species level, and indistinguishable species 
were identified at the genus level. 

Phytoplankton samples (20–200 μm suspended particulate matter 
(SPM), n = 89) were collected using a 20 μm mesh net. Zooplankton and 
large suspended solids were removed using a 200 μm mesh net. Then, 
the concentrated phytoplankton (about 150 mL) was filtered with nylon 
net filters (20 μm, 47 mm, Millipore, Merck, Darmstadt, Germany), and 
the samples were stored at − 20 ◦C until analysis. To analyze YTXs and 
PTXs in phytoplankton, the frozen filter was thawed at room tempera
ture, cut with scissors, and placed in a 15 mL conical tube. The sample 
was extracted with 3 mL methanol, and was vortex-mixed for 1 min (Liu 
et al., 2017). After sonication for 5 min, the supernatant was collected by 
centrifugation at 3500 rpm for 10 min. The same process was repeated 
two more times, and the extracts were combined (final volume 10 mL). 
The extract was filtered through a 0.22 μm syringe filter before instru
mental analysis. 

Mussels (n = 75) were collected monthly from the same field sites 
(S1–S13) as the phytoplankton. More than 20 mussels were collected 

Fig. 1. Sampling sites of phytoplankton, mussels, and shellfish. Phytoplankton (20–200 μm SPM) and mussels were collected from Sites S1–S13 along the southern 
coast of South Korea (June to December 2020). Shellfish samples were collected from three seafood markets located in Seoul, Daejeon, and Busan (September to 
December 2020). 
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from each site at each sampling event. The mussels were transferred to 
the laboratory in a cool box, and were stored at − 20 ◦C until analysis. 
Domestic seafood samples (n = 121) were collected monthly from three 
seafood markets located in Seoul, Daejeon, and Busan from September 
to December 2020 (Fig. 1). Twelve species of commercial shellfish were 
collected; namely ark shell, red shell, mussel, corb shell, surf clam, hard 
clam, purplish clam, marsh clam, comb pen shell, red scallop, manila 
clam, and oyster. The scientific names and sample information of com
mercial shellfish are present in Table S1 of the Supplementary Materials. 
The collected shellfish were transferred to the laboratory, and were 
stored at − 20 ◦C until analysis. 

After removing the shell of the bivalves, the soft tissue was collected 
and homogenized. More than 20 individuals per sample were pooled. 
Two grams of the homogenized sample were extracted with 9 mL of 
100% methanol and vortex-mixed for 1 min (Orellana et al., 2014). The 
extract was sonicated in ice water for 10 min, and was then centrifuged 
at 3500 rpm for 10 min to collect the supernatant. The same process was 
repeated twice, and the final volume was made up to 20 mL. Solid-phase 
extraction (SPE) cartridge (Strata-X, 30 mg, 3 mL, Phenomenex, Tor
rance, CA) was used to remove interfering substances. The SPE cartridge 
was activated with 3 mL methanol and 3 mL deionized water. After 
diluting the methanol content of the extract to 20% or less, it was loaded 
into the cartridge. After loading the sample, the cartridge was washed 
with 3 mL of 15% methanol and dried under vacuum for 3 min. YTXs 
and PTXs were eluted with 3 mL methanol containing 1% ammonium 
hydroxide, and were concentrated to 1 mL under N2 gas. 

Authentic standards for YTX, homo-YTX, PTX-2, and PTX-11 were 
obtained from the National Research Council of Canada (Ottawa, ON, 
Canada) and Sigma-Aldrich (St. Louis, MO). LMTs were analyzed using 
an Agilent 1290 Infinity II LC system (Agilent Technologies, Santa Clara, 
CA) coupled with an Agilent 6470 triple quadrupole mass spectrometer 
MS/MS system (Agilent Technologies). LMTs were separated using a 
Waters X-Bridge C18 column (3.0 mm × 150 mm, 5.0 μm). The mobile 
phase consisted of (A) 0.05% ammonium hydroxide in water and (B) 
0.05% ammonium hydroxide in 90% acetonitrile in water. Target LMTs 
were analyzed using multiple reaction monitoring (MRM) mode. YTXs 
and PTXs were detected in negative and positive modes, respectively. 
Details on MRM transitions and mobile phase gradient conditions are 
provided in Tables S2 and S3. 

A matrix-spiked calibration curve, in the range of 1.0 to 50 ng mL− 1 

(six levels), was used to quantify LMTs (R2 > 0.996). Limit of detection 
(LOD) and limit of quantification (LOQ) were calculated by analyzing a 
mussel spiked with standard materials (1 ng, n = 7). LOD and LOQ were 
calculated by multiplying the standard deviation of the spiked mussel 
extract response by 3.143 and 10, respectively. LOD and LOQ ranged 
from 1.6 to 3.3 ng g− 1 wet weight (ww) and 5.1 to 10.5 ng g− 1 ww, 
respectively. The recovery rate of each LMT was analyzed for mussels 
were spiked with standard materials (25 ng), following the procedure 
described above (n = 4). Recoveries of the spike test ranged from 91 to 
98% (details in Table S4). 

For statistical analysis, IBM SPSS Statistics 26 (Armonk, NY) and R 
software (Version. 3.6.3) were used. Shapiro-Wilk’s normality test was 
performed to verify the normality of the data, and the data obtained 
from the present study did not satisfy a normal distribution. The Mann- 
Whitney test was conducted to confirm the difference in LMT concen
trations between Group 1 and Group 2. Spearman’s rank correlation and 
principal component analysis (PCA) were carried out to evaluate sig
nificant relationship between LMT concentrations, water quality pa
rameters, and the abundance of causative microalgae. All significance 
levels were set at 0.05 (p-value). Values with LMT concentrations below 
LOD were analyzed using LOD/2. Redundancy analysis (RDA) was 
performed using CANOCO version 4.5 to investigate the relationship 
between environmental variables and phytoplankton dynamics. Envi
ronmental variables (e.g., DO, pH, WT, salinity, and nutrients) were 
used in the analysis. Data used for RDA were square root converted and 
analyzed. 

Exposure of YTXs and PTXs was assessed based on the consumption 
of commercial shellfish. The consumption data of shellfish were esti
mated from the 7th period of the Korean National Health and Nutrition 
Examination Survey (KNHANES, 2016–2018) conducted by the Korean 
Disease Control and Prevention Agency (KCDA, 2020). Consumption 
data of bivalves were assessed using a 24-h dietary recall questionnaire. 
Daily food intake was analyzed based on bivalve group. The consump
tion of red scallops and comb pen shells was calculated. For the exposure 
assessment of YTX and homo-YTX by intake of bivalves with acute 
reference dose (ARfD) values, we established four consumption sce
narios with the highest detected concentration according to FAO/WHO 
guidance (FAO/WHO, 2011) and the EFSA report (EFSA, 2008), as fol
lows (Eqs. (1)–(4)): 

Scenario 1 : Highest detection concentration×mean consumption (1)  

Scenario 2 : Highest detection concentration× high consumption I (2)  

Scenario 3 : Highest detection concentration× high consumption II (3)  

Scenario 4 : Highest detection concentration× high consumption III (4)  

where mean consumption indicates food consumption by all partici
pants. High consumption I, II, and III indicate food consumption by only 
consumers, 95th level of food consumption by all participants, and 
97.5th level of food consumption by all participants, respectively. 

The hazard quotient (HQ%) and hazard index (HI%) were calculated 
to estimate the exposure level by comparing the estimated daily intake 
(EDI) with the ARfD value. Based on a previous report (EFSA, 2008), 25 
μg YTX equivalent (EQ) kg− 1 body weight was applied as the ARfD for 
YTX and homo-YTX, because the toxic equivalence factor of YTX and 
homo-YTX is 1. By considering the Korean mean body weight (60 kg) 
suggested in the KNHANES, the health-based guidance value (HbGV) of 
1500 μg YTX EQs/person/day was utilized. As the sum of HQs for each 
contaminated bivalve, the HI% for each compound was calculated using 
Eq. (5) in accordance with the method for mixture-risk assessment of 
chemical risk factors (Juan-Borrás et al., 2016). 

HI% =

(
∑i

n=1
HQn%

) [

HQ% =

(
EDI

HbGV

)

× 100
]

(5) 

The water quality parameters of the southern Korean coast from June 
to December are shown in Table S5. Notable parameters of seawater 
quality included variation in salinity and nutrients. In August, salinity 
was less than 30 psu at all sites. The concentrations of nutrients showed 
large spatial and temporal variation, with relatively high concentrations 
being observed in July and August. The average precipitation one week 
before the sampling campaign was observed to be 30 mm per day, 
indicating that rainwater had an influence. In addition, freshwater 
discharge from the Yangtze River reached a maximum of 82,000 tons s− 1 

in July 2020. The South Sea is affected by the Tsushima Warm Current 
during summer and fall, and is affected by freshwater from the Yangtze 
River after the summer monsoon (Chang, 2003; Isobe, 1999). In addi
tion, nutrient concentrations in seawater are affected by the formation 
of stratification and inflow of runoff after heavy rainfall (Baek et al., 
2015; Lee et al., 2018). These factors seem to be related to variation in 
water quality. This phenomenon occurs annually in the South Sea of 
Korea (Lim et al., 2019). 

The species composition and density of phytoplankton, as well as 
LMT concentrations in organisms, were interpreted by dividing the 
sampling sites into the eastern region near Jinhae Bay (Group 1: S1–S7) 
and the western region near Namhae Is (Group 2: S8–S13) (Fig. 1). At all 
sites, phytoplankton included Bacillariophyceae (57 ± 16%), Crypto
phyceae (28 ± 21%), Dinophyceae (13 ± 5%), Raphidophyceae (0.49 
± 1.2%), and Dictyochophyceae (0.26 ± 0.34%), supporting previous 
studies conducted in the South Sea (Baek et al., 2019; Lim et al., 2019, 
2021). In general, Skeletonema spp. and Pseudo-nitzschia spp. occupied 
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cold seawater with rich nutrient conditions, whereas dinoflagellates 
occupied warmer water (Fig. S1). The succession from diatoms to di
noflagellates was previously reported to occur in the South Sea during 
summer (Lim et al., 2019). In the current study, the succession from 
diatoms to dinoflagellates also occurred during summer; however, the 
timing of succession differed between Group 1 and Group 2. For 
example, the relative contribution of Dinophyceae in Group 1 increased 
from 10% in June to 29% in July. In contrast, in Group 2, its contribu
tion increased from 8.5% in July to 28% in August. In the previous 
study, phytoplankton communities between Group 1 and Group 2 were 
statistically distinguished (Baek et al., 2020). The succession of diatoms 
and dinoflagellates was closely related to the vertical structure of nu
trients in the water column (Lim et al., 2019; Baek et al., 2019). In this 
study, as other environmental factors were similar between the two 
groups, nutrients were considered to be the major factor controlling the 
succession of diatoms and dinoflagellates. 

The density of phytoplankton in Group 1 and Group 2 ranged from 
52 to 5230 cells mL− 1 and 48 to 2670 cells mL− 1, respectively 
(Table S6). There was no significant difference in the density of phyto
plankton between the two groups (p > 0.05). The maximum density of 
both groups occurred during summer. After September, the average 
density decreased to below 1000 cells mL− 1 in both groups. This result 
was similar to a previous study (Baek et al., 2019). In the South Sea, the 
species composition and density of phytoplankton showed seasonal 
variability, and the timing of succession appeared to differ with region. 
To identify major environmental factors controlling the composition of 
phytoplankton, statistical analysis was performed on the top 15 species 
identified in this study. RDA showed that diatoms and dinoflagellates 
were positively correlated with nutrients. In contrast, salinity was 
negatively correlated with nutrients (Fig. S2). This result might be 
attributed to the inflow of nutrient-rich freshwater in summer causing 
salinity to decrease and phytoplankton levels to increase. Chl.a and 
water temperature were strongly correlated with certain diatoms, 
including Chaetoceros spp. and Pseudo-nitzschia spp., which might be 
associated with high biomass during summer. Baek et al. (2020) also 
previously showed a strong positive relationship of these two species 
with Chl.a, which is a biomass indicator of phytoplankton in the South 
Sea. 

Gonyaulax spinifera and D. acuminata are known causative micro
algae of YTXs and PTXs, respectively, and were found on the southern 
coast of Korea (Fig. 2 and Table S7). The presence of YTX-producing 
microalgae has not been previously reported in the coastal waters of 
Korea; however, it has been confirmed that they exist in the form of cysts 
in sediments of the South Sea (Yoon and Park, 2017). Gonyaulax spinifera 

exhibited no significant difference in density between the two groups (p 
> 0.05). Its density peaked during June and August in Group 1 and 
Group 2, respectively. The density of G. spinifera was relatively higher in 
summer, and tended to decline after August. The density of D. acuminata 
was lower compared to G. spinifera; however, its density was also rela
tively higher during summer. In contrast, Kim et al. (2010) recorded 
much lower densities of D. acuminata in Group 1 (1 cell mL− 1). Overall, 
relatively high densities of LMT-producing microalgae were docu
mented in the southern sea during summer in our study, which is a 
concern for the poisoning of shellfish. In addition, although domoic acid 
could not be analyzed in this study, the causative algae, Pseudo-nitzschia 
spp., was present at high densities (>10,000 cells L− 1); thus, further 
investigation on domoic acid poisoning in shellfish is needed (Table S7). 

Homo-YTX, PTX-2, and PTX-11 were detected in phytoplankton 
(20–200 μm SPM) along the southern coast of Korea during the sampling 
period. The concentrations of these toxins varied across sites, indicating 
heterogeneous distributions (Fig. 3a and Table S8). The concentrations 
of homo-YTX, PTX-2, and PTX-11 in Group 1 were <LOD–0.48 μg g− 1 

ww, <LOD–0.43 μg g− 1 ww, and <LOD–0.18 μg g− 1 ww, respectively. In 
Group 2, the concentrations of homo-YTX and PTX-2 were <LOD–5.7 μg 
g− 1 ww and <LOD–0.058 μg g− 1 ww, respectively. There was no sig
nificant difference in LMT concentrations between the two groups, 
except for June (p > 0.05), and PTX-11 was only detected in Group 1. 
This result might be attributed to D. acuminata, the causative microalgae 
of PTXs, occurring at relatively high densities in Group 1. To date, the 
detection of homo-YTX and PTX-11 in phytoplankton along the southern 
coast has not been reported (this study provides the first report). How
ever, small concentrations of PTX-2 were detected in the region of Group 
1 by Kim et al. (2010). In both groups, relatively high concentrations of 
homo-YTX were recorded in summer (June–August) compared to fall 
and winter, with maximum concentrations occurring during June. LMT 
concentrations declined after August, and were not detected at most 
sites of Groups 1 and 2 from September to December. These results were 
similar to that recorded by Liu et al. (2021), in which relatively high 
concentrations of homo-YTX were detected in phytoplankton in south
ern China during summer. 

In mussels collected from field sites, LMTs were only detected in YTX 
and homo-YTX, whereas PTXs were not detected in any samples (Fig. 3b 
and Table S9). In Group 1, the concentrations of YTX and homo-YTX 
were <LOD–0.041 μg g− 1 ww and <LOD–0.77 μg g− 1 ww, respec
tively. In Group 2, the concentrations of YTX and homo-YTX were 
<LOD–0.083 μg g− 1 ww and <LOD–1.1 μg g− 1 ww, respectively. Similar 
to LMT concentrations in phytoplankton, LMT concentrations in mussels 
were higher in Group 2 compared to Group 1. However, there was no 

Fig. 2. Density of causative microalgae of YTXs and PTXs in (a) Group 1 and (b) Group 2 on the southern coast of South Korea from June to December 2020. Blue 
lines represent mean water temperature. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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significant difference between the two groups (p > 0.05). LMT concen
trations in mussels collected in the present study were higher compared 
to a previous study conducted in the South Sea (Kim et al., 2010). Only 
YTX and homo-YTX were detected in mussels, contrasting with LMT 
concentrations in phytoplankton, which might be due to mussels having 
a different biological half-life for LMTs. The half-life of PTXs in mussels 

was reported to be 2.9 d, which was relatively short compared to those 
of YTXs (range: 20 to 24 d) (Aasen et al., 2005; Nielsen et al., 2016). 
Although PTXs existed in phytoplankton, they were not detected in 
mussels because they were easily metabolized and excreted in mussels. 

Similar to LMT concentrations in phytoplankton (20–200 μm SPM), 
those in mussels had a seasonal trend, with relatively higher 

Fig. 3. Concentrations of YTXs and PTXs in (a) phytoplankton (20–200 μm SPM) and (b) mussels on the southern coast of South Korea from June to December 2020.  

Fig. 4. Boxplot showing the concentrations of LMTs 
in phytoplankton (20–200 μm SPM) and mussels in 
(a) Group 1 and (b) Group 2 on the southern coast of 
South Korea from June to December 2020. Dotted 
lines are the fitted lines of the box plot. Fitted lines 
were created using the ggplot2 package in R soft
ware. (c) Results of the principal component analysis 
(PCA) based on environmental parameters, density of 
causative microalgae, and LMT concentrations. (d) 
Spearman’s rank correlation between environmental 
parameters and LMT concentrations in organisms.   
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concentrations in summer (June–August), which declined after August. 
This result was comparable to that obtained by Kim et al. (2010). This 
phenomenon might be explained by seasonal variation in the presence of 
causative microalgae. For instance, G. spinifera, the microalgae causing 
YTXs, occurred at higher densities in summer, and then decreased, with 
very low densities (<1 cell mL− 1) after September. Compared to LMT 
concentrations in phytoplankton, those in mussels peaked later (Fig. 4a 
and b). For instance, LMT concentrations in phytoplankton and mussels 
peaked in June and July, respectively, at site S12, showing a 1-month 
difference. Li et al. (2017) reported that the densities of causative 
microalgae, Dinophysis spp. and Phalacroma rotundatum, peaked during 
summer, with LMT accumulation in shellfish being detected 1–2 weeks 
later (Li et al., 2017). Thus, LMTs, such as YTXs, appear to accumulate 
for longer in shellfish compared to phytoplankton, with the biological 
half-life of biotoxins playing a key role. 

The relationship between environmental factors and LMT concen
trations in phytoplankton (20–200 μm SPM) and mussels was analyzed 
statistically. In both groups, environmental factors showed no signifi
cant relationship with LMT concentrations in organisms (Figs. 4c and d, 
S3, p > 0.05). LMT concentrations in phytoplankton were significantly 
correlated to the densities of causative microalgae, not environmental 
factors. Homo-YTX concentrations in phytoplankton were significantly 
related to G. spinifera densities (Fig. 4d). The toxin concentration and 
causative microalgae density showed similar seasonal variation. Similar 
to G. spinifera, the concentrations of D. acuminata also showed a seasonal 
trend, which was highest in summer. Kim et al. (2010) reported that PTX 
concentrations in phytoplankton closely corresponded with the density 
of the causative microalgae. However, in the current study, PTX con
centrations in phytoplankton showed no significant relationship with 
D. acuminata densities (Fig. 4d, p > 0.05). Thus, other causative 
microalgae of PTXs might exist on the southern coast of South Korea. 
Dinophysis acuminata could have been misidentified, because it is 
morphologically very similar to D. sacculus and D. ovum, which belong to 
the D. acuminata complex (Raho et al., 2008; Zingone et al., 1998). Thus, 
the causative microalgae of PTXs need to be investigated in detail in the 
future. Although no significant relationship was found between the 
density of causative microalgae and LMT concentrations of mussels in 
this study, a significant relationship was observed between LMT con
centrations in phytoplankton and mussels. The concentration of YTX- 
producing microalgae is 0–200 pg cell− 1 (Howard et al., 2008), with 
mussels having filtration rates of 0.26–2.3 L h− 1 (Denis et al., 1999). 
Thus, more YTX could be accumulated in mussels, even at low densities 
(i.e., <5 cells mL− 1). Overall, microalgae that produce LMTs were 
recorded on the southern coast of Korea during summer; consequently, 
LMTs accumulated in bivalves, raising concerns about the safety of 
aquatic products in this region. 

Among the four target LMTs, homo-YTX was only detected in com
mercial shellfish samples. Homo-YTX was detected in seven samples 
(only for two species, red scallops and comb pen shells) out of a total of 
121 samples (total 12 shellfish species) (Table 1). Concentrations of 
homo-YTX in red scallops and comb pen shells were <LOD–73 ng g− 1 

ww and <LOD–124 ng g− 1 ww, respectively. Both red scallops and comb 

pen shells, in which homo-YTX were detected, were cultured in Yeosu 
and Tongyeong, which are located on the southern coast of South Korea. 
Previous studies reported that scallops accumulate relatively large 
amounts of biotoxins over relatively long time periods (Lee et al., 2012; 
Liu et al., 2019). This phenomenon might be attributed to scallops being 
larger than other shellfish, and due to higher feeding rates on phyto
plankton (Li et al., 2015). In this study, the commercial shellfish samples 
in which LMTs were detected showed a temporal distribution (LMT 
concentrations were higher during summer), similar to those recorded in 
mussels collected from the southern coast. This similarity might be 
because shellfish are cultured in the South Sea, where samples were 
collected. In shellfish samples, LMTs (such as homo-YTX) were only 
detected in samples collected in September and October, and were not 
detected in any samples after October. 

The maximum concentrations of YTXs were 73 ng YTX EQ g− 1 ww 
and 124 ng YTX EQ g− 1 ww in red scallops and comb pen shells, 
respectively. The concentrations of YTXs detected in seafood were lower 
than the 3.75 mg YTX EQ kg− 1 ww suggested by EFSA (2008). To date, 
there has been no report of YTXs in domestic seafood, and regulation of 
YTXs has not been established in Korea. The exposure of YTXs to humans 
was calculated to evaluate the potential risks posed by the consumption 
of red scallops and comb pen shells. The mean and high consumption 
values of two contaminated bivalves by YTX and homo-YTX in the 
Korean database are shown in Table S10. The 95th and 97.5th percentile 
consumption rates of red scallops and comb pen shells were not avail
able; instead, 2.5 and 3.0 times the mean of all participants were used to 
assess scenarios 3 and 4, respectively, following WHO guidance for di
etary exposure assessment of chemical risk factors in food (WHO, 1985, 
2020). Results indicated that no potential risk to human health was 
identified in the dietary exposure assessment of the two contaminated 
bivalve species (red scallops and comb pen shells) that had the highest 
homo-YTX concentrations (Table 2). 

Comparison of the HQ% among scenarios revealed that food con
sumption is an important factor in estimating exposure levels. Even if 
the highest concentrations of homo-YTX in the comb pen shell are higher 
compared to red scallop, the consumption level of red scallop is around 
8-fold higher compared to comb pen shell in South Korea. The range of 
dietary assessment on human consumption of these two contaminated 

Table 1 
Concentrations of LMTs in domestic shellfish collected from seafood markets. Out of 121 samples of 12 shellfish species, only those in which LMTs were detected were 
included in this table. A list of all tested samples is provided in Table S1 of the Supplementary Material.  

Month Seafood market Origin Species YTX 
(ng g− 1 ww) 

Homo-YTX 
(ng g− 1 ww) 

PTX-2 
(ng g− 1 ww) 

PTX-11 
(ng g− 1 ww) 

September Seoul Tongyoung Red scallop <LODa  73 <LOD <LOD 
Daejeon Yeosu Comb pen shell <LOD  121 <LOD <LOD 
Busan Tongyoung Red scallop <LOD  37 <LOD <LOD 

October Seoul Yeosu Red scallop <LOD  65 <LOD <LOD 
Tongyoung Red scallop <LOD  63 <LOD <LOD 
Yeosu Comb pen shell <LOD  124 <LOD <LOD 

Busan Tongyoung Red scallop <LOD  57 <LOD <LOD  

a <LOD: below limit of detection. 

Table 2 
Exposure to YTXs associated with the consumption of shellfish for the four tested 
scenarios in the human population of South Korea.  

Species Scenario Dietary exposure (μg d− 1) HQ (%) HI (%)a 

Red scallop S1  0.017  0.0012  0.0014 
S2  1.7  0.11  0.17 
S3  0.044  0.0029  0.0035 
S4  0.061  0.0041  0.005 

Comb pen shell S1  0.0037  0.0002  0.0014 
S2  0.86  0.058  0.17 
S3  0.0093  0.0006  0.0035 
S4  0.013  0.0009  0.005  

a HI (%): sum of HQ for the two shellfish species in each scenario. 
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bivalve species was 0.037–1.7 μg d− 1, and an HQ% of over 100% was 
not observed in any scenario. Thus, the potential risk of consuming bi
valves contaminated with YTXs is low in South Korea. In addition, 
because the HI% was below 1, exposure to toxic levels that could affect 
the health of consumers was low (Evans et al., 2015). Because there is a 
risk of chronic exposure to marine biotoxins, continuous monitoring for 
these toxins is required. Of importance, unmanaged marine biotoxins 
were detected in both coastal organisms on the southern coast and 
commercial shellfish in seafood markets. 

In this study, YTXs and PTXs-producing phytoplanktons were 
observed at noticeably high densities along the southern coast of Korea 
during summer. YTXs and PTXs were detected in both phytoplankton 
and mussels, and concentrations were also greater during summer. In 
addition, homo-YTX was detected in domestic seafood, but not at a level 
considered to cause risk to human health. To date, there are no safety 
guidelines for LMTs, such as YTXs and PTXs, in seafood in Korea. Since 
LMT-producing microalgae frequently appear along the southern coast 
of Korea in summer, shellfish contamination by LMTs and chronic 
human exposure is possible. Therefore, continuous monitoring of LMTs 
is required, and preemptive management of these toxins. 
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