IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 7 November 2023, accepted 18 December 2023, date of publication 25 December 2023, date of current version 3 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3346697

== RESEARCH ARTICLE

Splitting of Composite Neural Networks
via Proximal Operator With
Information Bottleneck

SANG-IL HAN ™, KENSUKE NAKAMURA~, AND BYUNG-WOO HONG

Department of Artificial Intelligence, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Byung-Woo Hong (hong@cau.ac.kr)

This work was supported in part by the Chung-Ang University Graduate Research Scholarship in 2022, in part by the Institute for
Information and Communication Technology Planning and Evaluation (IITP) funded by the Korean Government [Ministry of Science and

Information and Communication Technology (MSIT)] through the Chung-Ang University Artificial Intelligence Graduate School Program
under Grant 2021-0-01341, and in part by the National Research Foundation of Korea under Grant NRF-RS-2023-00251366.

ABSTRACT Deep learning has achieved efficient success in the field of machine learning, made possible
by the emergence of efficient optimization methods such as Stochastic Gradient Descent (SGD) and its
variants. Simultaneously, the Information Bottleneck theory (IB) has been studied to train neural networks,
aiming to enhance the performance of optimization methods. However, previous works have focused on
their specific tasks, and the effect of the IB theory on general deep learning tasks is still unclear. In this
study, we introduce a new method inspired by the proximal operator, which sequentially updates the neural
network parameters based on the defined bottleneck features between the forward and backward networks.
Unlike the conventional proximal-based methods, we consider the second-order gradients of the objective
function to achieve better updates for the forward networks. In contrast to SGD-based methods, our approach
involves accessing the network’s black box, and incorporating the bottleneck feature update process into the
parameter update process. This way, from the perspective of the IB theory, the data is well compressed up
to the bottleneck feature, ensuring that the compressed information maintains sufficient mutual information
up to the final output. To demonstrate the performance of the proposed approach, we applied the method to
various optimizers with several tasks and analyzed the results by training on both the MNIST dataset and
CIFAR-10 dataset. We also conducted several ablation studies by modifying the components of the proposed
algorithm to further validate its performance.

INDEX TERMS Deep learning, information bottleneck, stochastic gradient descent, proximal algorithm.

I. INTRODUCTION
Deep learning methods have had a tremendous impact on

to their efficiency and reliable performance. SGD and its
variants select minibatches probabilistically to calculate

machine learning and demonstrated successful performance
in various fields [1], [2], [3], [4]. Deep learning consists
of neural networks with large datasets, which requires
efficient optimization methods. Stochastic Gradient Descent
(SGD) [5] is a useful optimization method in deep learning,
and several variants such as AdaGrad [6] and Adam [7]
have been studied and developed based on it. These methods
are widely used in the training of various models due

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li

gradients using backpropagation algorithms. They determine
the update direction of network parameters and ensure that
they do not deviate significantly from that direction through
the use of adaptive learning rates and momentum. In this way,
these methods update the parameters to expedite the con-
vergence of the objective function towards its optimal point.
Furthermore, studies have also been conducted to analyze
deep neural networks from the perspective of the Information
Bottleneck theory (IB) [8]. Based on the bottleneck features,
the IB theory finds the optimal trade-off between reducing
the complexity of the input to the bottleneck feature and

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 157

https://orcid.org/0009-0004-9983-3316
https://orcid.org/0000-0002-6858-3551
https://orcid.org/0000-0003-2752-3939
https://orcid.org/0000-0001-6310-8965

IEEE Access

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

increasing the accuracy of predicting the output in the
bottleneck. When applied to a deep neural network, each
parameter can be optimized by selecting the bottleneck
feature between the input and output of the network to adjust
the mutual information between them.

SGD and its variants are efficient in finding an optimal
solution for various tasks. However, since SGD and its
variants update the direction based on stochastically divided
data, convergence is not always guaranteed. To enhance the
effectiveness of parameter update directions in SGD-based
methods, it is worth considering the application of the
IB perspective. First, define a bottleneck feature between
the forward and backward network, and the parameters
of the backward network are updated to increase the
mutual information between the bottleneck feature and the
output. Second, the parameters of the forward network
are updated to decrease the mutual information between
the input and the bottleneck feature. Updating these two
sets of parameters sequentially with the same objective
function yields no difference compared to updating them
simultaneously. To create a distinction in this context, it is
necessary to update each set of parameters sequentially using
distinct objective functions. In other words, it is important
to consider how to formulate the objective function to
update the parameters in a manner that increases the mutual
information between the bottleneck feature and the output or
reduces the mutual information between the input and the
bottleneck feature. However, directly optimizing each mutual
information from the perspective of the IB theory is not easy
in neural networks due to the difficulty of calculating them,
presenting significant challenges.

Inspired by the proximal operator [9], we propose a
sequential update method based on SGD and its variants.
To simplify the problem, we address the task of fitting the
parameters of the backward network first and subsequently
update the parameters of the forward network, similar to the
approach proposed by Shwartz-Ziv et al. [10]. The parameters
of the backward network are updated using the basic objective
function for SGD-based training. Additionally, the bottleneck
feature is updated with this objective function to increase the
mutual information between the output and the bottleneck
feature. Next, we construct an objective function that updates
the parameters of the forward network using the updated bot-
tleneck feature. This objective function consists of the norm
between the updated and existing bottleneck features. In most
neural networks, the bottleneck feature can be positioned in
the middle of the network. Therefore, the proposed method
can be easily applied in an end-to-end learning environment
that utilizes SGD or its variants as optimizers. Finally,
we update the parameters of the network sequentially. Unlike
the conventional proximal-based methods, we update the
forward network by considering the second-order gradients
of the objective function, resulting in a more accurate update
direction. In our experiments, the proposed method is applied
to various problems, including binary classification, image
classification using convolutional networks, and Variational

158

Autoencoder (VAE) [11]. Applying the proposed method
to the binary classification problem resulted in faster
convergence in the objective function and improved accuracy
compared to the network that did not apply the method.
In other tasks, we have observed improved convergence of
the objective function and performance compared to using
only SGD or its variants. Particularly, noteworthy results were
achieved in the case of VAE. This demonstrates that the
proposed method has a positive impact on objective function
optimization about the IB theory.

In summary, we study the following in this study. (a) We
consider the application of IB theory to existing SGD and
its variants for sequential parameter update. (b) We propose
optimization methods based on SGD and its variants, inspired
by the proximal operator, that update the bottleneck feature
and utilize it to update the parameters of the forward network.
By adding a bottleneck feature updating step in the entire
updating sequence, we can achieve the effect of optimizing
the objective function of the IB theory. (c) We conduct
experiments by applying the proposed method to models
designed for various tasks. As a result, the proposed method
demonstrated superior performance compared to existing
models that solely employed SGD and its variants.

Il. RELATED WORKS
A. SGD-BASED OPTIMIZATION METHODS
Optimization methods for objective functions in deep neural
network learning have been extensively studied, and many of
these methods have been developed based on SGD. SGD and
its variants are utilized to update parameters in the majority
of deep learning models, and these methods are known for
their high efficiency and performance. The origin of these
methods is the gradient descent algorithm, which is built upon
the backpropagation algorithm. The concept of SGD was first
introduced by Robbins et al. [5] and has since become a
popular optimization method in deep learning models due
to its efficiency and simplicity, achieved by stochastically
selecting data. Bottou et al. [12] analyzed the training process
under various conditions to consider when applying SGD to
training large machine learning models. In practice, SGD has
demonstrated good performance on complex convolutional
models like VGGNet [13] and Inception networks [14].
However, SGD does not guarantee a constant convergence
rate or direction because it relies on stochastic factors.
To address this issue, SGD with the concept of momentum
is introduced. Polyak et al. [15] introduced a momentum
method that accelerates the convergence rate of SGD and
reduces directional fluctuations. Nesterov et al. [16] intro-
duced the Nesterov momentum method, which offers a more
intuitive update approach. Sutskever et al. [17] conducted a
study on Nesterov momentum and initialization methods in
combination. In addition to the momentum method, variant
optimization methods of SGD such as AdaGrad [6] and
Adam [7], which offer adaptive learning rates, are popular.
Various adaptive learning rate-based methods have evolved

VOLUME 12, 2024

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

IEEE Access

in various ways. AdamW [18] provides better generalization
performance to Adam through decoupled weight decay.
AdamP [19] prevents an increase in weight norm through
projection to help Adam find global optima. NAdam [20]
replaces Adam’s momentum with the Nesterov momentum
method to find global optima more quickly. RAdam [21]
computes the variance of the adaptive learning rate and
uses it to provide stability in the training process through
corrections in the learning formula. Adalnject [22] controls
parameter updates to minimize oscillations closer to the
minimum. Recently, there has been research on PNM [23] and
AdaPNM [23], aiming to replace the traditional momentum
with the Positive-Negative momentum approach. These
methods maintain two independent momentum terms to
control stochastic gradient noise. Adan [24] applies Nesterov
momentum estimation in the adaptive gradient algorithm to
accelerate convergence and estimate first and second-order
moments. These various methods have demonstrated fast
convergence and high performance.

B. IB THEORY IN DEEP LEARNING

IB theory has been studied extensively since its introduction
is presented in Tishby et al. [8]. In deep learning, network
training involves updating the network’s parameters to predict
Y that aligns with X in the joint probability distribution
between X and Y, where X represents the input value and
Y represents the output value. In IB theory, the focus is on
the bottleneck representation feature Z within the network,
aiming to control the trade-off between compressing the
information from X into Z and preserving the information
from Y within Z. From the perspective of mutual information,
the amount of mutual information I(X; Z) between X and Z
should be minimized, and the amount of mutual information
I(Z;Y) between Z and Y should be maximized. Therefore,
the objective function of the IB theory, which enables the
training of deep learning networks, is represented as,

inf (I(X;Z2) —nl(Z;Y)), ey
plzlx)

where 7 is a Lagrange multiplier and x and z are instances of
X and Z, respectively.

Tishby et al. [8] demonstrated that during network learn-
ing, Z tries to compress information about X by minimizing
its presence in X, while simultaneously maximizing the
retention of information about Y. Based on the theory,
Shwartz-Ziv et al. [10] divided network training into two
main stages, demonstrating the fitting between Z and Y in
the first stage and the compression between X and Z in the
second stage.

Applying IB theory to deep learning is an intriguing
approach. However, it comes with certain challenges.
Typically, calculating the amount of mutual information
in (1) is a highly challenging problem. Since obtaining
the exact amount of mutual information directly from
each data distribution is challenging, numerous estimators
have been studied to approximate and calculate the mutual

VOLUME 12, 2024

information in various ways. Belghazi et al. [25] introduce
a method for approximating the lower bound of mutual
information between data and training it in the neural
network, enabling the calculation of mutual information.
Goldfeld et al. [26] estimate the mutual information by
considering the dependence between neurons in the network
and focusing on the information flow within the neural
network. Lorenzen et al. [27] analyzes information flow
by accurately calculating the mutual information between
quantized neurons in quantized neural networks, instead of
continuous neurons. Through this estimation of mutual infor-
mation, several studies have approached deep learning from
various perspectives of the IB theory. Alemi et al. [28] train
the network by estimating the lower bound using (1) through
variational inference. Achille et al. [29] proposed information
dropout as a regularization method to minimize /(X; Z).
Saxe et al. [30] analyzed the trade-off between I(X; Z)
and /(Z; Y) by relating the training process of deep linear
networks to IB theory. While many studies have applied the
IB theory to neural networks and achieved some performance
improvements, it is not easily applicable to models for all
tasks. We aim to optimize (1) by simply incorporating an
update of Z into the training process of neural networks.

C. PROXIMAL OPERATOR

The proximal operator is a field of research that aims
to solve challenging, non-differentiable, and constrained
problems in the realm of convex optimization. The proximal
operator addresses the problem of minimizing h(a) within
the constrained environment of a = v, where A(-) is a
convex function. The proximal operator scaled for A, denoted
as proxy ., is defined by,

proxh/k(v) = argmin,(h(a) + 1/2||a — V||%)- 2)

The proximal algorithm [9] solves convex optimization
problems using the proximal operator. Proximal minimiza-
tion calculates a, which is the result of prox, /)Lh(vk) in the
kth step, substitutes it for viy1, and repeats this process
until v; converges to obtain the optimal solution. The
proximal gradient method [9] separates the function / into
a differentiable function and a non-differentiable function to
obtain an optimal solution. The accelerated proximal gradient
descent [9] takes into account momentum to obtain the
optimal solution, ensuring that the direction of the gradient
in each iteration does not change rapidly. The alternating
direction method of multipliers [31] adds a Lagrangian
term for a function 4 with two variables to obtain the
optimal solution. It achieves this by iteratively updating
three variables in a sequential manner. Inspired by (2),
we aim to express the update of the network as a proximal
operator for intermediate features. By updating each variable
sequentially, we achieve the effect of optimizing (1). Also,
unlike conventional proximal-based methods, we consider
the second-order gradients of the objective function to
achieve better updates for the forward networks.

159

IEEE Access

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

TABLE 1. Technical terms and their definitions.

Notations Definition

X The input data

y The output data

f(0) The forward network with parameter 0

g(;) The backward network with parameter ¢

b4 The bottleneck feature between f(+; 0) and g(-; ¢)
L(g(z;$),y) | The objective function

IIl. PROXIMAL-SEQUENTIAL NEURAL NETWORK UPDATE
In this section, we describe the whole method. In Sec-
tion III-A, we introduce an optimization method that updates
neural networks inspired by the definition of proximal
operators in terms of IB theory. In Section III-B, we apply
the proposed method to several tasks.

A. PROXIMAL OPERATOR-BASED SEQUENTIAL UPDATE
We define the intermediate feature of neural networks for
input data as z. The location of z can be anywhere within
the neural network. Based on z, we define a forward network
f(;0) with 6 as the parameters, and a backward network
g(-; @) with ¢ as the parameters. Furthermore, if a pair of
dataset being learned is (x,y) € (X,Y), z € Z is the
bottleneck feature that is forwarded from x to f(-; 6), so the
constraint z = f(x; 6) is established. The objective function
is defined as the loss between g(z; ¢) and y, so it is written
as L(g(z; ¢), y). The notation of the entire neural network
structure is in Table 1.

Applying IB theory to defined neural networks, training
neural networks can be seen as a problem of finding optimal
trade-offs that reduce /(X ; Z) and increase I(Z; Y') for a given
joint probability distribution p(X, Y) of data, by finding 6, ¢,
and additionally z. To achieve this, we update ¢ and z first to
fit/(Z; Y), and then update 6 to find the direction in which (1)
is minimized.

We draw inspiration from the proximal operator for
objective functions to update 6, ¢, and z. Conventional
proximal operators express the problem of minimizing h(a)
in constrained environments where a = v for convex
functions A(-). The proximal operator prox;, ;; , which is scaled
by A, is defined by (2). The constraint in neural networks is
z = f(x; 0), and the equation to be minimized is £(g(z; ¢),).
Expressing it as a proximal operator is equivalent to,

prox ., (f (x; 0)) = argmin,(L(g(z: ¢). y)
+ /2012 — f(x; 0)113). 3)

We present a method for updating 6, ¢, and z using the
objective function of (3). Here, we use SGD and its variants,
which are commonly used for updating neural networks.

In the first attempt, the entire objective function of the
proximal operator was to be used to update all parameters.
Accordingly, ¢ and z were updated first through the objective
function, and the objective function was recalculated using
the updated z. However, it was determined that the proper
optimization of the objective function was not achieved
because the actual learning process did not proceed smoothly.

160

To solve this problem, we break down the objective function
into two parts and update ¢ and z using L£(g(z; ¢), y) only
to increase /(Z; Y). Next, we substitute the updated z for z,
replace f(x; 6) with Z1in A/2||z — f(x; 9)||%, and update 6 to
more directly guide the output of z in the update direction
of 6. The equations for updating ¢, z, and 8 using the basic
gradient descent algorithm for each objective function are
represented as,

¢(n+1) — ¢(n) —a - VeLl(g(z; ¢("))» y)
Ti=z7—B-V.L(z o™, y)
ot . o) _ y-A/2-Vyllz — ZH%v 4

where «, 8, and y represent the learning rates for ¢, z, and 6,
respectively. Also, z is initialized to f(x;) at the beginning
of each iteration.

The update equation of 6 in (4) is a first-order gradient
method for updating f(-;6) that considers the gradient
concerning 6 to make f(-; #) output a fixed z. Here, we do
not fix 7z, and instead, we substituted the update equation
for 7 in (4) into the update equation for 8. The equation is
rearranged as,

g = 6 — o VyL(g(z 6™, y)

et . — g
—y - BE A2 VolIV.L(g(z ") WIB, (5)

where the update of 6 becomes a second-order gradient
method for updating f(-; €) that considers both the gradient
with respect to z and the gradient with respect to 6 in
L(g(z: #). y).

The complete neural network update algorithm using the
update equations from (5) is summarized as pseudo-code in
Algorithm 1. Any gradient descent-based update methods can
be used to update Algorithm 1, and by defining an appropriate
bottleneck feature location within the network, Algorithm 1
can be applied to any network.

Algorithm 1 proximal Operator-Based Network Update

Require: x, y, o, 8, y, A

Ensure: f(-; 0), g(-; ¢)

Initialize n = 1

Initialize 6™, qﬁ(”) randomly

while L£(g(z; ™), y) not converged do
z—f(x;6")
Ut " —a -V L(g(z:), y)
00D — 6 —y . B2 1/2- VIV, L(g(z 6™, YT
n<n+1

end while

Output 6, ¢

B. EXTENSION TO MULTIPLE TASK MODELS

In this study, we applied the sequentially updated method
inspired by the proximal operator to three task models:
(a) binary classification, (b) image -classification, and
(c) VAE.

VOLUME 12, 2024

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

IEEE Access

1) BINARY CLASSIFICATION AND IMAGE CLASSIFICATION
For binary classification and image classification, Algorithm 1
can be directly applied for training. To apply the method to
binary classification and image classification models, it is
necessary to determine the location of the feature z within the
network as the bottleneck feature and update the parameters
using Algorithm 1 according to the objective functions of
each model. For binary classification, the objective function
is mean square loss, while for image classification, the
objective function is cross-entropy loss with the softmax
function.

2) VARIATIONAL AUTOENCODER

To apply the method to the VAE, additional modifications are
required. The VAE takes input data x and forwards it to the
encoder f(-;), which outputs the mean p and the variance
o for the Gaussian distribution of the latent vector z, serving
as the input to the decoder g(-; ¢). In the case of VAE, the
question arises as to whether to consider the output of the
encoder as the bottleneck feature or to consider the input
of the decoder as the bottleneck feature. If the input of the
decoder is considered the bottleneck feature, it implies that
the input of the decoder is a randomly selected vector from a
specific distribution. So the mutual information between this
random value and the actual output data is not significant.
Moreover, utilizing this mutual information to adjust the
mutual information between the input and the output of the
encoder is also not meaningful. Therefore, it is reasonable
to consider the output of the encoder, which provides well-
defined o and p values representing a specific distribution,
as the bottleneck feature. The update of o and u is achieved
by splitting the update of z into two parts within the update
expression of (4). The loss used to update the encoder is
expressed as the sum of L2 losses for both o and . Update
equation for VAE is represented as,

Z=ptoe
$UtD = 6 o VyL(g(z ¢™).)
fii= = B VuL(g(o™, y)
G =0 — B Vollz(z ¢™),y)
oD = 9 _ 3 s2 - V(I — IR + llo — 6112,
(6)

where € is a random vector sampled from a Gaussian normal
distribution N'(0, I), z is the latent vector calculated based
on o and u, and the objective function £ corresponds to the
mean square loss. o and y are the learning rates for ¢ and 6,
respectively, while $ is the learning rate for u and o. At each
iteration, we initialize (u, o) as (i, o) = f(x; 0).

Like a second-order gradient method for updating f(-; 6)
in (5), we have substituted the update expressions of [t
and ¢ into the update expressions of 6 in (6). When we
simplify the equation, the gradient for the update of 6 is
expressed as the gradient of the sum of the L2 norm of the
gradients of £(g(z; ¢), y) with respect to fi and the gradients

VOLUME 12, 2024

of L(g(z; ¢), y) with respect to &, represented as,

Z:= nu+o-€
"D = 9™ — - VyLg(z ™), y)
0" —y - B2 2/2 V(I VuL(g(z ¢™). VI3
+ 11Vo L(g(z: 6™, I13)-)
The entire update algorithm of the VAE using the update

equation of (7) is represented by pseudo-code as shown
in Algorithm 2.

gD .

Algorithm 2 proximal Operator-Based VAE Update
Require x, y, o, 8, y, A
Ensure f(-; 0), g(-;)
Initialize n = 1
Initialize 6™, ¢(") randomly
while £(g(z; ™), y) not converged do
Initialize € randomly
o, < fx; 0M)
< MW+o-€
Ut ¢ —a - VyLig(z:), y)
OUtD — 6 —y . B2 1/2- V(|| V, L(g(z 6", Y13
+1Vo L(g(z ™), MII3)
n<n+1
end while
Output 6, ¢

IV. EXPERIMENTS

In this section, to verify the effectiveness of the proposed
method, we compare it with the baseline method on the three
tasks described in Section III-B (binary classification, image
classification, VAE).

A. IMPLEMENTATION DETAIL

1) DATASET

In the experiment, we use a dataset specific to each task.
For binary classification, we use a dataset that consists of
600 randomly generated 2-dimensional input vectors from a
Gaussian distribution A/(0, I) classified into 2 classes. The
dataset is shown in Fig. 3a. For image classification and
VAE, we use the MNIST dataset and CIFAR-10 dataset.
Specifically, for VAE, we trained the model on the task of
adding noise to images of certain classes, then removing
the noise and reconstructing the images. The MNIST dataset
consists of hand-written digit images from O to 9, organized
into 10 classes. It was introduced by LeCun et al. [32].
This dataset contains grayscale images of size 28 x 28 and
is composed of 55,000 training samples and 10,000 test
samples. In the actual experiments, images were resized to
32 x 32 for ease of configuration. The CIFAR-10 [33] dataset
is widely used in the field of computer vision, consisting of
50,000 training samples and 10,000 test samples taken from
10 different classes. The classes include common objects
such as cars, birds, and cats.

161

IEEE Access

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

Loss (log) Train Accuracy (%) Test Accuracy (%) 5 Loss (log) Train Accuracy (%) Test Accuracy (%)
—— baseline
—— Ours
§os 95 95 g 70 70
o S 1
< <
/ & &
0.1 90 90 0.6
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1 2
E =
£ 951 95 € 70 707
c 0.3 S 1
g g
60 601
0.1 90 90+ 0.6
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1 2
€ =
4 954 95 © 70 70
= 0.3 21
-4 =z
60 60+
0.1 90 90+ 0.6
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
1 2
% % 70 70
954 95
go03 £
< <
60 601
0.1 920 90+ 0.6
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
(a) MNIST Dataset (b) CIFAR-10 Dataset

FIGURE 1. Empirical comparison of the proposed method (red line) with baseline (blue line) in image classification. (1st, 2nd, and 3rd
columns in each dataset part) The training loss, training accuracy (%), and test accuracy (%) curves across (x-axis) iteration for (a) MNIST and
(b) CIFAR-10, optimized using (1st, 2nd 3rd, and 4th rows) Adam, AdamW, NAdam, and AdamP respectively.

2) EXPERIMENT SETTING

For binary classification, we used 4 hidden layers with
8 features each, and the sigmoid activation function. The
bottleneck feature was precisely positioned at the middle
layer. We employed full-batch gradient descent as the base
optimizer with learning rates o« = 0.1, § = 10, and y = 100.
For image classification, we used 4 convolutional layers
with f(-; 6) and ReLU as the activation function. For g(-; ¢),
we used a classifier consisting of 2 hidden layers with ReLU
as the activation function. For VAE, we used an encoder
with 5 convolutional layers and 2 linear layers for f(-; 6),
with LeakyReLU as the activation function. For g(-; ¢),
we used a decoder with 5 convolutional layers and Tanh as
the activation function. The dimension of the latent vector is
128. Both f(-; 8) and g(-; ¢) used batch normalization. In all
experiments, we set A = 1.

3) EVALUATION SETUP

For the evaluation metrics to compare the performance of
the learning results, we compare the prediction accuracy
for binary classification and image classification tasks. For
VAE, we use the peak signal-to-noise ratio (PSNR) between
the reconstructed images and the original images as the
evaluation metric.

4) COMPARISON METHODS

We compare the performance of the proposed method by
applying the proposed method to several state-of-the-art
optimizers. We train image classification and denoising

162

VAE using the following four optimizers and compare their
performance:

Adam [7]: Adam is the most commonly considered
optimizer when training deep learning networks. Adam
estimates first and second-order moments to correct gradi-
ents, accelerating convergence speed. In the case of image
classification, we used « = 0.001, 8 = 10, and y =
0.001 for the MNIST dataset, and « = 0.0001, 8 = 0.01,
and y = 0.01 for the CIFAR-10 dataset. For VAE, we used
a = 0.0001, B = 0.1, and y = 0.01 for the MNIST
dataset, and ¢ = 0.00001, 8 = 0.1, and y = 0.0001 for
the CIFAR-10 dataset.

AdamW [18]: The conventional L2 regularization in
Adam did not demonstrate adequate generalization per-
formance. In contrast, AdamW decouples weight decay,
improving the generalization performance of weight decay.
In the case of image classification, we used ¢ = 0.001,
B = 0.1, and y = 0.001 for the MNIST dataset, and
a = 0.0001, B = 0.01, and y = 0.01 for the CIFAR-10
dataset. For VAE, we used « = 0.0001, 8 = 0.001, and
y = 0.001 for the MNIST dataset, and « = 0.0001, 8 = 0.1,
and y = 0.001 for the CIFAR-10 dataset.

NAdam [20]: NAdam replaces the traditional Adam’s
momentum method with the Nesterov accelerated gradient
method to estimate momentum during training, which
increases the convergence speed. In the case of image
classification, we used « = 0.001, 8 = 0.01,and y = 0.1 for
the MNIST dataset, and « = 0.0001, 8 = 0.01, and
y = 0.01 for the CIFAR-10 dataset. For VAE, we used o =
0.0001, 8 = 0.1, and y = 0.0001 for the MNIST dataset,

VOLUME 12, 2024

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

IEEE Access

01 Loss (log) Train PSNR (db) Test PSNR (db) Loss (log) Train PSNR (db) Test PSNR (db)
—— baseline
€ —— Ours 20 201 c 0.2 20 201
© © 0.1
g 151 15| g
151 15+
0.01 0.03- !
0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000
0.1 0.2
204 201
2 i j 2
< 20 20 = 0.1
3 151 3
< 154 <
0.01 0.03 15 154
' 0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000
0.1
0.2
204 201
% 201 20 % 0.1
° kel
g 151 151 s
0.01 0.03 151 15
' 0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000
0.1 0.2
20 201
a] 1 -8]
% 20 20 g 0.1
2 157 151 2]
0.01 0.031 15 154
’ 0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000
(a) MNIST Dataset (b) CIFAR-10 Dataset

FIGURE 2. Empirical comparison of the proposed method (red line) with baseline (blue line) in VAE. (1st, 2nd, and 3rd columns in each dataset part) The
training loss, training PSNR (db), and test PSNR (db) curves across (x-axis) iteration for (a) MNIST and (b) CIFAR-10, optimized using (1st, 2nd 3rd, and

4th rows) Adam, AdamW, NAdam, and AdamP respectively.

and o = 0.0001, 8 = 0.1, and y = 0.0001 for the CIFAR-10
dataset.

AdamP [19]: When introducing momentum to gradient
descent-based optimizers, there can be a problem of reduced
update steps for scale-invariant weights. AdamP adjusts the
update steps without significantly changing the convergence
direction by removing the radial components or the norm-
increasing direction. In the case of image classification,
weused o = 0.0001, 8 = 0.1, and y = 0.001 for the MNIST
dataset, and ¢ = 0.0001, 8 = 0.01, and y = 0.01 for the
CIFAR-10 dataset. For VAE, we used o = 0.0001, 8 = 0.1,
and y = 0.0001 for the MNIST dataset, and « = 0.0001,
B =0.1,and y = 0.001 for the CIFAR-10 dataset.

To compare the performance, for each optimizer and
task, we have a baseline that uses only the base optimizer.
We compare the results of the baseline and our proposed
method, where the base optimizer is used with our approach
applied. When comparing the objective values, we only
consider the values of the objective function used to train the
baseline. The hyperparameters for all optimizers and tasks’
baselines are selected based on the experiment that yielded
the highest performance.

B. EXPERIMENTAL RESULTS

1) BINARY CLASSIFICATION

In the binary classification experiment, we train our proposed
method and the baseline using the given 2-dimensional
data (Fig. 3a). We then compare the convergence and

VOLUME 12, 2024

30 « Class: 0

201

—=
o
>

101°

— - Baseline
— =+ Ours

X2

Loss (log)

Accuracy (%)

-10

50 100

Iteration

150

(a) Data Distribution (b) Loss and Accuracy

FIGURE 3. Experiment on binary classification. (a) The distribution of
data, (b) (y-axis) the training loss (solid lines) and accuracy curve (dotted
lines) over (x-axis) iteration.

convergence points of the loss values and accuracy graphs
between the two methods to analyze the differences between
our proposed method and the baseline. Fig. 3b is the graph of
the objective values and accuracy for both methods during
training, and it shows that the proposed method converges
faster than the baseline. Hence, it can be inferred that
updating the bottleneck feature in the middle after updating
the backward network and utilizing it in the forward network
update in the proposed method had a positive impact on the
optimization of (1) in the IB theory.

2) IMAGE CLASSIFICATION

The linear regression task is a very simple problem. To apply
our method to more complex problems, we trained our
proposed method and the baseline on the image classification

163

IEEE Access

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

TABLE 2. Training loss, training, and testing evaluation values for all image classification and VAE experiments using the trained models. The left table is
the results of image classification training, and the right table is the results of VAE training. Each value is comprised of the mean (on the left) and the

standard deviation (on the right).

Image classification Train loss Train Accuracy (%) | Test Accuracy (%) Denoising task using VAE Train loss Train PSNR (db) | Test PSNR (db)
Adam 0.16 £ 0.01 94.76 + 0.03 97.74 +0.04 Adam 0.02 £ 0.001 22.76 £+ 0.03 21.78 +0.06
. AdamW | 0.16 &+ 0.01 94.77 + 0.03 97.69 + 0.10 . AdamW | 0.02 =+ 0.001 23.03 +0.03 21.88 +0.05
Baseline Baseline
NAdam | 0.1140.01 96.33 + 0.09 98.39+0.16 NAdam | 0.02 =+ 0.001 23.19+0.03 21.87+0.02
AdamP 0.11 +£0.01 96.35 +0.11 98.35+0.14 AdamP 0.02 £ 0.001 22.58 £+ 0.02 21.74 +£0.08
MNIST MNIST
Adam 0.13+£0.01 95.78 + 0.07 98.12 + 0.02 Adam 0.01 £ 0.001 25.17+0.11 24.24 + 0.08
o AdamW | 0.13 +0.01 95.94 + 0.08 98.24 + 0.09 o AdamW | 0.01 £ 0.001 25.58 +0.04 23.95 + 0.06
urs urs
NAdam 0.13+0.01 95.91 + 0.05 97.96 + 0.16 NAdam 0.01 £ 0.001 25.36 + 0.08 24.19+0.12
AdamP 0.14 +£0.01 95.66 + 0.04 98.16 £ 0.13 AdamP 0.01 £ 0.001 25.12 + 0.02 24.11 + 0.05
Adam 0.64 +£0.01 76.99 + 0.28 68.95 + 0.95 Adam 0.03 £ 0.001 20.73 £ 0.02 19.06 £ 0.03
. AdamW | 0.72 % 0.01 74.78 £ 0.15 70.72 4+ 0.42 . AdamW | 0.03 % 0.001 20.73 £ 0.02 19.08 £0.03
Baseline Baseline
NAdam | 0.64 +0.01 76.97 + 0.20 69.20 + 0.42 NAdam | 0.03 # 0.001 20.78 +0.01 19.06 + 0.01
AdamP 0.71 £ 0.01 74.90 + 0.32 71.00 £ 0.52 AdamP 0.04 £ 0.001 20.17 £ 0.10 19.01 £0.10
CIFAR-10 CIFAR-10
Adam 0.67 £ 0.01 76.62 + 0.42 69.69 +0.51 Adam 0.03 £ 0.001 20.87 +0.04 20.27 +0.04
o AdamW | 0.74 +£0.01 74.20 £ 0.21 72.18 £ 0.58 o AdamW | 0.03 % 0.001 21.69+0.03 19.77 £0.07
urs urs
NAdam 0.67 £0.01 76.72 £ 0.43 70.42 + 0.86 NAdam 0.03 £ 0.001 21.59+0.03 19.76 £ 0.09
AdamP | 0.74 £0.01 74.13 £ 0.09 71.81+0.98 AdamP | 0.03 £ 0.001 21.49 +0.02 20.00 £ 0.04

tasks of MNIST and CIFAR-10 datasets using four different
optimizers. We then compared the convergence and con-
vergence points of the objective values, training, and test
accuracy graphs between the two methods. This analysis aims
to show the differences between the proposed method and the
baseline. Fig. 1a shows the training objective value, training
accuracy, and test accuracy graphs for the two methods during
training on MNIST. In the cases of Adam and AdamW, the
proposed method converges faster than the baseline, and it
also converges to a higher accuracy point. However, in the
cases of NAdam and AdamP, the proposed method does
not exhibit better performance than the baseline. Fig. 1b
shows the training objective values, training accuracy, and
test accuracy graphs for the two methods during training
on CIFAR-10. The training objective values and training
accuracy of the proposed method converge faster than the
baseline, and we can also observe that the test accuracy
of the proposed method converges to the maximum value
faster than the baseline. In other words, when applying the
proposed method to most optimizers in image classification
that include convolutional layers, the addition of bottleneck
updates between the encoder and decoder, through mutual
information control, is presumed to have a positive impact
on the optimization of (1). Specific numerical results for the
image classification experiments can be found in Table 2.

3) VARIATIONAL AUTOENCODER

The autoencoder consists of an encoder and a decoder,
making it easy to define the bottleneck between them
and apply the proposed method. In the VAE experiment,
we trained our proposed method and the baseline using
four different optimizers on a task where Gaussian noise
is added to images of specific classes from the MNIST
and CIFAR-10 dataset and then reconstructed without noise.
We then compared the convergence and convergence points

164

of the objective values and the training and testing PSNR
graphs between the two methods to analyze the differences
between the proposed method and the baseline. Fig. 2 shows
the training objective values, training PSNR, and test PSNR
graphs for the two methods during training on MNIST and
CIFAR-10. For the training objective values, in the early
stages of training, the baseline converges faster than the
proposed method. However, ultimately, for all optimizers, the
proposed method converges to a lower value for the objective.
In the case of PSNR, compared to the baseline, it can be
observed that the proposed method converges better to a
higher peak for all optimizers. In other words, applying the
proposed method to VAE and adding the process of updating
u and o seems to help with mutual information control,
which likely has a positive impact on the optimization of (1).
Specific numerical results for the VAE experiments can be
found in Table 2.

C. ABLATION STUDIES

1) UPDATE METHODS OF THE FORWARD NETWORK

We examine the two updating methods: first-order gradient
and second-order gradient approaches, as considered in
Section III-A. The second-order gradient approach is our
proposed method in the end. To compare the differences
between the two methods, we apply the first-order gradient
approach of (4) and the second-order gradient approach
of (5) to the VAE task separately and train them. Then,
we compare the results of the two methods. Fig. 4a is a graph
comparing the loss values during training for the first-order
gradient approach, second-order approach, and baseline.
The first-order gradient approach converges similarly to the
baseline and eventually converges to a larger value than
the baseline. On the other hand, the second-order gradient
approach converges to a lower value than the baseline.

VOLUME 12, 2024

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

IEEE Access

—— First-order 251
—— Baseline
—— Second-order(Ours) 244
234
3 22/
2 10-1 z 22
(%]
] 221
- [-
204
194 —— First-order 19 —— First-order
—— Baseline —— Baseline
184 —— Second-order(Ours) 18 —— Second-order(Ours)
1072
0 200 400 600 800 1000 0 200 600 800 1000 0 200 400 600 800 1000
Iteration Iteration Iteration
(a) Loss (b) Train PSNR (c) Test PSNR
— L1 25+ 24
—— Huber
—— Baseline 241 23
—— L2(Ours) 23]
22
g £ En
7 W £
3 g 2 20
20+
— L1 19 — L1
197 —— Huber —— Huber
181 —— Baseline 18 —— Baseline
—— L2(Ours) —— L2(Ours)
17 17
0 200 400 600 800 1000 0 200 600 800 1000 0 200 400 600 800 1000
Iteration Iteration Iteration
(d) Loss (e) Train PSNR (f) Test PSNR

FIGURE 4. Experiments on update methods of f(-; #) and the constraint of proximal operator. (a) (y-axis) the training loss curve over (x-axis) iteration,
(b) the training PSNR curve, and (c) the testing PSNR curve in update methods of f(-; 6). (d) the training loss curve, (e) the training PSNR curve, and

(f) the testing PSNR curve in the constraint of the proximal operator.

Fig. 4b and Fig. 4c compare the training and testing PSNR
values of the three methods during training. The second-order
gradient approach converges to higher PSNR values than the
baseline, while the first-order gradient approach converges to
slightly lower PSNR values than the baseline. This suggests
that the first-order gradient approach may not optimize (1)
as desired.

2) THE CONSTRAINTS OF PROXIMAL OPERATOR

As in (2), the conventional proximal operator adds the
constraint as an L2 loss to the objective function. Therefore,
when expressing the update equation as a proximal operator,
as in (3), we used the L2 loss directly. To analyze the impact
of different constraint losses, we applied the update algorithm
to VAE using not only the proposed L2 loss but also L1
loss and Huber loss [34]. Then, we compared the results of
each method to see how the different constraint losses affect
the performance. In the case of L1 and Huber losses, when
trained with the same y value as L2, the loss values diverged.
Therefore, to mitigate this issue, we adjusted the learning
process with y = 0.01. Fig. 4d is a graph comparing the loss
values during training for L2, L1, Huber, and the baseline.

VOLUME 12, 2024

TABLE 3. Training and testing PSNR for all VAE Experiments including
Ablations using the trained models. Each value is comprised of the mean
(on the left) and the standard deviation (on the right).

Train PSNR (db) | Test PSNR (db)

Baseline 23.08 +£0.04 21.87 +£0.06
First-order L2 22.81 £0.04 21.81 £0.08
L1 23.58 £0.15 23.18 £0.21

Second-order Huber 23.93+0.14 23.47+0.17
L2(Ours) 25.09+1.10 24.19+0.12

We have observed that the graphs for L1 and Huber converge
to lower values than the baseline. Fig. 4e and Fig. 4f compare
the training and testing PSNR values of the four methods
during training. Both L1 and Huber show similar converging
patterns to the baseline and converge to lower PSNR values
than L2. Considering that they were trained with a smaller y,
it appears that L1 and Huber may also have potential like L2,
but their stability seems to be more sensitive to the learning
rate, indicating that L2 performs better in terms of stability.
We can see the complete results of the ablation experiments
in Table 3.

165

IEEE Access

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

V. CONCLUSION

We introduced a method that adds bottleneck feature update
to the existing neural network’s SGD-based update algorithm,
inspired by proximal operators. Additionally, we applied the
proposed method to three tasks: binary classification, image
classification, and VAE. We analyzed whether the proposed
method improves performance and how it influences mutual
information optimization in the IB theory. In practice,
we have observed that the proposed method showed better
performance than the existing methods in binary classi-
fication and image classification tasks. Particularly, when
applied to VAE, the proposed method yielded much higher
PSNR results compared to the existing method. Through
these findings, we can infer that the proposed method
provides more assistance to mutual information optimization
compared to the existing methods.

However, there are also many areas for improvement in our
work. In terms of performance metrics, the proposed method
outperforms the existing methods. But it is not possible to
directly examine the mutual information changes between the
input, output, and bottleneck in the IB theory. Therefore, for
more precise analysis, it is necessary to estimate the actual
mutual information using mutual information estimation
methods [25], [26], [27]. Furthermore, our study tested the
proposed method on the most fundamental network architec-
ture to verify its performance. However, it is also necessary
to check the generalization performance on complex, state-
of-the-art networks like residual networks [35], inception
networks [14], Transformer [36], and others. Lastly, in the
current proposed method, we are using a total of three
learning rate hyperparameters: «, 8, and y. This makes the
optimization of training more challenging, so it is worth
considering the application of hyperparameter estimation
methods that utilize suitable approaches such as Bayesian
optimization [37], [38] for optimizing hyperparameters.

In future research, it will be possible to study the proposed
method in combination with various fields. Beyond the
three tasks applied in this paper, it would be beneficial
to investigate whether there is a performance improvement
when applying the proposed method to other tasks such as
recent tasks like image segmentation [39], [40], [41], super-
resolution [42], [43], [44], and generative models [45], [46],
which can also have their networks separated into front
and back layers. Considering the generalization of our
proposed method to deep unfolding networks for super-
resolution [47], which are more complex but structurally
similar to the denoising VAE experimented with in our study,
would be particularly worthwhile. Additionally, it would
be necessary to investigate whether the proposed method
improves performance when applied to various adaptive
SGD-based methods [48] beyond the Adam-based algo-
rithms [7], [18], [19], [20] experimented with in our study.
Furthermore, when dealing with constrained environments
involving multiple devices, such as in the case of federated
learning [49], [50], where a certain amount of learning must
be achieved across several devices, applying the proposed

166

method could facilitate efficient learning. Particularly, in the
context of decentralized federated averaging [51], where only
neighboring devices communicate and synchronizing the
training times of each device is crucial, the proposed method
could enhance efficiency. Finally, in temporal difference
learning in reinforcement learning, the process of computing
gradients based on states and performing updates is similar
to traditional SGD-based methods. Therefore, defining
bottlenecks and applying the proposed method is feasible.
This approach could also be applied to adaptive temporal
difference methods [52], inspired by adaptive SGD-based
techniques.

REFERENCES

[1] J. Chai, H. Zeng, A. Li, and E. W. T. Ngai, “Deep learning in
computer vision: A critical review of emerging techniques and application
scenarios,” Mach. Learn. With Appl., vol. 6, Dec. 2021, Art. no. 100134.

[2] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan,
O. Al-Shamma, J. Santamaria, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: Concepts, CNN architectures, challenges,
applications, future directions,” J. Big Data, vol. 8, no. 1, pp. 1-74,
Mar. 2021.

[3] J. Moos, K. Hansel, H. Abdulsamad, S. Stark, D. Clever, and J. Peters,
“Robust reinforcement learning: A review of foundations and recent
advances,” Mach. Learn. Knowl. Extraction, vol. 4, no. 1, pp. 276-315,
Mar. 2022.

[4] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language
processing: State of the art, current trends and challenges,” Multimedia
Tools Appl., vol. 82, no. 3, pp. 3713-3744, Jan. 2023.

[S] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 22, no. 3, pp. 400-407, Sep. 1951.

[6] John Duchi, Elad Hazan, and Yoram Singer, ‘“Adaptive subgradient
methods for online learning and stochastic optimization,” J. Mach. Learn.
Res., vol. 12, no. 7, 2011.

[7]1 D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[8] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” 2000, arXiv:physics/0004057.

[9] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127-239, Nov. 2014.

[10] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” 2017, arXiv:1703.00810.

[11] D.P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[12] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT, Paris France. Cham, Switzerland:
Springer, 2010, pp. 177-186.

[13] K. Simonyan and A. Zisserman, ““Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “‘Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818-2826.

[15] B.T. Polyak, “Some methods of speeding up the convergence of iteration
methods,” USSR Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1-17,
Jan. 1964.

[16] Y. E. Nesterov, “A method of solving a convex programming problem
with convergence rate O(k%),” Doklady Akademii Nauk, vol. 269, no. 3,
pp. 543-547, 1983.

[17] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proc. Int. Conf. Mach.
Learn., 2013, pp. 1139-1147.

[18] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2017, arXiv:1711.05101.

[19] B.Heo,S. Chun, S. Joon Oh, D. Han, S. Yun, G. Kim, Y. Uh, and J.-W. Ha,
“AdamP: Slowing down the slowdown for momentum optimizers on scale-
invariant weights,” 2020, arXiv:2006.08217.

[20] T. Dozat, “Incorporating Nesterov momentum into Adam,” in Proc. 4th
Int. Conf. Learn. Represent., 2016, pp. 1-4.

VOLUME 12, 2024

S.-l. Han et al.: Splitting of Composite Neural Networks via Proximal Operator

IEEE Access

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han,
“On the variance of the adaptive learning rate and beyond,” 2019,
arXiv:1908.03265.

S.R. Dubey, S. H. S. Basha, S. K. Singh, and B. B. Chaudhuri, “Adalnject:
Injection based adaptive gradient descent optimizers for convolutional
neural networks,” IEEE Trans. Artif. Intell., 2022.

Z.Xie, L. Yuan, Z. Zhu, and M. Sugiyama, “‘Positive-negative momentum:
Manipulating stochastic gradient noise to improve generalization,” in
Proc. Int. Conf. Mach. Learn., 2021, pp. 11448-11458.

X. Xie, P. Zhou, H. Li, Z. Lin, and S. Yan, “Adan: Adaptive
Nesterov momentum algorithm for faster optimizing deep models,” 2022,
arXiv:2208.06677.

M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville,
and R. D. Hjelm, “MINE: Mutual information neural estimation,” 2018,
arXiv:1801.04062.

Z. Goldfeld, E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen,
B. Kingsbury, and Y. Polyanskiy, “Estimating information flow in deep
neural networks,” 2018, arXiv:1810.05728.

S. S. Lorenzen, C. Igel, and M. Nielsen, “Information bottleneck: Exact
analysis of (quantized) neural networks,” 2021, arXiv:2106.12912.

A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational
information bottleneck,” 2016, arXiv:1612.00410.

A. Achille and S. Soatto, “Information dropout: Learning optimal
representations through noisy computation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 12, pp. 2897-2905, Dec. 2018.

A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey,
and D. D. Cox, “On the information bottleneck theory of deep learning,”
J. Stat. Mech., Theory Exp., vol. 2019, no. 12, Dec. 2019, Art. no. 124020.
S. Boyd, “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1-122, 2011.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.
[Online]. Available: https://www.cs.toronto.edu/ kriz/learning-features-
2009-TR.pdf

P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs
in Statistics. New York, NY, USA: Springer, 1992, pp. 492-518.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 5998-6008.

S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient
hyperparameter optimization at scale,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1437-1446.

A. Klein, L. C. Tiao, T. Lienart, C. Archambeau, and M. Seeger, ‘“‘Model-
based asynchronous hyperparameter and neural architecture search,” 2020,
arXiv:2003.10865.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder—decoder with atrous separable convolution for semantic image
segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018,
pp. 801-818.

K. He, G. Gkioxari, P. Dolldr, and R. Girshick, ‘“Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2961-2969.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2881-2890.

C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295-307, Feb. 2015.

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 136-144.

J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using
very deep convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1646-1654.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 2672-2680.

VOLUME 12, 2024

(46]

[47]

(48]

[49]

(50]

(51]

(52]

T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 4401-4410.

K. Zhang, L. Van Gool, and R. Timofte, “Deep unfolding network for
image super-resolution,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 3217-3226.

T. Sun, L. Qiao, Q. Liao, and D. Li, “Novel convergence results of adaptive
stochastic gradient descents,” IEEE Trans. Image Process., vol. 30,
pp. 1044-1056, 2021.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273-1282.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., vol. 2, 2020, pp. 429-450.

T. Sun, D. Li, and B. Wang, “Decentralized federated averaging,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 4289-4301,
Apr. 2023.

T. Sun, H. Shen, T. Chen, and D. Li, “Adaptive temporal difference
learning with linear function approximation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 12, pp. 8812-8824, Dec. 2022.

SANG-IL HAN received the bachelor’s degree
in software engineering from Chung-Ang Univer-
sity, in 2021, and the master’s degree from the
Image Laboratory, Al Department, Chung-Ang
University, in 2022. He studied basic deep learning
techniques and several generative models. His
main research interests include generative models,
optimization, and IB theory.

KENSUKE NAKAMURA received the M.Sc. and
D.Phil. degrees in engineering from the Institute
of Technology, Kyoto Institute of Technology,
Japan, in 2004 and 2012, respectively. He is a
Research Associate with Chung-Ang University.
He has participated in research on models and
applications of the 2-D/3-D human body shapes.
His current research interests include computer
vision and a support system for fashion design.

BYUNG-WOO HONG received the M.Sc. degree
in computer vision from the Weizmann Institute
of Science, in 2001, with Prof. Shimon Ullman,
and the D.Phil. degree in computer vision from the
University of Oxford, in 2005, with Prof. Michael
Brady. In 2008, he joined the Computer Science
Department, Chung-Ang University, South Korea,
as a Faculty Member, after his postdoctoral
research with the Computer Science Department,
University of California, Los Angeles, with Prof.

Stefano Soatto. He is interested in image processing, computer vision,
machine learning, and medical image analysis.

167

